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The effect of a resonant light field on the interaction between two identical atoms is considered in the 
limiting cases of large and small distances between the atoms. The interaction potential for atoms at 
distances greatly exceeding the atomic distance, but much smaller than the resonant wavelength, is 
considered in the first part of the study in the adiabatic approximation. It is shown that for some atomic 
states the interaction potential is spherically symmetric and has the shape of a potential well whose 
parameters depend strongly on the field strength. For a strong field E - lo6 V/cm the well depth is - 100 
K, the radius is  - 10 A, and the number of bound states is - I d .  For a weak field - 1 V/cm the well 
size becomes comparable with the wavelength and the depth is - K. The lifetime of a quasimolecule 
in such states may considerably exceed the lifetime of the atom in the excited state. This may be of 
interest in the spectroscopy of narrow atomic and molecular resonances. The interaction force between two 
atoms in the wave zone is considered in the second part of the paper. It is shown that it can be regarded 
as the result of pressure exerted on one atom by light scattered by the other atom. Depending on the field 
intensity, the atoms may either attract or repulse each other. In a strong field the force obeys the 
Coulomb law with an effective charge which depends on the field strength and atom velocities. In a gas of 
finite density the interaction becomes comparable with the light-pressure force. This may be important in 
studies of the kinetics of atoms in a resonant field. 

PACS numbers: 34.20.Fi 

1. INTRODUCTION gy. In this case it  i s  natural to use the adiabatic ap- 
proximation. Therefore, to find the interaction poten- 

In this study we consider the interaction of identical tial we shall drop the atom kinetic energy operator. 
atoms located in a resonant light field. We consider The correctness of this approximation is discussed 
the two characteristic limiting cases of small and large below. 
distances between the particles relative to the reso- 

We note that the distortion of the oscillator potential nant wavelength. It is known that the unexcited atoms 
of the molecule in the direction of the resonant-field interact in the near zone according to the Van der Waals 
polarization was studied in Ref. 4. law. The resonant field "switches onv the dipole-di- 

pole interaction. If the field is sufficiently strong the In the second part of this study (Sec. 3) we consider 
effective interaction potential can differ considerably the interaction of the atoms in the wave zone. In this 
from the dipole one. These potentials a r e  found in the case retardation effects are  important and the interac- 
f i rs t  part of this study (Sec. 2). tion i s  nonpotential. It can be viewed a s  the result of 

The potential curves for some states have the form of pressure of an atom exerted by the light scattered by 

wells in which there can be a fairly large number of the other atom. This pressure can be either positive 
or negative, that is, the atoms can attract o r  repulse bound states. The well parameters depend on the field 
each other. At large distances the atoms interact in strength and can vary in a wide range. Thus, the two 
accord with the Coulomb law with an effective charge atoms in the light field can form a molecule whose size 

is large compared with the size of the atoms and is that depends on the external field. The features of the 

determined by the applied field. The lifetime of this atomic interaction in a weak and strong external fields 

molecule i s  determined by the spontaneous emission of a re  studied in detail. 

the atoms. This effect is not taken into account in this 
study, however. 2. INTERACTIONS OF THE ATOMS IN  THE NEAR 

Another important approximation is the assumption ZONE 

that the atoms move slowly (the adiabatic approxima- 
Let us consider the interaction of the atoms at dis- 

tion). In this sense we a re  considering the case oppo- tances a <<r<< 2n/k, where a i s  the size of the atom 
site to that in the theory of atomic collisions in a light 

and 2n/k i s  the light wavelength. Neglecting the spatial 
field. In this theory transitions between the reso- 

dependence, we can write for the field 
nance levels during the collision a re  taken into account - 
and the particle trajectory i s  assumed to be unperturbed Eexp [-i(o,+ A)tli-C.C. (1) 
(straight-lime). FOE thermal atoms the kineticenergy 

where w, i s  the transition frequency and A is a small 
is usually considerably greater than the interaction po- frequency difference. The field amplitude E can be 
tential a t  the Weisskopf radius. This condition is vio- assumed real with no loss of generality. 
lated for low energy atoms. In particular, for bound 
states the kinetic energy i s  less-than the potential ener- The Hamiltonian of the system of two atoms in the 

452 Sov. Phys. JETP 49(3), March 1979 0038-5646l791030452-07$02.40 O 1979 American Institute of Physics 452 



adiabatic approximation is 

where n = r / r  and d, and 4 are  the dipole-moment op- 
erators. The first term takes into account the reso- 
nant interaction of the atoms with the field and the 
second corresponds to the dipole-dipole interaction. 
The problem is to find the eigenvalues E(r) of the Hamil- 
tonian a s  functions of the distance between the atoms. 
The terms ~ ( r )  a re  potentials that determine the rela- 
tive motion of the atoms. 

