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The photon energy fw in optical breakdown of a gas can become comparable with the average electron 
energy, with the classical energy accumulated in the field, as well as with the energy of the transitions in 
the atomic or molecular system with which the electron interacts. In this case, a quantum approach must 
be used [see, e.g., Zel'dovich and R-r, Sov. Phys. JETP 29, 772 (1965), where a quantum kinetic 
equation was first derived from physical consideration for a weak field that does not resonate with the 
atomic system]. The oscillations of the distribution function in the quantum case can greatly influence the 
rate constants of various processes and the breakdown thresholds (their magnitude and their dependence 
on the frequency a), especially if the cross sections of the inelastic collisions of the electrons have a 
resonant character. A quantum kinetic equation is derived for electrons in a gas in the field of a strong 
wave in cases when resonance is present or absent between the radiation and the transitions in atomic 
systems. Expressions are presented for the absorption coeffcient and for the real part of the permittivity 
at the frequency of the incident radiation. The problem of energy accumulation by an electron scattered 
by an atom (molecule) that is at resonance with the field, and the lowering of the threshold intensities of 
the optical breakdown of the gas in this case are estimated. 

PACS numbers: 05.30. - d 

A classical analysis of electron heating in the field of 
an electromagnetic wave (of intensity E and frequency 
w) by collisions with atomic particles can be carried 
out if the quantity Ew is small compared with the aver- 
age energy (&) and with the classical energy gainls2 
m,v,v, (v, is the characteristic average velocity, v, 
= eE/mew is the vibrational velocity of the electrons in 
the field of the wave). In the case of gas breakdown by 
optical radiation, the conditions Ew -(&) and iV = mevTve/ 
Ew - 1 are  realized, and a quafltum treatment becomes 
essential. Zel'dovich and Raizer' were the f i rs t  to 
present, on the basis of physical considerations, a quan- . - 
L m  kinetic equation for the zeroth harmonic (in the ex- 
pansion of the Fourier series in the frequency w) of the 
spherically symmetrical part of the electron distribu- 
tion function. A numerical solution of this 
for a number of gases has shown that the distribution 
function acquires characteristic oscillations with energy 
spacing fiw. This behavior of the distribution function 
can exert a strong influence on the rate constants of the 
excitation and ionization of atoms and molecules (and 
consequently on the breakdown thresholds I,,), leading 
to a nonmonotonic dependence of I,, on the frequency, 
especially if the cross  sections for the inelastic col- 
lisions have a resonant character. 

In the breakdown of gases by IR radiation i t  is neces- 
sary to take into account multiphoton processes of ener- 
gy acquisition by the electrons, inasmuch a s  a t  threshold 
intensities the parameter N which characterizes the 
average number of absorbed  photon^,^^^ is larger than 
unity. Thus, for example, in the breakdown of a i r  a t  
atmospheric pressure by CO, laser radiation (Ib, = 5 
x log W/cm2, Ref. 8) we have N =4.  A quantum kinetic 
equation was presented in Ref. 9 in analogy with Ref. 1 
for elastic scattering by ions in laser  heating of a 
plasma a t  N > 1. In the problem of optical breakdown a t  
N >  1, the probability of the elastic loss of energy by the 

electrons to the excitation of atomic particles is sub- 
stantially modified. For a number of problems it  i s  
necessary to have more detailed information on the elec- 
tron distribution function, for example on its f i rs t  har- 
monic, from which we can calculate the nonlinear cur- 
rent of a weakly ionized plasma (and accordingly the 
absorption coefficient and the real  part of the permit- 
tivity & * )  a t  the frequency w. There is no published 
quantum kinetic equation for an arbitrary harmonic of 
the electron distribution function in the field of a strong 
electromagnetic wave (N > 1) in the literature on optical 
breakdown." 

The most interesting peculiarity of optical breakdown 
of gases occurs in the case of resonance between the 
radiation and the atomic (molecular) system. It was 
noted in Refs. 13-15 that the threshold intensities of the 
breakdown can in this case be noticeably decreased be- 
cause of the absorption of energy when the electrons a r e  
scattered by the field-induced resonant dipole moment 
of the atom. The derivation of a quantum kinetic equa- 
tion for resonant breakdown is complicated by the fact 
that.a two-level system evolves in the fields, and the 
off-diagonal elements of the atomic density matrix a r e  
important. A derivation of the corresponding equation 
shows that the orobabilities of the transitions for the 
electrons with a change of energy Ew * sES2 (1 is the num- 
ber of absorbed photons, s = O* 1, and S2 i s  the Rabi f re-  
quency of the two-level system) assume different forms 
for a short radiation pulse (r<<T,, T, is the relaxation 
time of the phase of the resonant system) and for long 
one (r>>T2). 

