
to quantities of the same order (we have assumed that 
U- 4). If ~ ' a /p=O. l ,  then we find on the basis of (25) 
that b =0.015-0.013, and from (20) it follows that b-0.1. 
An estimate of b from the relation b = (,!?')2/pkf~2 using 
the TCNQ mass and Debye temperature 8, = 100 K leads 
to a value b- 

The foregoing analysis of expression (14) and (15) 
leads also to the conclusion that at medium values of 
the electron-interaction parameter U a one-dimensional 
system with Hamiltonian (1) is unstable to periodic de- 
formations of the type (2) with Q =2kF and Q =4kF. In 
experiments on x-ray scattering by the quasi-one-di- 
mensional crystal TTF-TCNQ,18 characteristic symp- 
toms of instability to both deformations were observed, 
and the x-ray scattering amplitudes were comparable 
in magnitude for Q =2k, and Q =4kF. In light of our 
analysis this means that the effective interelectron in- 
teraction in this crystal is of the order of (or larger 
than) the width of the conduction band (0.5 eV, Ref. 29). 
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The behavior of the dynamic form factor in He I1 near the sound line o = up is obtained. General 
formulas are derived for the asymptotic forms of the imaginary parts of the Green's function at high 
frequencies and large momenta. 

PACS numbers: 67.40.Db 

1. FORMULATION OF PROBLEM. KINEMATIC superfluid helium in the case when the conservation 
RELATIONS laws permit such a decay only simultaneously into a 

large number of phonons. 
The purpose of the present study was to investigate 

the decay of elementary excitations into phonons in It is. known (see, e.g., Ref. 1) that a t  small  momen- 

386 Sov. Phys. JETP 49(2), Feb. 1979 0038-5646/79/020386-09$02.40 O 1979 American Institute of Physics 386 



ta the excitation spectrum in helium takes the form 
shown schematically in Fig. 1. At normal pressure the 
spectrum curve & = ~ ( p )  initially deviates from the 
"sound line" 

e =up (1.1) 

(u is the speed of sound) upwards, s o  that the spectrum 
is described by the equation 

e-up+yp3, T>O. (1.2) 

The group velocity of the excitations then decreases 
again, and a t  a certain p = p  * the spectrum crosses the 
sound line and goes under it. This form of the spec- 
trum leads to a peculiar behavior of the damping of the 
excitations. 

We deal throughout this paper only with the case of 
absolute zero temperature. At T = 0 the damping is due 
only to the decay of an excitation into a large number of 
excitations. This process conserves, of course, the 
total energy and momentum of the excitations. 

At sufficiently small  momenta, a decay in the spec- 
trum of Fig. 1 into is possible two excitations satisfy- 
ing the conservation law1) 

e ( P )  =e ( k )  +e ( p - k ) ,  (1.3) 
where p is the momentum of decaying excitation, and k 
and p - k a re  the momenta of the excitations produced in 
the decay. The process (1.3) leads to damping of the ex- 
citation in accordance with the law2 

r=-Im E-p5. 

Decays into three and more excitations a r e  possible 
simultaneously with (1.3). 

With further increase of p ,  the damping for the spec- 
trum of Fig. 1 begins to decrease. At a certain point 
p = p 2  the relation (1.3), if regarded a s  an equation for 
k, ceases to have a solution, and two-particle decay 
becomes impossible. It is easily understood that a t  the 
point p, itseLf the two produced excitations have equal 
but opposite momenta, s o  that p, is determined from the 
relation 

e(pz)  =2e ( ~ ~ 1 2 ) .  

At p >p,, decay into three and more excitations is pos- 
sible. Three-particle decay stops, in turn, a t  the point 
p3, &(p3) = 3&(p3/3). Similarly, decay into n excitations 
is possible a t  p < p,, where 

E (pn) =me (p . /n) .  (1.4) 

m e r e  is thus a sequence of thresholds p, which con- 
dense towards the point p- =p*. In fact, going to the 
limit as n- .o in (1.4), we get 

FIG. 1. 

s o  that p, coincides in fact with the point p* a t  which 
the curve of the spectrum crosses the sound line. At 
p > P *  no decay of the excitation into any number of phon- 
ons is possible. Therefore a s  P-p * the damping of the 
excitations vanishes. The determination of the law that 
governs this vanishing is in fact the purpose of the 
present paper.  ormu mu la (1.4) was derived in Ref. 2.1 

The posed problem is a particular case of a more 
general one. Assume that when a neutron i s  inelastic- 
ally scattered in helium the liquid acquires an energy 
& and a momentum p. This process (with energy and 
momentum transferred to the phonons and not, say, to 
rotons) is impossible if the point ( & , p )  lies below the 
sound line. On the other hand, if the point lies above 
the sound line, then the number of produced phonons 
should be larger the closer the sound line, i.e., the 
smaller the difference 6& = & - up. 