We consider next the 0 - 1 transition in more detail. 
We introduce the following state amplitudes: $,-both 
atoms are in an S state, $,,-the first  atom i s  in a P ,  
state and the second is in an S state, qOr,,-the first atom 
is in an S state and the second i s  in a P ,  state, and $,,- 
the first atom is  in a Pi state and the second is in a P, 
state. The original equations then have the following 
form (repeated indices are summed over): 

where E, = d '/r and d is the dipole-moment matrix 
element. Since the Hamiltonian (2) is invariant to 
particle exchange, the system (3) breaks up into two 
independent systems for the vectors $+, = (Ilia * $,,)/n: 

For #_ = 0 and $+ # 0 the dipole moments of the atoms 
are parallel and for $+ = 0 and $- + 0 they are antiparallel. 

There are two singled-out directions of E and r in the 
problem. The Hamiltonian (2) i s  invariant to reflection 
of the vectors dl and d, in the place of the vectors E and 
r. Therefore, each of equations (4) and (5) splits into 
equations containing only the state vectors which are 
normal (~r,,) or tangential (kt) relative to the (E, r )  
plane. 

2.1. The antisymmetric case 

In the antisymmetric case, when only the vector $-" 
is nonzero, equation (5) gives.. 

( e + e o )  (e+hA)  = ( d E ) :  

~ = - ' / ~ { ( e , + h A ) * [  ( ~ ~ - h A ) ~ + 4 ( d E ) ~ ] ' " ) .  ( 6 )  

The graph of ~ ( r )  is given in Fig. 1. The term E(r) are  
spherically symmetric. This is a consequence of the 
adiabatic approximation, in which 6 i s  invariant under 
reflection of the dipoles in the (E, r )  plane. Therefore, 
for slowly varying r the vector $, is always perpendicu- 
lar to the radius vector r. For small r the lower 
branch behaves as  &(Y) = -~,(rj, which corresponds to 
the attraction of two antiparallel dipoles perpendicular 
to the radius vector. Here the upper branch is finite: 
E (r) = -EA. In this case both atoms are in an excited 
state, so that the dipole interaction is  switched off. 

FIG. 1. The functions E ( r )  for the antisymmetric case. & , ( r )  
-$( [ ( f i ~ ) ~ +  ( 2 d ~ ) ~ l  - E A )  at large r .  

The upper potential has the form of a well, whose size 
r, is  approximately given by the condition E,(r) = [@A)' 
+ 4(d E)2]112. At this point the dipole potential is com- 
parable to the Stark splitting of the levels. For r >> r, 
the position of the terms is given by the Stark splitting. 

There is an essential difference between the two at- 
tractive potentials shown in Fig. 1. In the potential 
-Eo(r) the particles fall toward the center. At small Y 

a particle acquires a large velocity, so that the adia- 
batic approximation can break down. In addition, the 
integrals of the motion can be violated because of the 
exchange interaction a t  small distances.') As a result, 
the atoms can cross over to the decay potential and the 
lifetime in the bound state will be very small. 

When moving to the upper potential well with finite 
angular momentum the atoms are always far from each 
other and have small velocities. Taking dE for the well 
depth, we estimate the number of bound states in the 
well a t  N=(dE~)'l*r,h", where M is the atomic mass. 
In a strong field E = 10' V/cm we have for Na atoms, 
for example, about 100 K for the well depth, about 10 A 
for the well radius, and N-  100. In this case a sizable 
number of the atoms [of order (100 K / T ) ' ~ I ~  -0.1, where 
T i s  the temperature of the atoms] can be in bound 
states. In a weak field E = 1 V/cm the well depth is 
about K, the well radius is comparable to the wave- 
length, and N - 10. The parameters of the potential 
well a s  a function of the applied field vary in a wide 
range.2) 

The lifetime of the atoms in a bound state is limited 
by transitions, due to spontaneous emission, to decay 
states. However, the dipole radiation of atoms having 
antiparallel dipole moments and located at a distance 
much smaller than the wavelength i s  decreased con- 
siderably.' The lifetime in an antisymmetric bound 
state can therefore greatly exceed that of the free atom 
in an excited state. 

