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FIG. 7. Phase plane of the 
system (9): = i (Hz 
- 1)'n + (X2 - 1 + ~ 1 1 ' 2 .  

/ 

quencies, generally speaking, of a large number of 
modes with close k, can be described by introducing the 
amplitudes of opposing waves that vary slowly along the 
network (T >O): 

In terms of the new variables X =  I b+I2 + ( b. 1 2 ,  Y = I b- 1' 
- I b+12,Z=b+b- + btbt we have 

Xf=2Y, Yf=2X+2HS, Z'=YS; (9) 
S'=F- yz-zz. 

By simple transformation we obtain one of the integrals 
of the system (9) x2 - +4HZ = C. The phase plane is 
shown in Fig. 7. 

Motions close to the separatrix correspond to the ex- 
perimentally observed single-frequency multimode reg- 

imes ("blackout" solitons). On the other hand, motions 
close to the "center" correspond to regimes with few 
modes, one of which is shown in Fig. 5a. 

The authors thank A. V. Gaponov, V. S. L'vov, and 
A. L. Fabrikant for helpful discussions. 
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Metallic screening in a Peierls-Frolich dielectric with 
pinning to impurities at finite temperatures 

L. D. k n d a u  Theoretical Physics Institute, Academy of Sciences of the USSR 
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Zh. Eksp. Teor. Fi. 76, 1000-1009 (March 1979) 

The temperature dependence of the metallic properties in a one-dimensional system with a charge-density 
wave (CDW) in the presence of sparse impurities is investigated. The statistical wrrelation function of the 
CDW phase is found, making it possible to determine the effective number of free carriers participating in 
the Frolich conduction at fmite temperatures. The correlation function of the order parameter of the 
system is also considered. 

PACS numbers: 77.90. + k, 66.90. + r 

1. INTRODUCTION conductivity in the far  infrared r e g i ~ n , ~  confirmed 
recently in Ref. 3 by precise measurements, a r e  

1. A significant number of quasi-one-dimensional attracting great  attention. These phenomena a r e  ob- 
compounds display anomalous electrical and optical served in a wide range of temperatures, from room 
properties. The exceptionally high values of the temperatures to liquid-helium temperatures. Most of 
static and microwave permittivity E,' amounting to these substances (see Refs. 1 and 4) undergo a tran- 
E - 10'-lo4, and also the presence of the peak in the sition to the dielectric state, with activation energy 
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5. lo2 K, which makes it difficult to explain these ef- 
fects a s  a consequence of localization of electron 
states.' The possibility of explaining the anomalous 
properties a s  a manifestation of Frohlich conduction in 
a Peierls-dielectric state is being widely investigated.' 

The Frghlich effect should exist in a system with 
charge-density waves (CDW) weakly coupled to the 
basic lattice structure. It is  explained by the existence 
of a low-frequency optically active mode corresponding 
to the CDW phase.7 The finite values of the frequency 
and damping of the FrGhlich mode and, correspondingly, 
the low-frequency, long-wavelength limit of the per- 
mittivity ~ ( k ,  w) a r e  determined by the effects of 
violation of the translational invariance, i.e., by the 
interaction of the CDW with the periodic structure and 
random structure of the basic l a t t i ~ e . ~  The interaction 
of CDWs of opposite sign,' which is characteristic of 
systems with incomplete charge transfer between 
chains of different types,4 is  equivalent to the former 
interaction. The latter interaction may be assumed 
to be weak, in view of the large distances between 
neighboring chains. The former interaction, which is 
due to umklapp processes, can be  effective when there 
is  commensurability of sufficiently low order between 
the periods of the CDW (the superstructure) and the 
basic structure,' which is encountered only in particular 
cases. For incommensurate CDWs this interaction 
can be realized only with participation of thermal 
p h o n ~ n s , ~  and this makes it ineffective at temperatures 
substantially below the Debye temperature. 

In such conditions the interaction of CDWs with de- 
fects of the basic lattice acquires great  importance. 
In many quasi-one-dimensional compounds the presence 
of defects is  due to the actual structure of the com- 
pounds, i.e., to the disordered arrangement of one of 
the  component^.^'^.'^ (Here, unlike in Ref. 5, we have 
in mind those cases in which the defects do not violate 
the short-range order of the Peierls  state.) For ex- 
ample, in KCP (Ref. 10) a disordered arrangement of 
B r  ions with stoichiometric concentration 0.3 instead 
of 1/3 is equivalent to the pressence of Coulomb 
impurities with concentration c = 0.1. 