In Sec. I of the present paper we derive a quantum 
kinetic equation for  electrons in nonresonant breakdown. 
Expressions a r e  presented for the absorption coefficient 
and for  the real  part of cd of a weakly ionized plasma in 
the field of a strong electromagnetic wave. It is shown 
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that a t  v,/v, <<l the equations for the zeroth harmonic 
of the distribution function of the electrons coincide in 
the generalized and kinematic momentum representa- 
tions, even though the initial equations a r e  different in 
these two cases: the quantum equation is finite-differ- 
ence for the generalized momentum and differential for 
the kinematic momentum (owing to the presence of a 
field term1'-'* eEaf/ap in the latter case). The transi- 
tion to the classical limit (ffu<< (&),N>>l) is considered. 
It is shown that the classical equation takes a diffusion 
form (cf. Ref. 2) and is obtained a t  N >> 1 if the condition 
v, <<v, is simultaneously satisfied. 

In Sec. I1 we consider the problem of electron scatter- 
ing by atoms (molecules) in a resonant strong field. A 
characteristic feature of the resonant acquisition of 
energy is the interference between the process of ab- 
sorption of 1 photons by the electrons and processes in 
which the electron emits I* 1 photons, while one photon 
i s  given up (or acquired) by the resonating system. 

In Sec. I11 we derive a quantum equation for the distri- 
bution function of the electrons in resonant breakdown 
and present estimates of the lowering of the threshold 
intensity for atoms and molecules. 

1. QUANTUM KINETIC EQUATION FOR ELECTRONS 
SCATTERED BY ATOMS IN  A NONRESONANT FIELD 
OF A STRONG ELECTROMAGNETIC WAVE 

We consider the derivation of a quantum kinetic equa- 
tion for electrons in the field of an electromagnetic wave 
with a photon energy Eo not equal to the energies of the 
transitions in the atomic system. We choose for the 
wave field a gauge in the form 

A=A, cos ot (Ao=cEJoo), cp=O. 

The equation for the density matrix p:m' [where tik and 
kk' are  the generalized momenta of the electron; n and 
m a r e  quantum numbers that characterize the atomic 
(molecular) subsystem] takes the form 

Here E,  is the electron energy, CP1 is the matrix ele- 
ment of the potential of the interaction of the electron 
with the atoms regarded as an aggregate of randomly 
distributed structural impurities (cf. Ref. 19). The dis- 
tribution function of the electrons with respect to the 
generalized momenta p(k, t) is obtained from pk,:' in the 
following manner: 

where the symbol denotes averaging over the random 
spatial distribution of the atoms and, as follows from 
(1) and (2), satisfies the equation 

To obtain a closed equation on the basis of (3) we must 
solve (1) for the off-diagonal elements of the density ma- 

trix. In the lowest order in the impurity concentration 
and in the Born approximation in the electron interac- 
tion with the atoms, we have 

etL 
ihy;' = [ e ,  - e.. - - (l. - k'. Act))  + En -8.  p.. 

m,c I "  
Equation (4) can be solved out of the condition p ~ ~ ' ( t 0 )  
= 0, to- -m: 

To integrate explicitly in (5), we expand the quantities 
p;,(t) in Fourier ser ies  in the frequency of the external 
field, assuming the expansion coefficients to be slow 
functions of the time (for example, on account of aval- 
anche multiplication of the number of electrons): 

Substituting (6) in (5) and integrating, we have 

where J,(x) is a Bessel function and N,,, = e &  - k', Ed/ 
m,02. Representing p;,(l) in the form p:,(l) = N ~ ,  (k), 
where Nn is the population of the state n with energy En 
(the off-diagonal elements pi, can be neglected in the 
nonresonant case) we obtain from (3) and (7), after 
averaging over the random distribution of the scatter- 
ers),  an equation for the lth harmonic of the electron 
distribution function 

Here 

emm is the matrix element of the potential of the interac- 
tion of the electron with one atom. 