The probability of scattering of a neutron with given 
& and p is determined by the dynamic form factor of the 
liquid (see, e.g., Ref. 4, Sec. 86). According to the 
foregoing, this form factor should vanish as 6& -0 and 
we can raise the question of determining the law that 
governs this vanishing on the entire line & =up. This is 
precisely the general problem to be solved here.') 

We determine f i rs t  the minimum number n of the 
phonons among which the energy & and the momentum 
p can be distributed. It is again clear beforehand that 
the most favorable situation i s  when the phonon momen- 
ta a r e  almost equal in magnitude and in direction-in 
this case the total momentum a t  a given energy is maxi- 
mal. Let n be the number of produced phonons and let 
w and k be the energy and momentum of each of them. 
Then w= &/n, k = p/n, and since w and k a r e  connected 
by Eq. (1.2) we get 

s o  that actually n- .o when 6c- 0. The assumption that 
n >>l serves a s  a basis of our entire analysis. 

So f a r  we have referred specifically to the situation 
in liquid helium. We shall bear this case in mind in the 
entire exposition that follows. It i s  clear, however, that 
the question is meaningful also when applied to the phon- 
on spectrum of the crystal, provided the spectrum takes 
the form shown in Fig. 1. The solutionmethoddescribed 
is also suitable in the case of a crystal, although the 
actual expressions for  the probability can be altered . 
when the anisotropy i s  taken into account. 

2. LEADING PREMISES. PRESCRIPTION FOR 
OBTAINING THE ANSWER 

The expression for the probability of two-phonon de- 
cay (the p5 law) can be easily obtained in first-order 
approximation of perturbation theory in third-order an- 
harmonicity. To obtain the probability of n-phonon de- 
cay, i t  is necessary, however, to consider the nth 
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approximation of perturbation theory in this anharmon- 
icity, o r  else take into account anharmonicities of 
higher order. It is in fact  impossible to obtain the an- 
swer for large n. The number of different Feynrnan 
diagrams turns out to be very large, and the asymp- 
totic and alternating-sign character of the ser ies  makes . i t  difficult to estimate i ts  sum.') 

It is clear beforehand, however, that a t  large n the 
situation is quasiclassical and the corresponding ap- 
proximation can be used. In fact, the calculations, as 
will be shown below, turn out to be quite simple. The 
solution method and the character of the employed ap- 
proximations a r e  easiest to understand by using as an 
example the solution of a simpler problem with one de- 
gree of freedom. We have in mind the calculation of the 
probability of excitation of an oscillator with small an- 
harmonicity by a high-frequency field. 

We consider an oscillator with a potential energy 

U(Z) =1/2mwo=~Z+g~3. (2.1) 

The probability of i ts  excitation by a weak external 
field, corresponding to a contribution to the potential 
energy 

V=-Fx(e-"'+c.c.), 

takes the form (in the approximation quadratic in the 
field) 

w = ~ I I ~ ( E - E . + E o )  IMnp12Fz, bfno=- $,'(z)zlp(z)d~. (2.2) 

We shall assume that the frequency of the field & is  
much higher than the natural frequency of the oscilla- 
tor w,: 

~=( ' / ,+n)  w., nwl. (2.3) 

A nonzero value of the matrix element M,, can then be 
obtained only in nth order of perturbation theory in the 
"interaction constant" g. In this sense, there is a far-  
reaching analogy between our fundamental problem and 
the considered auxiliary problem. Under the condition 
(2.3) the matrix element (2.2) is exponentially small and 
i ts  calculation calls for the use of a procedure due to 
Landau (see Ref. 6, Sec. 51). According to Landau 

where 

and x, is a singular point of U(x) in the upper half of the 
complex x plane, and i t  is necessary to choose from 
among the singular points the one that makes the larg- 
e s t  contribution to M,. 