We now consider the equation for $-,. Setting the de- 
terminant of (5) equal to zero, we find a fourth-order 
equation for ~ ( r ) .  We restrict ourselves to small dis- 
tances Y << Y,. Then the roots of (5) are easy to find, 
either by dropping the first term in the square brackets 
on the right-hand side or  be setting the left-hand side 
of the equation equal to zero. In the first case we have 
unbounded solutions E (Y) = -&,(r) and E ( r)  = 2&,(r), cor- 
responding to the potentials for dipole moments per- 
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pendicular and parallel to the radius vector. In the 
second case the solutions at small distances are  
bounded. Setting & (r)  = -fth + 6& (r), where 6&(r) i s  
small, we get from (5) the following two solutions: 

6e (r) =0, 6e (r) = - (dE)z (3 cos' 0-i), 
2eo(r) 

where 8 i s  the angle between the vectors E and r. The 
second root changes sign when 8 is changed, so there is 
no well in this case. 

2.2. The symmetric case 

In the case of parallel dipole moments we have from 
(4) for JI+" 

e (r) ='/~(e~-fiA) f 'Iz[ (eo+hA) 2+4(dE)z]'h. (8) 

The difference from the case described by formula (6) 
is due to the change of the sign in front of &,(r). Be- 
cause of this the interaction potentials a re  repulsive, 
a s  seen from Fig. 2. 

We shall investigate Eq. (4) for ++Clt likewise only in 
the limit r <<yo. Dropping the first  and second terms on 
the right-hand side of (4), we find the roots correspond- 
ing to the purely dipole interaction &(r)=&,(r) and &(r )  
= -2co(r). Setting 

e (r) =-hA+de (r) , 6e (r) a 1 hA 1 ,  
and keeping only the second and third terms on the 
right-hand side of (4), we have 

For the plus sign, 6& is positive and increases with in- 
creasing r. Thus, the interaction potential of parallel 
dipoles also has a well of finite depth (not spherically 
symmetric), whose center is a t  the origin. Setting 

e (r) =hA+be (r), Ge (r) a 1 hA 1 
and keeping only the first  and third terms on the right- 
hand side of (4), we find 

When the angle between E and r i s  changed the second 
root changes sign, so there is no well in this case. 

FIG. 2. The functions &(r) for the symmetric case. El(?-) 
-+@A+ [ @A)*+ ( 2 d ~ ) ~ ]  1/2)at large r. 

This investigation thus shows that the presence of a 
resonant field together with the unbounded potential 
wells of the dipole interaction causes wells of finite 
depth to appear. The parameters of these wells a r e  
determined by the field strength and their centers a re  
a t  the origin. This latter fact simplifies greatly the 
finding of the terms for r << yo. Apparently, there a r e  
no other potential wells with minima a t  a finite dis- 
tance from the origin. 

3. INTERACTION OF THE ATOMS AT LARGE 
DISTANCES 

It is well known7 that in the absence of an external 
field the interaction of atoms in the wave zone kr  >> 1 
i s  described by the potential 

where a, and a, are  the polarizabilities of the atoms at 
zero frequency. Virtual photons are  then exchanged 
between the atoms. In an external resonant field the 
atoms exchange real photons and the interaction force 
grows considerably and varies with distance a s  r-'. 
This force arises a s  a result of the pressure exerted 
by the light scattered by the atoms. We note that light- 
pressure forces for a single atom were studied in Refs. 
8 and 9. 

The general expression for the force F acting on the 
dipole moment p(t)e'ioot + C.C. of an atom in a field 
E(r, t)e-'+ + c.c., averaged over the small period of 
oscillations 2n/w0, has the form 

Let us find the force Fa, with which an atom a acts on an 
atom b. We shall denote the coordinates and velocities 
of the atoms by r,, v, and r,, v,. The field at the point 
r =r, is written a s  

where Eo(r, t)=Eoe'iAt+ik'r is a strong external field and 
E,,(r, t) is the weak field emitted by atom a. Accord- 
ingly, we write the dipole moment of the atom b a s  p,(t) 
= pOb(t) + plb(t), where po and p, a re  the dipole-moment 
components induced by the fields Eo and El,. 