Equation (8) is solved with initial condition p,(-m) = 0 
( I  + 0). The solution of the homogeneous equation (8), 
which contains a fast  time dependence -e'lw, vanishes, 
so  that i t  is perfectly legitimate, for this class of solu- 
tions, to take the Fourier coefficients p,(k, t), which 
depend "slowly" on the time, outside the integral sign 
in (5). The next terms of the expansion of the integral 
(5), which a r e  obtained for  example by integrating by 
parts, and which contain the derivatives ap,/8t, have an 
extra smallness -v/w compared with the derivative in 
the left-hand side of the (8). In fact, the derivative 
ap,/at in (8) should be discarded in the f i rs t  approxi- 
mation (so long a s  the avalanche development growth 
rate is small compared with o ,  a s  is practically always 
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the case) for all but the zeroth harmonic (1 = 0). 

From (8) and (9) we can obtain a quantum-kinetic 
equation for the zeroth harmonic distribution function 
of the electrons, which is valid in the limit w >>v (v is 
the electron collision frequency): 

x x J I ~ ( N ~ ~ * )  I VE Iz[Nmpo ( k t )  (k) 16 (er-e*'f E r n - E m - l h a )  
k'"m 

' (10) 
The right-hand side of (10) characterizes the processes 
of acquisition (emission) of energy by the electrons in 
the electromagnetic-wave field in elastic and inelastic 
collisions with the atoms (cf. Refs. 10-12 for electrons 
interacting with phonons in a solid). In a weak field 
(N,, , << 1) it suffices to retain the terms with I = i1, if  
m = n  (elastic scattering), and the terms with 1 = 0 if 
m + n. After averaging over the orientations of the initia 
momenta of the electron (transition to the symmetrical 
part of the distribution function), we obtain from (10) 
the quantum-kinetic equation of Zel'dovich and ~ahe r . '  

Using (8), we can express the first  harmonic pl(k, t) 
of the electron distribution function, retaining in the 
right-hand side only the terms with p,: 

With the aid of the obtained expression we can calculate 
the absorption coefficient x of a strong electromagnetic 
wave Nkk,  > 1 in elastic and inelastic collisions of elec- 
trons with atoms : 

where the superior bar denotes averaging over the per- 
iod of the high-frequency field, Z,=c~2/8n is  the in- 
cident intensity, and j is the current density given by 

As a result we get an expression for the absorption 
coefficient (cf. Ref. 6, where the case of elastic scatter- 
ing by ions is considered): 

In the general case, to find the absorption coefficient it 
is necessary to solve Eq. (10) for the zeroth harmonic of 
the distribution function; this can be done numerically 
in the quantum It should be noted that in a num- 
ber of cases it is  necessary to take into account in (14) 
the elastic and inelastic collisions with the entire ag- 
gregate of the excited states." 

From (11) we can obtain also an expression for the 
real part of the nonlinear permittivity at frequency w >>u 
(we can consider analogously the nonlinear properties 

of an electron gas a t  other frequencies): 

The correction to the plasma permittivity (the last term) 
is of strictly quantum origin (it vanishes a s  Ew- 0, since 
g, J:(x) = 1 and cannot be obtained by the usual sub- 
stitution w - w + iv, which adds increments quadratic in 
v/w to the real part of the classical permittivity. K- 
pression (15) is an even function of the frequency, as  it 
should. In a weak field it is necessary to retain in the 
sum over I the terms with I = 0,*1. The result i s  an 
answer of the order of w~fiv/wY&) which is  finite a s  E ,  - 0. 

The quantum kinetic equation (10) obtained for the dis- 
tribution of the electrons in the generalized momenta is 
a finite-difference equation. The quantum-kinetic equa- 
tion given in Refs. 16-18 was written for the distribu- 
tion function in the kinematic momenta. It is simplest 
in this case to use directly the gauge A =0, cp = -eEr. 
The expression for the density matrix pi:' then takes the 
form 

The diagonal elements of the matrix Pq satisfy the 
equation 

Retaining in the sum of the right-hand side of (16), just 
a s  in (41, only the diagonal elements P",:' and P;, and 
solving the resultant equation, we obtain for e", 