The influence of impurities on the Frahlich effect 
and on the structural properties of quasi-one-dimen- 
sional systems has been considered in many theoret- 
ical  paper^.""^ The region of low temperatures 
T << T, (T, is the temperature of three-dimensional 
ordering), when the CDWs on neighboring chains a r e  
well correlated, has been studied with sufficient 
thoroughness in Refs. 11, 13, and 15. The case of an 
isolated chain, which was considered in Refs. 14 and 
15, corresponds physically to the region T>>T, 
(typically, T,= 50 K); however, the problems arising 
in this case a r e  not fully solved even for the classical 
problem with T = 0. The low-frequency asymptotic 
form of ~ ( k ,  W) at large concentrations of weak scat- 
terers  remains largely unelucidated. The use of a 
classical description of the CDW phase also requires 
sufficiently high temperatures T >> To," where To is of 
the order of the frequency of the amplitude oscilla- 
tions of the CDW. (Typically, To= T,.) It is  important 

to note that the problem of the motion of the CDW 
phase in the presence of interaction with the basic 
structure is essentially nonlinear, and this, strictly 
speaking, distinguishes it from the problem of an 
electronic or other excitation in an external periodic 
o r  random potential; therefore, taking thermal o r  
quantum effects into account can change substantially 
the results obtained. 

2. In the present paper we investigate the effect of 
finite temperatures on the properties of an isolated 
filament with a CDW in the presence of sparse  im- 
purities. Those cases which have been investigated 
already for the classical model a t  zero  temperature 
a r e  considered. Although the chief interest is in the 
dynamical response functions (principally ~ ( k ,  w)), we 
have not yet succeeded in investigating these. Instead 
we shall study the frequency-integrated characteristic 
~ ( k ) ,  calculated in the framework of statistical mechan- 
ics. In this case the Debye screening parameter can be 
obtained, and thus the effective fraction of the CDW 
charge that is  freed from the pinning a t  the impurities 
a s  a result of thermal activation is  determined. We 
obtain a common temperature-dependent factor, re- 
ducing the quantities ~ ( k ) ,  Ret(k, w), and the conduc- 
tivity ~ ( k ,  w). The temperature dependence of the latter 
two quantities is  determined also by the as-yet unknown 
behavior of the damping of the phase mode of the CDW. 
The original results of the paper pertain to the pinning 
to impurities; however, we f i rs t  give some results on 
pinning to the periodic basic structure, which a r e  
necessary for comparison. The combined effect of 
the pinnings of different types has been investigated 
in Ref. 19 (see also the literature cited there). 

2. GENERAL DESCRIPTION OF PINNING OF CDWs 

1. At temperatures that a r e  low compared with the 
gap A in the electron spectrum (T <<A) the charge den- 
sity p(x) and f ree  energy 9 of the CDW a r e  described 
by the phase ~ ( x ) :  

where v, is the Fermi  velocity, e is the electron 
charge, and E is the intensity of the external electric 
field. Here and henceforth, al l  coefficients correspond 
to  the Frahlich model. The expression (1) describes 
different forms of pinning, depending on the form of 
the functions n(x) and u ( x ) .  

a )  For the effects of interaction with the basic 
periodic structure,' 

nmz Trz 
x=2pFm-Q=const, EPn (x) = -- =const, 

32 up 

where m is the commensurability index, Q is  a re- 
ciprocal-lattice vector, and T, is the pinning tempera- 
ture. 

b) For a model of two oppositely charged filaments 
with CDWs, 
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where the subscripts 1 and 2 refer to the two fila- 
ments. As a supplement t o  (I), the energy 9 also 
contains bilinear terms depending on ji =x1 +x,. How- 
ever, in problems of statistical mechanics we can 
average explicitly over ji, as a result of which we 
obtain the expression given above for the effective 
coefficient u,. 

c) For interaction with impurities positioned a t  the 
points x,, 

m= I ,  n ( z )  = 6 ( z - z , )  , 
h 

where Vf (x) and V,(x) a r e  the potentials for forward 
and backward scattering of electrons by an impurity, A 
is the electron-phonon interaction parameter, and 
A - cp exp{-~-'}, where cp is the Fermi energy .I4 The 
phase 

is a physical quantity. 