The polarizations of the fields Eo and El, aredifferent, 
which greatly complicates the calculation. However, 
in the cases of a weak or  a strong external field, which 
will be studied in detail below, the following simplifi- 
cation can be made. In a weak external field the po- 
larizability of the atom, which determines the inter- 
action, i s  isotropic. This isotropy disappears in a 
strong field, but the resonance frequencies of the po- 
larizability along and across the field differ consider- 
ably. In the resonance approximation the contributions 
from the transverse and longitudinal components of the 
polarizability can be separated. Below we consider 
only the contribution from the longitudinal part. This 
allows us to assume that the atoms have two levels and 
the vectors p and E can be viewed a s  scalar quantities. 

To find p( t )  i t  i s  necessary to use the equation for the 
atom-density matrix (q is the difference between the 
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populations of the upper and lower levels) 

The width of the upper level is denoted by y and the 
lower level is assumed to be the ground state. 

For the weak field we have the expression 

where the retardation time is T = I r I / c ,  r = rb(t) 
- ra(t  - T), and 9 is the angle between the vectors E, 
and r. To find VE, a t  large distances i t  is sufficient 
to differentiate only eib'. Then to second order in the 
weak field we have the following expression for the 
force acting on atom b: 

where F, =*W is the light-pressure force on atom b 
in the field of a traveling plane wave and 

i s  the population probability of the upper level. The 
functions referring to different atoms will henceforth 
have a subscript a o r  b and differ from the function 
without the subscript by the replacement of A by A,,, 
= A - ~ . v ~ , ~ .  

In a homogeneous light field F, does not depend on 
the atomic coordinates, while Fa, depends on the dis- 
tance r between the atoms. The force Fa, is central, 
but not potential. It is directed along r or opposite to 
r, depending on the sign of the work performed on atom 
b by the weak field. If the weak field is absorbed by 
atom b, then atom a repulses atom b. On the other 
hand, i f  the weak signal induces emission by atom b 
(this is possible in an external field), then atom a at- 
tracts atom b. If the atoms interact a t  large distances, 
then F,, #F,,, that is, the action is not equal to the 
reaction. This appears most clearly in the case where 
the external field acts only on one of the atoms. In the 
following, however, we shall assume that both atoms 
a re  in a homogeneous field. 

We note that at  large distances the interaction poten- 
tial of the two excited atoms in the absence of an ex- 

- ternal field has the form const * r-' cos(k # r )  (Ref. 10). 
In an external field the nature of the interaction is 
changed considerably, namely, together with terms 
containing factors like eikr, in the expression for the 
force Fa, there a re  terms which vary slowly with r. In 
averaging over a volume containing many wavelengths, 
the oscillatory terms disappear. Therefore, below we 
shall calculate only the slowly varying part of the force 
Fa,, which gives the main contribution to the interaction 
of the atoms a t  k r  >> 1. 

Using the stationary solution of Eqs. (13) for Po, we 
find the following expression for the first-order inter- 
action force: 

If the atoms a re  located in a line coincident with the 
direction of the light propagation so  that k . r = kr, the 
interaction force varies a s  l/r. The absence of oscil- 
lations is due to the fact that in forward scattering the 
atom a radiates a field coherent with the incident field. 

In the case A >> kv, y, V we have 

and the sign of the force does not change within a single 
Fresnel zone. 

The order of magntidue of the ratio F!:)/F, is (kr)" 
<< 1. The collective action of the atoms can lead to a 
considerable change of the force acting on a given atom. 
In a light beam of large cross section the force F$) 
becomes rapidly oscillating in the far Fresnel zones. 
In this case it is necessary to take into account the 
second-order force, in which there a r e  no oscillations. 
In the presence of an external field E,(t) the response 
of an atom P,(t) to a weak field E,(t) can be written a s  

p I ( t )  =j d T ( a ( = ) E i ( t - T )  + P ( T )  E;  ( t - T )  e-aiA(w)). 
4 

When the external field is small, f l  is also small and a! 
is the isotropic polarizability of the atom. In a strong 
external field, in accord with the above discussion, a! 
and p a r e  the longitudinal components of the polariza- 
bility . 