For the potential energy (2.1), which has no singular 
point, we must put x,- a. As a result we have with 
exponential accuracy (the phase factors have been left 
out) 

value a t  which the anharmonicity effects become of the 
order of unity (see Fig. 2). In this case the essential 
region of x in the integral of (2.4) is the one in which 

eau(z)<eI .  (2.5) 

Expanding by virtue of the left-hand inequality in pow- 
e r s  of &, we reduce (2.4) to the form 

This formula can be interpreted more illustratively by 
recognizing that in the classically forbidden region (2.5) 
the coordinate of the particle is real, and the momentum 
is imaginary: p =i[(U(x) - &)2mIi 12, a fact that can be 
understood as motion along the imaginary time axis. 
Then T is the imaginary time necessary for the oscillat- 
o r  to go off to infinity. Next, by virtue of the first in- 
equality of (2.5), we can neglect the anharmonicity in the 
essential region, i.e., we can simply put u = $mwo2x2, 
and the logarithmically diverging integral can be cut off 
from below at the value xi - ( & / m ~ , , ~ ) ~ ' ~  at which the left- 
hand inequality is violated, and from above at the value 
x2 -mwo2/g at which the right-hand inequality i s  violated. 
As a result we have with logarithmic accuracy 

and finally we obtain for the excitation probability 

We emphasize that the relative simplicity of the calcula- 
tions is essentially connected with the process of the 
large logarithm in 7 or  in the formula (2.7). At the same 
time, it is clear from (2.7) that the presence of this 
logarithm ensures a correct (-g2n) dependence of the 
probability on the coupling constant g corresponding to 
the n-th order of perturbation theory. A logarithm of 
this kind is therefore a characteristic of a large group 
of problems with weak anharmonicity . 

Proceeding to solve our principal problem concerning 
the simultaneous emission of n phonons, we show first  
that a formula of type (2.6) for the matrix element is 
valid for a system with many degrees of freedom. 

Let our system be described by the coordinate x,. 
Then the quasiclassical wave function of a state with en- 
ergy & is 

$-exp [iSo(z, E) I ,  
where So(xi , E )  is the "abbreviated" action connected with 
the total action S(xi , t)  by the relation 

We assume the anharmonicity constant g to be small in 
the sense that & KC,, where &# - ~ n ~ ~ 6 , 6 , - ~  is that energy 
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Landau's reasoning shows then that the matrix element 
of the transition from the ground state is 

aSo (xi0) 
M - exp (i [So (xro, E )  -So (xi ( ,  0) I} exp ie  --- [ d E  

It is easy to understand that the derivative aso/a&=t(x:), 
where t(x9) is the time necessary for the system to 
reach the point xp (from a certain point in the classical- 
ly allowed region). In fact, from (2.8) and from the 
identity for S(xi , t) . 

it follows that 

As to the values of xp themselves, in problems with 
weak anharmonicity, similar to that considered above, 
in which the time is logarithmically large, xp must be 
taken to mean the coordinate value at which the anhar- 
monicity becomes significant. In these problems, the 
values of x! lie in the classically forbidden r e g i ~ n . ~ '  
Therefore the time t is imaginary: t =ir(x:), s o  that 
the final estimate of the matrix element is 

which agrees with (2.6). 

We use formula (2.9) to solve the problem posed in 
See. 1-to calculate the probability of phonon production 
by a neutron near the sound line. The coordinates de- 
scribing our system must be chosen to be the change of 
the density of the liquid at each point of space 

o r  of the Fourier component p, of this change. The role 
of the momenta will then be assumed by the Fourier 
components of the velocity potential of the liquid (see 
Ref. 4, Sec. 24). The interaction of the liquid with the 
neutron is described by an interaction potential in the 
form 

(a is the length for neutron scattering by the atom, m is 
the mass of the atom, p is the reduced mass of the atom 
and neutron). The problem reduces therefore to a cal- 
culation of the matrix element of the Fourier component 
of the density with wave vector p between the ground 
state and a state with energy is and momentum p: 

The character of the final state 6 is clear beforehand 
from physical considerations. Since the phonons a r e  
produced, as explained in Sec. 1, with practically equal 
momenta, this state represents in momentum space a 
narrow packet near the momentum value 

The packet should be such that i t s  total energy is equal 
to is, and the momentum is p. (In the oscillator prob- 
lem this normalization condition corresponds to cutting 
off the integral a t  an energy dependent value of x. We 
shall show below that the dependent of 7 on the energy 
is logarithmic.) 
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The answer is now given directly by formula (2.9), 
where r must be taken to mean the imaginary time nec- 
essary for the density perturbation in the packet to 
reach the unperturbed density 5. It is clear that when 
p ' -5  the anharmonicity effects become of the order of 
unity. The shape of the packet must be chosen such that 
the time i is minimal. 