2. For the cases a) and b) the correlation function 
(p(x)p(x')) has been investigated as a function of n 
and T in Ref. 8. The permittivity (S ,  is the area  per 
filament) 

can be investigated analogously without any new details. 
Here we give only the result. 

1) For T>> Tp or  for 1x1 >> Tp/vp and any T the 
pinning is unimportant and 

as for a free electron gas. 

2) For 1x1 <<Tp/vp and T <<T, we have 

E ( k )  -8ne.'(n,.+n..) /kZS,,  

where e, = 2e/m and n, a r e  the charge and density of the 
solitons-the external solutions for the functional (1): 

Here the signs * correspond to solitons with phases 
changed by k 2n/m. The region 2) has been investigated 
most fully in Ref. 20. 

We see  that in the widest (with allowance for the 
lower bounds on the temperature discussed in the 
Introduction) region I), umklapp processes a) and the 
interaction of opposite charges b) do not exert any 
substantial influence on the magnitude of the free 
charge of the CDW. Moreover, the situation 2) goes 
over into the situation 1) if the condition that the 
quantum fluctuations be small, 

mZu/u,< 1, 

where u is the phase velocity of the CDW, is not 
fulfilled. 

From the available  estimate^:'^ 

where M is the band mass and M* is the effective 
mass of the CDW,7 s o  that certainly for m 34,  and 
possibly also for m =3, the pinning is broken (solitons 
do not exist) and free charge density is restored. In 
these cases the interaction of the CDW with the super- 
structure is taken into account by perturbation theory, 
and the damping y(k, w )  appearing in ~ ( k ,  w )  can be 
found. This was done in Ref. 8 for the region T<<T,, 
and extended in Ref. 9 for the region T>> To. 

3. INTERACTION WITH IMPURITIES 

1. We shall consider the case c)-interaction of the 
CDW with defects of the basic structure. The principal 
contribution to the interaction ar ises  from scattering 
of the electrons constituting the CDW. The defect 
potential contains a smooth part Vf(x) that determines 
the forward scattering of the electrons, and a part 
Vb(x) that determines the backward scattering. In 
view of the large number of atoms in the planar mole- 
cules forming the majority of quasi-one-dimensional 
 system^,^ or  because of the disposition of the charged 
defects to the side of the conducting chains a s  in 
K C P , ~  we may suppose that Vf(x) constitutes the main 
part  of the random potential. This part is long-range 
and can be described by a random Gaussian field. For  
the reason indicated above, substantial potentials 
V,(x) a r e  relatively few and should be regarded, in the 
general case, a s  isolated impurities with a short-range 
potential. The potentials Vf(x) affect the structure 
factor of the system (they give r ise  to broadening of 
the Brillouin peaks and to the appearance of a central 
peak1') and the three-dimensional ordering of the 

In these problems the potentials Vb(x) can 
be disregarded in practice. However, the potentials 
Vf(x) do not affect ~ ( k ,  w), and in this problem it is  
sufficient to take only V,(x) into account. As a result 
we arrive a t  a phenomenological description on the 
basis of the expression (I), with the parameters (2), 
for the f ree  energy. The function n(x) in (2) can be 
obtained from the microscopic theory of Zavadovskii16 
o r  directly, for the expression (I), by the method of 
Ref. 18. The parameter E, in (2) was calculated in 
Refs. 14 and 15. 

2. In the problem under consideration there a r e  two 
energy scales: E, and T* =cvp/n, where c is the con- 
centration of impurities. At T =T* the thermal corre- 
lation length ST = v p / f l  for the phase is comparable 
with the average spacing between impurities. As was 
shown in Ref. 15, the relative magnitude of E, and 
T* determines the character of the ground state a t  low 
temperatures. The ground state and low-frequency 
dynamics for T*<< c, were investigated in Refs. 14 and 
15. The region of high concentrations, when T*>> E,, 
was investigated in Refs. 13 and 15. However, only the 
results pertaining to a system of correlated chains can 
be regarded a s  reliable. 