In substituting P,(t) into (14) the second term can be 
dropped, since i t  leads to the appearance of an oscilb- 
tory factor e*2ikr. The formula for the force now is of 
the form 

Here F a ( r )  = (P~,(r)pOa(O)) is the correlator for the di- 
pole moment of atom a. The angle brackets denote 
averaging over the fluctuations arising because of spon- 
taneous emission. 

The Fourier transform of the correlator F(T) de- 
termines the spectrum of the resonance fluorescence 
of the atom and has been calculated in a number of 

The emission spectrum of the atom con- 
tains coherent (monochromatic) and incoherent (non- 
monochromatic) radiation components. Formula (16) 
takes into account the effect on atom b by both radiation 
components of atom a. The relative contributions from 
these components change considerably a s  a function of 
the external field. Expansion of r ( t  - 7) in a series in 
the retardation time T was carried out in (16) up to 
terms of second order. The first  term k;(t)r describes 
the Doppler shift of the frequency and the second term 
k?(t)r2/2 ar ises  because of the difference of the spheri- 
cal wave from a plane wave. This can be important 
only for distances which a re  not too large rc  r, [see 
(21)]. The function F ( T )  is found from the system of 
kinetic equations (13) with special initial conditions and 
with a special right-hand side. The polarizability a!(?) 
is found from the solution of the linearized system of 
equations (13), which, as  is well known, is exactly 
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solvable in a monochromatic field. 

It is  convenient to carry out the subsequent calcula- 
tions in the frequency representation. Dropping the 
factor exp(iki;~~/2) in (16) for the time being (its role 
is discussed in Sec. 3.1), the general expression for 
the interaction force is 

where 

Here A(w)/D(-w) is the polarizability and the quantity 
B(w)/D(w) characterizes the emission spectrum of the 
atom. In (17) we have used the relation y=4d2k3/3E. 

Let us now consider several typical limiting cases. 

3.1. Weak field 

In a weak field (W<< 1) we have A(w)/D(-o) 
= -(w + I+)-,. Only the coherent component is important 
in the emission spectrum, so that B(w)/D(w) 
= -iW(w - i0)-'. With the two cases of large and small 
distances in mind, we use the general formula (16): 

where 

9 hy2 sin' tl W. x = -  
16 k ' 

Expression (19) has a simple form for 1 A, - vl >>y, 
when the integral can be written a s  an expansion in in- 
verse powers of the effective frequency difference: 

The ratio of the second term to the first can be 
written as  r,/r, where 

9 is the angle between the vectors k and n. Under or- 
dinary conditions the parameter kv/y - 10'. Therefore, 
for frequency differences which are not too large, kr, 
>> 1. The maximum value of r, can be estimated from 
(21), setting I A, - vl -7, so that r,,,- k'(kv/~)~ -0.1 
cm. 

At distances k-I < r < r, the second term in (20) be- 
comes the most important. In this case the sign of the 
force coincides with the sign of v - A,, since ?(t) is 
always positive. The attraction between the atoms a t  
(A, - v) > 0 can be explained a s  follows. 

From (19) we see that a field with a frequency differ- 
ence A, - v + k?(t)~/2 which increases linearly with time 

acts on the atom. In the adiabatic approximation the 
population of the upper level is  inversely proportional 
to the square of the frequency difference. The decrease 
of the population of the upper level can be viewed as  the 
result of the stimulated emission of photons of the weak 
field. Therefore, the work done by the radiation field 
of atom a on atom b is  negative, which corresponds to 
an attractive force. We note that the effect of changing 
the sign of the work done by the field on the atom was 
noticed in a study of the absorption spectrum of an atom 
accelerated by an external field.14 

Therefore, at re r, the atoms can either attract o r  
repulse each other depending on the sign of the frequency 
difference and the force varies with distance a s  f3. At 
large distances r > r, the difference of the spherical 
wave from a plane wave can be neglected (?(t) s o )  and 
the force can be written in the form of the Coulomb 
law with an effective charge g(n): 

The square of the "induced" charge is proportional to 
the product of the probabilities for the excitation of 
atom a and the absorption of the scattered field by atom 
b. Estimate of the maximum value of g for W, - 1 and 
I A, - V J  -y gives 

The effective charge turns out to be smaller than the 
electron charge e by a factor equal to the multipole ex- 
pansion parameter ka, where a is the Bohr radius. 