We proceed now to perform the described program. 
We write the Fourier components of the density irk the 
packet in the form 

where ko =p/n i s  the average momentum of the phonon 
in the packet, the function f(a , P )  is normalized by the 
condition f(0,O) = 1, A is a normalization constant, A,, 

and A, a r e  respectively the widths of the packet along 
and across p, while k,, and k, a r e  the corresponding pro- 
jections of the wave vector. At the accuracy with which 
we can solve the problem within the framework of our 
method, we need know only the dependences of A ,  A,,, 
and A, on the symbolic parameters of the problem, i.e., 
in order of magnitude. In the calculations that follow we 
shall therefore omit the numerical coefficients. We es- 
tablish first  the connection betweenA and A,, o r  A,. To 
this end, we satisfy the energy normalization condition, 
and i t  is sufficient to calculate the packet energy in the 
harmonic approximation 

An estimate of the last integral yields & , - ( u ~ / ~ ~ ~ ) A ~ A , , A , ~ ,  
s o  that A - ( ~ & / u 2 ~ , , ~ , 2 ) " 2  and 

The time dependence of the Fourier components is 
given by the factors p,-exp(iw,t)-e*', s o  that the den- 
sity of the liquid a t  the center of the packet depends on 
r like 

P'" p(r=O) - -e'"AlI'"Asexp(ok,r), u oh, = :. n 

Therefore the time at  which p(r=O) -5 is 

It is seen from (2.14) that to decrease r it is more con- 
venient to make the packet not too narrow, i.e., to make 
A,, and A, not too small. On the other hand, an excessive 
increase of the width will obviously violate the momen- 
tum normalization. We have in analogy with (2.12) 

At small k,, - ko and k, we get 

s o  that for the packet we have 
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If the last two terms (2.15) a r e  absent, then, in accor- 
dance with the definition of k , ,  the deviation from the 
sound line Ep -ppu for  the packet is automatically equal 
to the correct value of 6E. This means that these terms 
should a t  any rate be small  compared with the first, 
i.e., it is necessary to have A , , ~  << u ~ E / ~ E ,  << (~c/E)'u/ 
y. But since the dependence of 7 on A,, and A* is accord- 
ing to (2.13) logarithmic, we can replace, with logarith- 
mic accuracy, the symbol << in these inequalities by -, 
i.e., we can assume that 

Substituting (2.16) in (2.14), we obtain in the usual units: 

and substituting this formula in (2.9) we obtain ultimate- 
ly for the emission probability (i.e., for the dynamic 
form factor): L 

with the connection between n and 6E given by (1.5). As 
explained above, the presence of a large logarithm in 
(2.17) serves as a justification of the entire employed 
procedure. We emphasize that formulas (2.17) and 
(2.18) were obtained with logarithmic accuracy, i.e., 
the numerical coefficient under the logarithm sign is 
indeterminate. 

The same formula (2.18) determines also the probabil- 
ity of the decay of the excitation near the point p*. In 
this case 6E in (1.5) should be taken to mean 

6e= (v'-U) Ap, 

where v* is the velocity of the decaying excitation a t  
the point p*, and Ap =p -p*. 

The assumption that the damping of the excitation van- 
ishes exponentially as Ap - 0 was advanced in Ref. 3. 
Because of the presence of the logarithm in (2.17), this 
vanishing turns out to be even faster. 

We might ask whether expression (.2.18) for the prob- 
ability should be multiplied by certain statistical 
weight corresponding to the system of phonons of given 
energy and momentum. Actually, however, there is no 
such factor. The wave packet (2.11) already has the 
correct normalization. On the other hand, inclusion of 
the degrees of freedom that a r e  connected with i t s  form, 
a t  the given width and length, would obviously be an ex- 
aggeration of the accuracy in the present approximation. 

We note that according to (2.16) the transverse width 
of the packet in p-space is much smaller than i ts  length. 
The reason is that in the absence of dispersion the 
smearing of the packet along p does not lead a t  a l l  to a 
shift of the corresponding point on the (&,p) plane away 
from the sound line. Yet the transverse "smearing" de- 
creases momentum at a given energy even in  the ab- 
sence of dispersion, and therefore is more dangerous. 
In r-space the packet, on the contrary, is a "pancake" 
which is more oblate is the direction of motion the 

smaller 6&. A similar form is possessed, according to 
Ref. 7, by a soliton propagating in a liquid. 

3. IMAGINARY PART OF GREEN'S FUNCTION AT 
LARGE o AND.THE CONTINUAL INTEGRAL 

In this section we obtain in a somewhat more formal 
manner the results  of the preceding section. We shall 
see  that there exists a special asymptotic form of the 
imaginary part of the Green's function a t  high frequen- 
cies,  and that a large part of our reasoning is quite 
general in character and should be valid for any field. 