Substituting (18) in (17) and averaging over the locations 
of the impurities, we can obtain the quantum equation for 
P(p,  t). The closed-f orm equation for the harmonics 
P,(p, t) is already much more complicated, because of 
the shift of the argument under the collision integral 
(cf. Ref. 19). The left-hand side of (17) contains a deri- 
vative with respect to the momenta, so that the quantum 
equation for P(p, t) is in the general case a differential 
equation and not a finite-difference equation as  is (8). 
Taking into account the relation [cf. (5) and (18)]17,18 

(where p =a - eA(t)/c), we can see that a t  u,/v, =eE/ 
wp <<I the fundamental harmonics of the distribution 
functions ~ , ( p )  and P,(p) a re  connected with p,(k) and 
pl(k) by the following relations: 

478 Sov. Phys. JETP 49(3), March 1979 V. A. Kas'yanov and A. N. Starostin 478 



It follows therefore that at e ~ / w p  <<I the quantum equa- 
tion for the zeroth harmonic of the distribution function 
in the kinematic momenta coincides with (lo), i.e., is 
also a finite-difference equation. The imaginary parts 
of P, (P)  and pl(p), which determine in accordance with 
(13) the absorption coefficient, coincide similarly. This 
can be obtained directly by expanding (8) in powers of 
the parameter vE/v, up to second order. The terms 
containing the derivatives with respect to the momenta 
in the left-hand side of (17) are then cancelled out by 
the terms of the expansion of the collision integral (18). 

The quantum kinetic Eq. (10) admits of a transition to 
the classical limit at tiw << (c). Averaging over the or- 
ientations of the initial momentum k and expanding the 
obtained (at n = m) expression in powers of 1Rw << R2k2/ 
2me up to second order, we reduce this expression to the 
form (cf. Ref. 2, the condition l<<fik2/2m,w is satisfied 
up to 1 -N - e~k/m,w~,  if v,/v, << 1) 

where 

da" 
a,,"= j - ( I  - eos 6 ) d R  

d8 

is the transport scattering cross section on the level n, 
and St,,(p,,) is the inelastic-collision integral. We have 
used here the summation formula2' 

At vE/vT = eE/wp 2 1 the expansion in Ew is possible only 
for terms with 1 s  Ek2/2m,o. On the other hand, an ap- 
preciable contribution to the sum over I i s  made by the 
terms with Ek2/2mew 5 I s eEk/m,w '. The equation for 
p, does not reduce to a differential equation of second 
order. In Ref. 22, the classical Eq. (21) was solved in 
the limit v, >>vT, a procedure that the foregoing analysis 
shows to be invalid. 

2. SCATTERING OF ELECTRONS BY ATOMS IN THE 
FIELD OF A RESONANT ELECTROMAGNETIC WAVE 

For convenience in the interpretation of the quantum 
kinetic equation for the zeroth harmonic of the distribu- 
tion function in the case of resonance of a wave with a 
pair of atomic (molecular) levels E2 -El - Rw = fih <<fiw 
(see Fig. I), we consider the problem of scattering of 
electrons by atoms for this case. Various aspects of 
this problem were discussed in Refs. 13, 14, 23, and 
24. The wave functions of electrons in the field of a 
wave characterized by a potential A= A,cosot, are of 
the form6 .' 

~ ~ - ~ + f  ?( 1 FIG. 1. Energy level 
scheme of an atom in a re- 
sonant electromagnetic 
field. 

The wave functions $ J ~  (characterized by the indices 
j = 1 and 2, which depend on the initial state a t  which the 
atom was a t  t = 0, (cf. Ref. 13) of a resonating pair of 
levels are  given by 

Here q, are the unperturbed atomic wave functions 
(a! = 1,2), Ear are the system quasienergy levels in the 
resonant field (see Fig. 1): 

where 52 = (h2+ I K ~ ~ ) "  is the Rabi frequency, %A is the 
detuning from resonance, K = -iEod,,/E; d,, is the ma- 
trix element of the dipole moment. The coefficients 
F& take the following form: 

For the remaining atomic states we choose the initial 
unperturbed wave functions (the fields E, are  assumed 
small compared with the atomic fields): 

I#, (R,  t )  =$, ( R )  exp (-iE,tlfi) (mf j )  . 
For the expansion coefficients c:$ (pot no are the initial 
quantum numbers for the electron and atom) of the total 
wave function in the introduced states (22) and (23) we 
obtain in the usual manner expressions in first-order 
perturbation theory. For example, for no = j ,  = 1, n = j 
we have a s  t - m 