The free-energy functional (I) of the system has a 
nonquadratic dependence on the phase ~ ( x )  only a t  the 
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positions x, of the impurities. Therefore, the distribu- 
tion function 

W{X) =Z-' exp [-9- 1 (4) 

(2 is the partition function) can be averaged over ~ ( x )  
for x +x, by fixing ~(x, )  =q, - an, where 

The set  {x,} should also include the points x, 
( a  = 1, . . . , r ) ,  if we a r e  calculating the r-point distribu- 
tion function 

where ( ),, denotes configurational averaging, the 
angular brackets denote integration over the {cp,} for 
n +a ,  and 

G k n ;  cpn) = 5 D x ( x )  W { X I  11 6(~(fn) - v .+an) .  (6) 
n 

Calculating the Gaussian integral (6) we obtain, a s  we 
should expect, a product of the distribution functions 
of the phases cp, a t  the individual impurities 

with the "transition matrices" between neighboring 
points x, and x,,: 

Namely, 

~ c l p [ - 9 s { ~ " I  1, (9) 

where the effective f ree  energy 5 {q,} is equal to 
( P  = I/T) 

3. We shall consider the region T >> T * for an arbi- 
trary value of c,. We shall expand 

where I , @ )  a r e  modified Bessel functions. On substitu- 
tion of (10) into (9) and integration over q, in ac- 
cordance with (5) with the functions (8), the 1-th 
harmonic is carried over from the point x, to the 
point x,,, with conservation of the phase a, + Qx, but 
with the reducing factor 

From the condition T>>T*, A ~ A + ,  << 1 for 
(x, - ~ , , ~ l ~  C-' and 1 +O. Therefore, in calculating 
Z(T) or  &(k) it is sufficient to retain only the harmonics 
with 1 =O. The dependence on the arrangement of the 
impurities disappears, and we immediately obtain 

Z ( T ) = Z o ( T )  [ I , ( e J T )  IN, (11) 

where Zo(T) is  the partition function of the chain 
without impurities and N = c L  is the total number of 
impurities in a chain of length L. 

The impurity part C,, of the specific heat is equal to 
(T >> T *) 

L / 2 ~  for e,BT 
Cam= / ,r ep<T . 

In the calculation of ~ ( k )  from formula (3) in the long- 
wavelength limit IkltT<< 1 the factors Io(cp/T) in the 
integral with the propagation function (9) cancel with 
the normalization factor ( l l ) ,  and ~ ( k )  is found to be 
the same a s  in the pure system. Corrections of the 
order of 

ce,=T'/T< 1 

from cluster effects do not change the functional form 
of &(k) .  

We conclude that for T>>T* the effective free charge 
of the CDW coincides with its total charge. 

4. The calculation of the structure correlation func- 
tion 

a t  distances (xi -xf 1 >> t T  gives r ise  to characteristic 
difficulties, inasmuch as, in the determination of the 
correction to the correlation length 5, we a re  ex- 
panding formally in the large parameter clx, -xzl. We 
shall give this calculation briefly, since it can have 
methodological interest. 

Let m impurities be situated on the segment (xi, xf), 
a t  the points x, (n = 1,. . . , m). Having substituted (9) 
into (12) we shall integrate successively over 
qi, cp,, . . . , cpm, cpf. F i rs t  the harmonic with index 
li = 1 is propagated. If a t  the impurities x, we take into 
account the terms in (10) with 1, = 0 the index does not 
change, and the result does not depend on the location 
of the impurities. If, a t  some impurity n,, we take 
into account first  the term with I,, = -1 in the expansion 
(lo), then further on the index will be equal to 1 =0, 
i.e., the damping ceases. Somewhere further on, a t  
impurity n,, the index 1 = 1 should be restored, in order 
that we can carry  out the integration over qf. Tran- 
sitions between the harmonics with 1 = 0, * 1 can 
occur a t  different impurities an arbitrary number (k) 
of times. For each distribution 9Xk of indices we 
obtain a common factor 

(We normalize all expressions to [I,(c,/T)]'".) The 
length ~,{ '11t ,}  is  the traversed path with index 1 = 1. In 
addition we have the product 

u{%} =TI exp[il,(a.+Qz.) I ,  

the factors of which appear whenever the index changes. 
In order that the result of the configurational averaging 
not be equal to zero, they must be cancelled by analo- 
gous factors extracted from the normalization factor 
z"(T,{x,}). The calculation of z(T,{x,}) can be 
analyzed analogously as the propagation of a harmonic 
with initial index li = 0. For the part of Z" that we 
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need we always obtain the coordinate dependence 

where the integers I ,  should ensure that Iq!') - qk),l 
is a minimum. Substantial deviations Icp, - (~9'1 n 
require energies "E,, whereas a difference Iqi'?l - q?)l 
5 2n over a distance Ix,,,, - xnl= c-l  requires a lower 
energy "T*. Since T <<T *<< E, we can assume that 
q,= qp) with accuracy 

where ~ , { 9 & }  is the total length previously covered 
with index I = 0. Since 

each expression does not depend on precisely which 
impurities the changes of indices occurred at, and it 
remains only to calculate the combinatoric coefficients. 
We have 