We shall use the representation of the causal Green's 
function in t e rms  of a continual integrals in order to ob- 
tain the corresponding generalization of the Landau for- 
mula. Some general derivations will be made for the 
Bose field p(x,t), which acts  as the generalized coordin- 
ate, and for the canonically conjugate momentum p(x,t) 
using the Hamiltonian formalism with a certain Hamil- 
tonian H(p, qo) which is a specified functional of qo and p. 
The system will be assumed translationally invariant. 

The single-particle Green's function for a Bose field 
p at zero  temperature is a continual integral over a l l  
the fields: 

where the action S takes in the Hamiltonian representa- 
tion the form 

We assume that the frequency w and the momentum p a r e  
large quantities (much larger than the characteristic 
frequencies and momenta of the problem), and use the 
saddle-point method to calculate the asymptotic form of 
the numerator of (3.1). We a r e  interested here only in 
the imaginary part of the Green's function and do not 
consider t e rms  proportional to powers of l/w and cor- 
responding to the known Green's-function asymptotic 
form connected with i ts  discontinuous character a t  t = 0,  
and which enter only in i t s  real  part. 

We break up the integration with respect to t into two 
parts: Re t > 0 and Re t c 0. Both parts make equal con- 
tributions, and we consider for the sake of argument 
Re t > 0. We break up the functional integration over the 
field ~ ( x ,  t ') ,p(x, t') into three parts: 

I .  t l=[- - - ,  01, 11. t t = [ O ,  t ] ,  111. t l=[ t ,  -1. 

In accordance with the saddle-point method, the vari-  
ation of the exponential under the integral sign with re- 
spect to any quantity should yield zero,  and this in fact 
determines the saddle-point. The result of variation of 
S with respect to qo and p in each of the regions I ,  IX, 
and 111 leads to the Hamilton equations of motion, which 
determine certain classical trajectories. We stipulate, 
in accordance with the character of the saddle-point, 
the fields a t  t-+m vanish, meaning cessation of the os- 
cillations of eiS. As a result, the conserved Hamilton 
function H is equal to zero  on the sections of the extre- 
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ma1 trajectories I and 111 adjacent to t =*m (we choose 
this reference from which to measure the field energy). 

Since w is a large quantity, it is necessary also to 
vary with respect to t: 

as,, as,,, 
i d i - f i - = O .  

at at  

Since aS,,,/at =HI, ,  =0,  we obtain a s  a result 

i.e., the energy of the field on section 11 of the extremal 
trajectory i s  equal to w ,  a natural physical result. Sec- 
tions I and 111 correspond to the classically forbidden 
region of motion, since E =H = 0, and the classically 
allowed region corresponds to the equilibrium position 
(point in functional space). This corresponds to the 
asymptotic form of the wave function of the ground state 
(see, e.g., Ref. 9). The functional integration on section 
11 corresponds to the wave function of the excited states,  
and if w >>ai, where w i  is the energy of an individual 
elementary excitation, then these states a r e  quasiclas- 
sical. 

To find the saddle-point we must carry out variation 
with respect to the remaining arbitrary quantities p(0,O) 
and p(x,f). We carry  out a variation of the displacement 
type 

p (s. t )  +p,(r+a. t ) .  p(s. 0) -+g,(a+b. 0 ) .  

where po(x,t) is the extremal function, and a and b a r e  
arbitrary infinitesimally small  constants. Using the 
spatial homogeneity and the properties of the Fourier 
transformations of p ( x ,  t) ,  we find that the integrand is 
rmltiplied by 

csp (-ipa+ipb+isS). 

where 

According to the Noether theorem we have aSI/ab l b.OPI, 
where the field momentum 

is an integral of the motion. For the trajectories that 
enter in the point cp=p =O at t=*m we have P I = P I I I = 0 .  
From the conditions that the variations with respect to 
a and b vanish, we obtain 

i.e., the extremal trajectory on the section [ t ,  0] should 
have a classical field momentum equal to the momentum 
of the calculated Green's function. 

Thus, the classically allowed motion has an energy 
E =w and a momentum P =p. The conditions for joining 
together the trajectories a t  t' = 0,  t require, as usual, 
equality of the coordinates p(x, t') and, in addition, 
equality of the generalized momenta cp(x,t') (this corre- 
sponds to an extremum of the action with respect to the 
coordinates of the junction points). 

Since the energies of the joined trajectories a r e  dif- 

ferent, the last condition cannot be satisfied at any value 
of p(x,tl) I i f  only this p(x,t') is not a singular point 
of the equation of motion. For the functional H(p , cp), 
which is an entire function of its arguments, the only 
such singular point can be infinity. The customarily em- 
ployed Hamiltonians a r e  polynomials in their functional 
arguments, for which this is all the more valid. 