The summation in (24) is over 1; a ,  P, y,  6 =  l ,2 .  It fol- 
lows from (24) that the same change &, - &,, of the elec- 
tron energy amounting to Zttw or lEw* ha ,  corresponds 
to interference of three processes: 1) 1 phonons are 
absorbed by the electron at I >  0 (or are emitted a t  1 c O), 
and the atomic system remains in the state with the 
a = P; 2) 1 + 1 photons are absorbed by the electron, but 
the electron gives up one photon to the atomic system; 
3) 1 - 1 photons are absorbed by electrons, but one phot- 

on is  taken by it from the atom (a! - P = -1). All these 
processes interfere a t  a given j. Transitions to differ- 
ent states j do not interfere. 

The probabilities wYo(1, s) of transitions in which the 
energy of the electron E,- c,, scattered by the two- 
level system in the initial state j changes by an amount 
ZAw + sASl(s =0, k1) are  of the form 

IK12 l I Z ( ~ & )  IT? +v: lZ- 48' 

t 
uo 2n s P +  (2 j -3)  A 

wj ( l , s ) = - - -  Ah. K. 
h 25-8 I J t  (Nk.1 (v? -Vu )2R 
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The problem of scattering of an unchanged particle by 
a two-level system in a resonant field was considered in 
Ref. 13. The corresponding probabilities follow from 
(25) and (26), if we let Nkko- 0, or equivalently, replace 
J, (&,,I by 6,,. In a weak field (N,,, << 1, I K I  <<S2) only the 
terms with 1 = 1 are of importance; for the stimulated 
bremsstrahlung scattering we obtain in this case 

The first term characterizes here the bremsstrahlung in 
elastic scattering of an electron, where the second 
term characterizes absorption of a photon through the 
system. The amplitudes of these interfering processes 
correspond to the diagrams of Fig. 2 (cf. Ref. 25). Near 
resonance, the contribution of the second process may 
be decisive.2Bs27 The remaining processes (26) go over 
in a weak field either into elastic scattering wyO (0, O), 
or into elastic scattering: 1) excitation (1- 2) -wyO 
x(-1, -I), 2) the inverse process (2- 1) -wtkO (1,l). 

Interest attaches also to the probabilities of transitions 
from states j, intermixed by the field, into states m 
which are not perturbed by the wave: 

Here we have interference of transitions with excitation 
1-m and with absorption by the electron of 1 photons, 
and excitation 2- rn with absorption of 1 - 1 photons 
(me photon is given up to the electron by the atomic 
system). In a weak field &,,<<I) a t  1 = 1, s = -1 these 
processes correspond to the diagrams of Fig. 3. The 
inelas tic scattering 1 - m in a weak field corresponds 
to the probability w ~ O  (0, -I), while the transition 2-m 
corresponds to wiy (1,l). The probabilities of the in- 
verse processes are given by the same relations (27). 

3. QUANTUM-KINETIC EQUATION FOR ELECTRONS 
SCATTERED BY ATOMS IN  A RESONANT FIELD OF 
AN ELECTROMAGNETIC WAVE 

To describe resonant breakdown of gases by radiation 
that is a t  resonance with some transition in an atomic 
(molecular) system, it is necessary to have a kinetic 
equation for the zeroth harmonic of the electron distri- 
bution function. To derive this equation we write down 
an equation for the density matrix pFm' is an external , 

field that acts both on the electron and on the atomic 
subsystem (details of the derivation are given in the 

FIG. 2. 

FIG. 3. 

Appendix) 

Here dm, is the matrix element of the dipole moment 
of the atom. We do not consider here the broadening of 
the atomic lines in the resonant field (see Refs. 23 and 
28). Therefore, the theory developed here is valid at 
51> I', where r is the corresponding line width. The 
quantities pFm(t) are  given by 

pnm"(t) =p, ,"t)p ( k ,  t ) ,  

where p;,(t) is the atomic density matrix. In the gener- 
al case the system for pi,(t) must be derived (see, e.g., 
Ref. 28) and solved in a self-consistent manner with the 
equation for the electron distribution function. In the 
breakdown problem, so long as  the number of the elec- 
trons is small and they do not influence the atomic sub- 
system, a t  radiation-action times T <  T, (T2 is the phase- 
relaxation time and depends generally speaking on the 
i n t en~ i ty~~ .~ ' )  the matrix is obtained from the homogen- 
eous solution of the system (8.2) with q,,= 0 (coherent 
breakdown). For this case we obtain 

N, and N, a re  the initial populations (we have put here 
for simplicity to= 0). 