KI,=A/B, 

(0) Iq.-q. I =T'/e,, (Tie,) ". 
(The former estimate is associated with making the 
ground state more precise, and the latter with thermal 
fluctuations.) With the same accuracy, thermal ex- 
citations of the system will consist in a change of the 
values of a l l  the phases cp, to one side of a certain 
point x,, by 2~61: 

1,+1,+61 for n>no. 

We expand the denominator in (13) in powers p of the 
second term and separate out those products 

The segment (x,,, x,,,,) of length s is analogous to the 
soliton in the problem of pinning to a periodic structure 
(see Sec. 2, case b). As will be  seen from the fol- 
lowing, for the important values of s the energy of 
such an excitation is always large compared with the 
temperature: which cancel ~{m,}  in the numerator of formula (13). 

This partition is  equivalent to the problem of placing 
k objects, chosen from a total number m of objects, 
in p boxes; in each box v there can be any number k, 
of objects (p ak,> 0). The total number of such 
partitions is  known from elementary algebra: Therefore, we can confine ourselves entirely to ex- 

citations with 61 =* 1 and assume them to be isolated. 

The thermal variance of the advance of the phase 
over large distances will be equal to 

We obtain 

where K!;) =exp{- lxt -xfl/kT}. We substitute (14) and 
change the order of the summation over P and q: 

Because of the small  concentration c *  of excitations, 
each term in (17) must be averaged independently over 
the distribution of lengths 

s,:=Ix*+,--~*I. 

We obtain 

Next we must sum over m with a Poisson distribution 
with mean value m =clxf - xt 1. Finally, we have The integral in (18) converges in the neighborhood of 

the optimal distance 

The potentials Vf (x) will give an extra factor to (16): 
Finally, 

( ; ) ''6 { ( ; ) ' 1 2 )  <[8q,-6q,]8>a,=4nS - exp -2n - clzn-xm1. 
where Zf is the electron forward-scattering 
Thus, the total correlation length 5 is given by 

By virtue of (3) we have 

5. We now consider the low-temperature region 
T<<T*. Here we a r e  forced to  confine ourselves to the 
case of "strong pinning" T*<< c,, where the structure 
of the ground state is k n o ~ n . ' ~ ' ~ ~  It can also be  es- 
tablished from the expression (9a) for 5 {cp,}. As 
approximate equilibrium values of q, we can choose 

The anomalous activational dependence in (19) is 
analogous to the Mott law, inasmuch as here too the 
change of state occurs principally for an optimal 
spacing so between impurities. 
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4. CONCLUSION 

In the present paper we have systematized the 
theoretical investigations on pinning of CDWs. The 
relationship between the different pinning mechanisms 
a r e  indicated, for application to  the typical parameters 
of the substances investigated experimentally. An in- 
vestigation of pinning to impurities a t  finite tempera- 
tures is carried out. The new results a r e  reflected, 
in their final form, by the formulas (16), (16a), and 
(19). 

It is important to note that, in all  cases, when the 
temperature is  raised the static pinning of the CDW 
weakens, and T * vanishes completely when T >T,. This 
dependence agrees with the low-temperature increase, 
observed in Refs. 22 and 23, of the microwave per- 
mittivity &(@), which, according to preliminary data, 
becomes a sharp decrease in the region T = 30-40 K. 
As a result, apparently, of the increasing role of 
the damping y(w) of the Frijhlich mode, the breaking 
of the pinning does not lead to high negative values of 
~ ( 0 ) .  The pinning effects that permit a dynamical in- 
vestigation  how^*^ that their contribution y, to y(0) is  
a maximum at T " T,, and for T >  T, decreases like 

where a,- (u/zp)Tp is the pinning frequency and u is  
the phase velocity of the CDW. In view of what has been 
said above we conclude that the principal role should 
be played by the damping yph of the Frijhlich mode on 
account of its interaction with the thermal p h o n ~ n s , ~  
which increases with temperature. It is necessary 
that yph> W, be fulfilled a s  soon a s  T 2 T,. This con- 
dition can be  fulfilledg in view of the specially low 
Debye temperatures 8 2 T, in the substances 
investigated. 
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