It must be noted that the extremal trajectory does not 
correspond to real t ', sincedt' is pure imaginary in regions 
I and 111 in the classically accessible regiondt ' is pure 
real, but also becomes pure imaginary beyond the turn- 
ing points (see Fig. 3). Our procedure is therefore more 
general than the Wick rotation with pure imaginary t'. 
In particular, the time t at the saddle-point is complex 
and corresponds to a certain integral number of transi- 
tions in the classically allowed region nT, plus double 
the pure imaginary time ir-of reaching the joining po- 
sition p(x,t)  from the boundaries of the classically al-  
lowed region. The mathematical justification for this 
analytic continuation of the continual integral is beyond 
the scope of the present article. 

It is easily seen, however, that the procedure for ob- 
taining the extremal trajectory i s  similar to the Landau 
method for the calculation of matrix element in the one- 
dimensional case,  and that the final results agree fully. 

In fact, the Green's function for a nonlinear oscillator 
is determined in analogy with the (3.1) except that in 
place of the field coordinate p(x, t) and of the canonical 
momentum cp (x, t )  it is necessary to choose the coordin- 
a te  5(t) and the oscillator momentum n(t). The Hamilton 
function takes the form ~ ( 5 , n )  =r2/2rn + U(5), where 
U(5) is the potential energy. 

On the trajectory sections with E = O  it i s  necessary to 
choose the branch of the momentum such that the action 
vanishes at t = i i m ,  

rr=*[ . ) tn(-G)]  . 

The choice of the action on section 11 with energy E = w  
is not single valued because of the presence of a clas- 
sically allowed region and because of the possibility of 
an arbitrary number of oscillations. 

Figure 4 shows symbolically the entire extremal tra- 
jectory: a t  t l = -  i w  it goes out of the equilibrium posi- 
tion and proceeds with pure imaginary momentum and 
with zero energy to the first junction point 5 = [(O) ([(O) 
-03 since U([) is  assumed to be a polynomial) after 

I m t '  

FIG. 3. 
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FIG. 4. 

which it continues with energy w and as before with pure 
imaginary momentum (large 5 a r e  classically inadmis- 
sible) up to a certain turning point 5, =<( t i ) ,  after which 
the trajectory enters the classically allowed region. In 
this region, the trajectory can executeanarbitrary num- 
ber of oscillations between the turning points, after 
which a t  the instant of time t z ,  t2  = [(tz) (U(t2)=w) it 
again goes into the classically forbidden region, where 
at the point 5 = ((t)(<(t)- 0 0 )  it joins the trajectory that 
goes at t-+im into the equilibrium position with E =O.  
The oscillations in the classically allowed region lead 
to the appearance of a rea l  term of the action 

If we have an arbitrary energy w, then the increment 
of the phase is arbitrary and causes the result to vanish 
after summation over an arbitrary number of oscillations 
( a  different number of oscillations corresponds to differ- 
ent saddle-points). On the other hand, i f  the Bohr-Som- 
merfeld conditions 

(n is an integer) a r e  satisfied, then we obtain a 5 func- 
tion contribution to the imaginary force of the imaginary 
part of the Green's function. 

The coefficient of the corresponding 6 function, i.e., 
the corresponding matrix element, is determined by the 
classically forbidden region and will coincide with the 
Landau result 

In the case of a system with an infinite number of de- 
grees of freedom [field p(x, t)] the Bohr-Sommerfeld 
conditions cannot be satisfied for any finite wave packet 
(they're satisfied rigorously only for a specified Fourier 
component, and furthermore in an approximation quad- 
ratic in the field). They should be satisfiedapproximate- 
ly, however, for a sufficiently narrow wave packet for a 
certain time determined by the width of the packet. As a 
result, the summation over different numbers of oscil- 
lations in the classically attainable region makes a con- 
siderable contribution only s o  b n g  a s  AS= Zsn, af ter  
which it begins to decrease rapidly for the saddle-points 
with large Re t. Thus, our procedure separates auto- 
matically those intermediate states which make an ap- 
preciable contribution to the imaginary part of the 

Green's function, and give directly the final result. This 
is  precisely why it is not necessary to sum the individu- 
al 6 functions and determine the state densities. For the 
general case we find ultimately that the imaginary part 
of the Green's function is 

where we have changed over to spatial Fourier compo- 
nents of the field. Here (p*,, cp*,) is a point on the clas- 
sical  trajectory of the field with field energy E =w and 
field momentum P = p ,  from which the trajectory i s  con- 
tinued into the classically forbidden region, yielding the 
maximum exponential. The quantity AS(0,O) - AS(w , p) 
is the difference between the increments of the imaginary 
part of the action along the trajectory that goes from 
the equilibrium position to the junction point p(x) I ,,,, -a,, 

and along the trajectory that goes from p* to the same 
junction point. Both these sections of the extremal t ra-  
jectory correspond to a pure imaginary change of time. 
Formula (3.8) yields only the most substantial factor in 
the principal term of Im9. 