For the time of action of the radiation T > T, one can 
choose p;, to be the steady-state values in a saturating 
field: p,, =pa= (N,+NJ/2 >>pl,,p2,. In a diatomic mole- 
cule the entire vibrational band is  usually saturated, 
and not only the rotational transition at resonance in the 
IR band. 

In the coherent case, using for pz,(t) (n,m = 1,2) their 
values (29), we obtain for the zeroth harmonic of the 
double Fourier series in the frequencies of the extern- 
a l  field and in the Rabi frequencies, the quantum kine- 
tic equation (w,  S2 >>v): 

The first  term in the right-hand side of (30) charac- 
terizes transitions between resonating states 1 and 2; 
the second characterizes transitions between states 1 
or 2 and the aggregate of unperturbed states m; the 
third characterizes transitions between the states m 
and rn' which are not perturbed by the field. For the 
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corresponding collision integrals we have 
k.L s t ,  ( p , )  --z N ~ [ W ? '  ((I, s)  poo ( k ' )  - w ,  (1, s ) p o o ( k )  1, 

- (N,&: ((I, s )  +N,W;' (1, s )  1 P O O ( ~ )  I , (31) 
s t , ( p , )  =x [ N , . W ~ : ~  ( l ) p o o ( k ' ) - ~ m w ~ k  ( ~ ) P o o ( ~ )  1. 

The summation is over l , s , k f , j = l , 2 ;  m,m'+ 1.2. In 
(30) the probability wYf(l, s) of transitions between re-  
sonating states is given by expressions (25) and (26), 
while the probabilities w%' ( I ,  s) are  given by (27); the 
transition probabilities w:i,(l) a r e  equal to 

as given in Eq. (10). 

The condition Sl >>v, used in the derivation of (30) is 
valid for sufficiently low pressures (103p,,,,s E [ v / c ~ ] ) .  
At u 3 a, those terms of (8.6) which oscillate with the 
Rabi frequency can be taken outside the integral sign. 
We do not present here the corresponding from of the 
kinetic equation. We consider in greater detail another 
important limiting case of a long radiation pulse (r>>T2) 
in a saturating field. The kinetic equation then takes 
the form (30), (31), with modified expressions for the 
transition probabilities: 

We obtain similarly for wz'  ( I ,  s): 

The probabilities of the transitions m - m' retain their 
previous form. In the noncoherent case for a saturating 
field we have N ,  =N,. At resonance with a vibrational- 
rotational transition in the molecule, the fraction of the 
resonating particles r,, is  small: 

(B is the rotational constant and T is the gas tempera- 
ture). For j # j, the transition probabilities have a non- 
resonant character. As noted in Sec. 11, near reson- 
ance in a weak field the contribution of the absorption 
via the atomic system becomes larger than the direct 
absorption of the photon by the electron. In this case 
we obtain from (32) 

(Nkkt el, the interference of the two processes vanishes 
after averaging over the angles). The second term cor- 
responds to resonant absorption through the atomic sys- 
tem. Its ratio to the probability of direct absorption 
(the f i rs t  term) is of the order of 

where Din and u,, a re  the cross sections for inelastic and 
elastic scattering of the electron by the atom, f,, 
% (m,o/e2ti)ld,,12 is the oscillator strength of the cor- 
responding atomic transition. At a,,/u,, - 0.1 o/h - lo3 
+ lo5, (&) -1 (1 i s  the ionization potential) and tiw /I  - 0. lf ,, - 1 we have 5 - lo4-lo8. In scattering by an atom, 5 
characterizes the efficiency of resonant acquisition of 
energy and correspondingly the decrease of the threshold 
intensity in resonant breakdown. When scattering by a 
molecule, the quantity 5 must be multiplied by m,/M 
and by the fraction rj, of the resonating particles. In 
addition, in the infrared band the corresponding fre- 
quencies are  smaller by one order of magnitude than in 
the estimate given above. As a result of all  this, a de- 
crease by a factor 2-10 of the threshold 'intensity in 
resonant breakdown of a molecular gas is possible with- 
in the framework of this model. It must be noted that in 
a saturating field (at Nkkt<<l)  an important role in the 
acquisition of the energy can be played, by photon ab- 
sorption in inelastic collisions with excited particles. 
This process corresponds to the diagram of Fig. 4 and 
has a probability wk,Ik (2, l )  [see (33)]: 

In a molecular gas, on account of vibrational u - v ex- 
change, an appreciable number of excited particles can 
be produced by resonant radiation. The electron ac- 
quires thereby additional possibilities of accumulating 
energy on account of impacts of the second kind. 