The force FA;) is considerably greater than the inter- 
action force VU of the atoms without a field and smaller 
than the light pressure Fob by a factor equal to the small 
parameter of the problem l/kr: 

l V U l  cfi(ka)' ( 2 )  --- F.s 1 <i, - - - < I .  
F!,:,) e2 (kr )  Fob (krI2 

In a gas of finite density the interaction of the atoms 
increases because of the slow fall off of the Coulomb 
force. The total force 

acting on atom b diverges linearly at large r. The 
maximum distance is limited by the photon mean free 
path. From this we find that the total force can be 
comparable to the light-pressure force f, -Fob. This 
is a rough estimate, since i t  does not include the vec- 
tor nature of the force. This shows, however, that in 
large volumes of the gas comparable to the weak field 
absorption length, the total force acting on a particle 
can differ markedly from Fob. 

3.2. Strong field 

The calculation of the force according to expression 
(17) reduces to finding the residues a t  the poles, which 
are determined by the zeros of the function 
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The o, a re  the eigenfrequencies of the two-level atomic 
system in an external field. In a strong field they a re  
equal to 

oI,,=*8+iyI, o,=iy (i-2Vz/Q2), 

and the Stark shift of the levels is considerably larger 
than the natural width, S2 >> y .  The polarizability of the 
atom a t  the eigenfrequencies w, is significantly differ- 
ent. At the unshifted frequency w, i t  is less  than the 
polarizability a t  the sideband frequencies by a factor of 
n / y .  Therefore, closing the integration contour in the 
lower half-plane, i t  is sufficient to take into account 
only the contributions from the poles a t  w = w, and w 
= W,. 

As a result we obtain the following expression3 

The interaction strength is determined by the sum of 
two terms, each of which is proportional to the product 
of some effective oscillator strength a t  the frequency 
w, or w3 and the intensity of the emission of atom a a t  
the same frequencies. The terms in (26) have different 
signs, s o  the force Fa, can be of either sign. 

The emission spectrum Re(B(w)/D(w)) consists of 
two shifted components a t  the frequencies kS-2 and two 
unshifted ones. One of the components a t  zero fre- 
quency corresponds to coherent emission. Because of 
the motion of the atoms their eigenfrequencies differ. 
The force F!:) depends considerably on the relation 
between w,, and w,, and reaches a maximum when one 
of the components of the emission spectrum of atom a 
coincides with an eigenfrequency of atom b. This hap- 
pens when the condition 

is satisfied. The interaction force is thus a resonant 
function of the velocities of the atoms. For an arbi- 
trary relation between A,,,, v, and V the force Fa, has 
many resonances corresponding to condition (27). We 
shall restrict  our consideration to the simple case when 
kv << A, V and the eigenfrequencies of atoms a and b 
a r e  close. Formula (26) has the foam 

The force (28) has resonances when the velocity v is 
perpendicular to one of the vectors k, = k(1 i A/n) + nk. 
For an arbitrary orientation of n and k the force F$) 
can be attractive or  repulsive, depending on the direc- 
tion of the velocity. 

4. CONCLUSION 

Out of the broad range of problems related t o  the in- 
teraction of atoms in an external field, we have consid- 
ered two in the present study. In the f i rs t  part  we 
studied the adiabatic potentials of atoms in the near 

zone. It was shown that in a light field the interaction 
potential has the form of a well whose parameters de- 
pend on the field strength. The atoms can therefore 
form a quasimolecule of dimensions larger than those 
of the atoms. The bound states can apparently be ex- 
perimentally observed a s  fine structure in studying the 
Stark shift of the levels in gases. 

The second part  of the study was devoted to finding the 
interaction forces of the atoms a t  large distances. It 
was shown that the interaction coincides with the Cou- 
lomb law and the effective charge depends on the field 
and velocity of the atoms. In weak fields the atoms 
repulse each other and in strong fields both repulsion 
and attraction a re  possible. 

In a gas of finite density the force of the interaction 
of an atom with the other particles can be comparable 
to the light-pressure force. This can be important in 
studying the kinetics of atoms in a resonant field. 
From this viewpoint the experiment of Ref. 15 is of 
interest, in which an anomalous distribution of the gas 
under the influence of light pressure was,observed. 

In conclusion we note that particles can exchange not 
only photons, but also phonons. This can a lso  lead to 
the appearance of long-range forces. It is possible 
that forces of this type play a role in the interaction of 
protein m ~ l e c u l e s . ' ~  

"In strong fields the size of the bound state can be comparable 
to the range of the exchange potential.5 

2'The bound states for a purely dipole interaction induced by a 
nonresonant field were discussed in Ref. 2. 