4. CALCULATION OF THE MULTIPHOTON-DECAY 
PROBABI LlTY 

In the general case the determination of the optimal 
trajectory, o r  equivalently the determination of the op- 
timal point (cp,*, cp:) from which the continuation to 
complex times takes place and yields the smallest expo- 
nential, is an extremely complicated variational prob- 
lem. It must be noted that the point of continuation does 
not agree with the stopping point, where all  the veloci- 
t ies a r e  equal to zero (cp:=O), inasmuch a s  in this 
case the field momentum is also P = 0, and consequently 
a trajectory with P = p  + 0 does not reach such points at 
all. 

There a r e  various methods of continuation. The gen- 
e ra l  method consists of a canonical transformation to 
new coordinates and momenta Q,  and n, of the field. In 
this new representation there will be different stopping 
points Q*,, and we can continue the classical trajectory 
beyond these points in the usual manner, assuming the 
subsequent increment of the time to be pure imaginary. 
This procedure covers a l l  the continuation methods. 

We confine ourselves to the case of significance to us, 
where the nonlinear terms in the equations of motion a r e  
small  in the classically allowed region. In this case the 
imaginary time 7 to reach the joining point from the 
boundaries of the allowed region is logarithmically large 
and the main contribution to it is made the part of the 
trajectory where the nonlinear terms become of the o r -  
de r  of the linear ones, and therefore the individual 
terms in the Hamiltonian (if separation into potential and 
kinetic energy is possible, then this can be one of them) 
will be much larger than the energy E = w .  Consequently 
the quantity E is relatively small  and, expanding the 
action AS,, in powers of E ,  we obtain directly from (3.8) 
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(in analogy with the procedure used in Sec. 2): 

where T(P,w) is the imaginary time necessary to go 
from the classically allowed region to the joining point 
(p - m). Since the quantity T(P, W)  depends on that point 
in the allowed region from which the imaginary time 
increment begins, it is necessary to find the point that 
yields the minimum T. 

To solve this variational problem we must find for the 
linearized field equations a solution that sat isf ies the 
conditions H(p, q ) = w ,  P (p ,q )  = p  a s  well a s  the Bohr- 
Sommerfeld conditions 

In view of the translational invariance and of the inde- 
pendence of the Hamilton function of the t ime,  the solu- 
tion constitutes a wave packet 

with a certain ratio between and cpy', a s  required by 
the field equations. When this solution i s  continued into 
the region of complex t ,  the t e rm with the symbol (+) 
increases exponentially and determines that trajectory 
from E =P=O to which our trajectory with E = u and P 
= p will be close (it i s  assumed that (4.2) sat isf ies these 
conditions). Thus,  the smallest  T i s  obtained from so-  
lutions with the largest  u,. The w,, however, cannot be 
very large since it is impossible to satisfy the Bohr- 
Sommerfeld condition E,/w, = 2nnB (E, i s  the energy of 
the k-wave) for  any of the individual waves in the pack- 
e t ,  since E = CE, and consequently E, < E . Therefore 

Thus, the sums (4.2) must be concentrated near k =ko,  
which gives the maximum value of the frequency, o r  
near n=n, ,  where no is the smallest  number of excita- 
tions that add up to the field energy E =u and to the mo- 
mentum P = p  [see  (1.5)I. 

However, if we take one solitary wave satisfying th is  
requirement, then T tends to infinity, inasmuch a s  a t  a 
finite field energy E =w the energy density i s  vanishing- 
ly small  (the volume of the sys tem is large) and the non- 
linear interaction a lso  tends to zero.  Thus, a certain 
smearing about ko i s  necessary in order  that the anhar-  
monic t e rm not be too small. Since T is determined by 
those values of p f = F  and cp a t  which H,,,~H,,,,,, - 1 ,  
we have with logarithmic accuracy 

We see  therefore that, with logarithmic accuracy, the 
width of the packet in k-space should be logarithmically 
small: 

to find the principal logarithmic te rm in T. The imagin- 
a r y  part of the Green's function is then 

We ca r ry  out the corresponding calculations for the 
imaginary part  of the Green's function in He I1 in the 
case  of multiphonon decay. 