In the case of resonant breakdown in the IR band we 
have 60 <<(&), and it i s  possible to expand the kinetic 
Eq. (30) in powers of tiw up to second order (just a s  in 
Sec. I, we assume that e ~ / o p  << 1). The terms that de- 
scribe electron heating in a resonant field take the dif- 
fusion form [cf. (21)] 

where the diffusion coefficient is 

Here D! is the cross section of the corresponding pro- 
cess, whose probabilities a r e  given by expression (25) 
for the coherent regime and by expression (32) for the 
noncoherent one. In the latter case, the inelastic pro- 

48 1 Sov. Phys. JETP 49(3), March 1979 

FIG. 4. 

V. A. Kas'yanov and A. N. Starostin -481 



cesses characterized by the probabilities w Y f ( l ,  s), 
s =*I [cf. (33)] also reduce to a diffusion form. 

As already noted, in resonant breakdown of an atomic 
gas one should expect a decrease, by many (4-8) orders 
of magnitude, of the threshold breakdown intensity. An 
indication that this effect is real is provided by experi- 
ments on the breakdown of Rb and Cs vapor by a ruby 
laser." In Ref. 15, an appreciable contribution to ener- 
gy absorption via the atomic system was suggested in 
this comectian, although the radiation was not fully 
resonant (A>>IK(,A - 0 . 2 ~  for cs and A - 0 . 1 ~  for ~ b ) .  
Estimates made for the molecular case (in the IR band) 
a t  atmospheric pressure in the approximation (35) yield, 
in analogy with Refs. 2 and 30, a decrease of the thresh- 
old intensity, by a factor of two, for diatomic molecules 
(such as  CO, HF, etc.). In polyatomic molecules one 
can expect a substantial decrease of the threshold in- 
tensity. 

The phenomenon of resonant optical breakdown can be 
used to produce an optical shutter, a plasma mirror, 
and optical discharge a t  lower laser intensities than in 
the nonresonant case. Extensive possibilities are  un- 
covered by the use of dye lasers and tunable molecular 
high-pressure lasers. 

In conclusion, the authors are deeply grateful to 
A. M. Dykhne for interest in the work and for helpful 
remarks. 

APPENDIX 

We consider first  transitions between resonating 
levels: n,m = 1,2. In the lowest order in the atom con- 
centration and in the Born approximation in the inter- 
action between the electrons and the atoms it suffices 
to retain in the last sum of the right-hand side of (28), 
for the off -diagonal elements pf:",' (k+ k'), only the terms 
with k" = k' in the first  addena and with k" = k in the 
second. Representing the solution for in the form 

M' 
Pnm =prim exp[- ih- ' (ek-ek~)  t - i o  (n-rn) t+iNu* sin o t ] ,  (A.1) 

we obtain for p,, the system of equations 

K K '  K 
ip,, + -pz i  - -p i z=q1~ ,  ip,,+Ap,, --(pi~-pzz)=qiz,  

2 2 2 
K' K K '  (A.2) 

ipzi-Apll + - ( p I I - p Z ~ )  =qz,, ibZz - -ptl+ - P ~ Z = ~ Z Z ,  
2 2 2 

where 

i qm" =- C U' " ' "' (Un.. pn*m-p.,,Un~m) exp -(ek-eke) t 
f i  ", [I (A. 3) 

+ i o  (n-m) t-iNMe sin o t  . 1 
Introducing the fraction q = N, +N, of the atomic (molecu- 
lar) particles that resonate with the field of the wave, 
we get from (A.2) 

p , . + ~ ~ ~ = q - i  j (qll+qzi)dt-q-iQ(t).  (A.4) 
4 

It is seen that i t  suffices to solve the system of the first  
three equations of (A.2) for p,,,p,,,p,, from which we 
eliminate p,, with the aid of (A.4). We next obtain p,, 
from (A.4). To take into account those transitions from 
states 1 or 2 which are mixed by the resonant field, to 

the unperturbed states m, we seek the solution of the 
system (28) in the form ( j=  1,2) 