3' In finding the contribution from the longitudinal component 
in a strong external field it  is  necessary to take the projec- 
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The possibilities of applying stimulated Mandel'shtam-Brillouin scattering (SMBS) to laser-mediated 
thermonuclear fusion problems and, in particular, to the decoupling of amplifier stages, shaping of pulse 
profiles, etc., are considered. The stimulated Mandel'shtam-Brillouin scattering is obtained experimentally 
under nonstationary conditions by exciting the system with radiation from a photodissociation iodine laser. 
A  stationary scattering regime is also attained with a pump pulse of 5-10 psec duration. Under these 
conditions, the operation of an amplifier with a SMBS mirror is studied experimentally in the case of 
weak input signals (Ii, - W/cm2) and a gain per pass of - lo6 is attained. Particular attention is paid 
to the quantitative determination of the characteristics of the degree of pump-beam reproducibility and of 
the compensation of the optical inhomogeneities of the laser medium, and also to the clarification of the 
conditions under which they are observed. The range of pump intensities in which complete reproduction 
of the angular spectrum is observed is found experimentally. The dependence of the compensation 
accuracy on the degree of reproduction of the angular spectrum is obtained. 

PACS numbers: 42.60.Kg 

INTRODUCTION 

In recent yea r s  there has  been an eve r  broadening in- 
te res t  in the phenomenon of wave front reversa l  in non- 
linear processes. High directivity of the scattered ra-  
diation was apparently f i r s t  observed in  Refs. 1-3 for  
stimulated Mandel'shtam Brillouin scattering (SMBS) 
and in Refs. 4 and 5 for  stimulated Raman scattering 
(SRS). However, only publication of Ref. 6 has  made i t  
c l ea r  that the field of the scat tered radiation is, under 
certain circumstances, the complex conjugate of the 
pump field, and that this  effect can be used for  the com- 
pensation of phase distortions of l a s e r  emission. In par -  
ticular, this  phenomenon was used in Ref. 7 for  compen- 
sation of optical inhomogeneities in a ruby amplifier. 
The  publication of these works stimulated theoretical 
and experimental investigations of the phenomenon of 
wave front reversa l  and consideration of the feasibility 
of i t s  application (see, for  example, Refs. 8-20). 

The  present work is devoted to  the study of the possi- 
bility of application of this phenomenon to the excitation 
of SMBS by the emission of photodissociation l a se r s  
(PL), which have been d e v e l ~ p e d ~ ~ ' ~ ~  along with others 
for  the solution of laser-mediated thermonuclear fusion 
(LTF) problems. The  experimental investigations were 
conducted principally in a stationary scat tering regime, 

in  which the pulse length of the l a s e r  radiation was sig- 
nificantly grea ter  than the lifetime of the  acoustical pho- 
nons. I n  th is  regime, the phenomenon of wave front re- 
versa l  should be accomplished in the purest  form. 
Special attention was paid to the experimental investiga- 
tion of the quantitative characterist ics  of the degree of 
reproducibility and of the compensation, and the limiting 
conditions under which they a r e  observed were deter-  
mined. The  results  a r e  of interest  not only in L T F  but 
also for  problems of optical comm~nica t ion '~  and the ac- 
celeration of macro- and m i ~ r o - b o d i e s . ~ ~ ' ~ ~  

1. SOME POSSIBILITIES OF THE APPLICATION OF 
SMBS TO THE PROBLEM OF LTF 

A s  is known, elements of interstage decoupling and a 
system of decoupling of the output s tages  from the target  
a r e  necessary in L T F  systems.  

F o r  these purposes, i t  is expedient to consider, in ad- 
dition to K e r r  and Faraday shutters  and phototropic shut- 
t e r s ,  a l so  shutters  that operate on stimulated scattering 
(SMBS o r  SRS). Figure 1 shows one of the possible 
schemes of decoupling amplif iers  from a target  with the 
use of SMBS. The radiation of the amplifier by means of 
a beam-splitting m i r r o r  (R ~ 0 . 5 )  is fed to two SMBS 
cells. The  reflected Stokes radiation is focused on the 
target. Under conditions in which the spontaneous radia- 
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