It is possible ei ther  to use the Bogolyubov model of a 
weakly nonideal Bose gas ,  o r  wri te  the hydrodynamic 
Hamiltonian for  Bose fields that vary  slowly in space 
and in t ime; this Hamiltonian presupposes integration 
over  the rapidly varying part in the corresponding con- 

tinuing integral, * an assumption that will be made from 
now on. 

Thus, the effective long-wave hydrodynamic Hamilton- 
ian takes the form 

where we have explicitly separated the quadratic Hamil- 
tonian Ho corresponding to the sound waves with disper-  
sion, from the Hamiltonian corresponding to the nonline- 
a r  interaction H i ,  in which we have confined ourselves 
to the cubic te rms.  Actually, however, we do not need 
the concrete form of H, ,  s ince the only important fact 
is  that Hi(pf,cp)-H,(pf,cp) a t  0'-5 and I V q I  - 2 ~ .  

As already explained in Sec. 1 ,  a t  energies close to 
the s t a r t  of the spectrum it is impossible to excite 
phonons with momentum l a rge r  than k, = ( 6 ~ ; / ~ p ) " ~ ,  We 
rmst therefore form a packet of phonons with momenta 
close to k,,. We consider in this  case  a packet of maxi- 
mum width (in k-space), compatible with the conserva- 
tion laws, so  a s  to increase the nonlinear interaction. 
We can confine ourselves in this case  to order-of-mag- 
nitude quantities, s ince the width i s  contained in the an- 
swer  only under the logarithm sign. We introduce the 
longitudinal dimension 1 ( in the direction of p) and the 
t ransverse  dimension L .  Then, as usual, in a sound 
wave we have 

The t e r m s  that take the dispersion into account must be 
of the order  of the t ransverse  kinetic energy (this cor re-  
sponds to the minimum est imate for the transverse 
width), from which we get 

Since the energy i s  E =UP + 6 ~ ,  where 6E is connected 
with the dispersion, it follows that 56 - y p ' 2 ~ 2 / 1 ;  whence, 
using (4.6) and (4.7), we get  

It is easily seen that the ratio of the nonlinear t e rms  to 
the t e r m s  that take into account the dispersion is indeed 
smal l ,  since 
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a t  small  66 = E  -UP, and this in fact justifies the neglect 
of the nonlinear terms in the initial stage (i.e., in the 
classical accessible region). 

The foregoing order-of-magnitude estimate of the 
width of the packet and of the density perturbation lead 
to a packed width in k-space Ak,-k,, Ak,-ko2 and con- 
sequently to a frequency change Awk -wko. In this sense, 
the constructed packet is not optimal. It can be made 
optimal by increasing I (or equivalently, by decreasing 
Ak,), by putting 

which leads to a logarithmic factor in p', rp, and L. 
This however, is of no importance in the calculation of 
the value of T with logarithmic accuracy, since it leads 
only to doubly logarithmic terms. The average frequency 
w, averaged over the packet will differ from ukO by an 
amount of the order of (1n5/~')- ' ,  which likewise does 
not affect the principal logarithmic term in T .  

The final answer is of the form 

and demonstrates the presence of an essential singulari- 
ty in the Green's function on the initial section of the 
spectrum. 

Formula (4.11) coincides with formula (2.18) obtained 
from more intuitive reasoning. 

In conclusion it can be stated that the use of the saddle- 
point method for the continual integral, which represents 
the Green's function, has made it possible to obtain for 
i t s  imaginary part of a nontrivial asymptotic expression 
which is extremely difficult to obtain by summing dia- 
grams. We hope that the described method can find use 

also in other problems connected with the production of 
a large number of particles. 

"we assume ti= I, i.e., we make no distinction between the 
energy and the momentum and accordingly between the fre- 
quency and the wave vector. 

''A brief exposition of the results was published earliere5 
3'It is useful to trace the connection between the quantum pic- 

ture of the decay of the excitation with the classical picture 
of instability of a sinusoidal wave. If the conservation laws 
permit the decay of an excitation into two, then in the classi- 
cal approach the wave will be unstable to small perturbations 
even in first-order perturbation theory. If the excitation can 
decay only into n excitations, then the classical wave is un- 
stable only in the (n - 1)-st order of perturbation theory, and 
the instability growth rate will depend on the amplitude of 
the initial perturbation. We emphasize that in the classical 
theory, of course, the wave does not have a definite life- 
time, since the instability-evolution time depends on the 
initial amplitude of the perturbations, which in quantum the- 
ory is  given by the zero-point oscillations. 

4, Of course, the very possibility of expanding in powers of E 

requires satisfaction of the condition E << U in the essential 
region of values of xp. It is easy to verify that this 
inequality is  satisfied in our case. - 
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