3 E m  ( j  - T) t+ i -  tr t+ iNM, sincot I . (A. 5) 

As a result we obtain a system of inhomogeneous equa- 
tions with constant coefficients for p,, 

where 

(A. 7) 

The equation for the electron distribution function is ob- 
tained from (3), in the right-hand side of which it is 
necessary to substitute (A.l), (A.5), and (5), with ac- 
count taken of the solutions of the systems (A.2) and 
(A. 6). 
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Longitudinal waves and two-stream instability in a 
relativistic plasma 

0. G. Lominadze and A. B. Mikhailovsk; 
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Zh. Eksp. Teor. Fiz. 76, 959-970 (March 1979) 

We investigate the problem of longitudinal waves in a relativistic plasma, with phase velocity lower than 
the velocity of light. We show that such waves exist at arbitrary particle momentum distribution function 
that falls off rapidly enough at large momenta. Earlier papers dealing with these questions are analyzed in 
connection with the problem of pulsar radiation, and the causes of the unclear and confused views 
advanced in some of these papers are discussed. Relativistic-plasma instabilities due to Cerenkov buildup 
of longitudinal waves by beams of high-energy and low-energy particles are investigated. The quasilinear 
relaxation of a beam of high-energy particles in a relativistic plasma is considered and the main 
regularities of this relaxation are explained. 

PACS numbers: 52.40.Db, 52.35.Py, 52.40.Mj 

Laboratory experiments have stimulated the develop- 
ment of a theory of collective processes induced by a 
beam of relativistic electrons in a nonrelativistic plas- 
ma.' This branch of plasma theory i s  used a lso  in the 
interpretation of astrophysical phenomena (see, e.g., 
Chap. 3 of Ref. 2). At the s ame  time, interest  attaches 
in a number of astrophysical problems to the interac- 
tion of a beam of relativistic part icles with a relativis- 
tic plasma. An example is the problem of radioemis- 
sion from pulsars (see Ref. 1 and the l i terature cited 
therein). 

Since two-stream instability is due to Cerenkov in- 
teraction of the particles with the waves, w  = k v  ( w ,  k  
a r e  the frequency and wave number, and v is the par-  
ticle velocity), the question of two-stream instability 
in a relativistic plasma is frequently associated with the 
question of longitudinal (potential) waves of such a plas- 
ma with a phase velocity lower than that of light, vDh - w / k <  c .  Longitudinal waves in a relativistic plasma 
were considered initially by silin4 and by him with 
Rukhadze5 fo r  the case of an isotropic Boltzmann dis- 
tribution of the particles in energy. Only waves with 

w / k >  c were observed in the cited studies. Silin and 
Rukhadze have therefore made a general statement that 
waves with w / k  < c cannot exist  in a relativistic plasma, 
and consequently Cerenkov interaction of longitudinal 
waves of particles is impossible. The problem of lon- 
gitudinal waves of particles is impossible. The problem 
of longitudinal waves in a relativistic plasma was later  
investigated by T s y t o ~ i c h . ~  He has considered a plasma 
having the s ame  momentum distribution function a s  Silin 
and ~ u k h a d z e , ~ . ~  but, on the contrary, found waves with 
w / k  < c and calculated their damping decrement due to 
the Cerenkov interaction with particles. This  result  con- 
tradicts the aforementioned conclusion of Silin and 
Rukhadze, but Tsytovich made no note of this contra- 
diction and did not explain i t s  causes. 

Interest in longitudinal waves in the relativistic plas- 
ma has increased after  the discovery of pulsars. The 
question of longitudinal waves with w / k  < c was con- 
sidered anew by Tsytovich and Kaplan7 (without refer-  
ence to the ear l ie r  paper6 !), but no longer for  an  iso- 
tropic Boltzmann distribution function, a s  in Refs. 4-6, 
but for  one-dimensional power-law distributions. 
Tsytovich and KaplanGs7 have stated that longitudinal 
waves with w / k  < c exist and that Cerenkov generation 
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