
FIG. 2. Dependence of bT1/6To on A/T;  

tional Kapitza jump in the case of a superconductor with 
finite thickness d assuming identical boundary conditions 
on both boundaries 

GT, (d)lbT, (m) =2th (dl71.). (31) 
The coefficient 2 is connected with the fact that we have 
calculated the additional jump on both boundaries. With 
decreasing sample thickness, the additional jump tends 
to zero. To observe this phenomenon it  is necessary to 
have samples with thickness d<h. 

In order of magnitude, h is equal to ~ > , " e ~ ' ~ l f t  (this 
can be verified by recognizing that the electron-phonon 
and phonon-electron relaxation times are  proportional 
to the same electron-phonon interaction constant and 
differ only in the final state densities), and can vary in 
a wide range, depending on the purity of the sample 
(i.e., on I,,) and on the temperature. For example, at 
1,,=10-6 cm and A / T = ~ ,  1,= cm we have ~ = 1 0 - ~  cm, 
while at 1,,=10-2 cm and A / T = ~  we have X = l  cm. 

The sign of the additional jump and its order of mag- 
nitude can be reconciled with the experimentally ob- 
served values. For a more detailed comparison of ex- 

periment with theory, however, measurements in alarg- 
e r  temperature interval are needed. 

A phenomenon similar to that considered above can 
arise also in He II, where there is likewise a hierarchy 
of phonon and roton relaxation  length^,^ and according to 
estimates2." the energy is transported through the 
boundary, in the region T 2 1 K, the rotons make the 
main contribution to all the thermodynamic functions and 
it is precisely they which transport the energy. This 
should produce in He II a relaxation region similar to 
that considered in the superconductor. We shall not, 
however, discuss this possibility in greater detail. 
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The dependence of the energy of the ground state of a one-dimensional metal on the amplitude of a 
periodic deformation is considered in the Hubbard model for different values of the interelectron- 
interaction parameter. It is shown that a Mott one-dimensional dielectric is unstable to the Peierls 
deformation at all values of the interaction parameter. Relations are obtained between the responses to the 
perturbations with wave numbers Q = 2k, and 4k, in the limiting case of strong and weak electron 
interaction. 

PACS numbers: 72.15.Nj 

INTRODUCTION this state is of interest because of the advent of new 
quasi-one-dimensional ~onduc to r s .~ -~  

The instability of a one-dimensional metal to lattice 
deformation leads to the onset of a Peierls-Fralich The conclusion that a one-dimensional metal is un- 
~ t a t e . " ~  The investigation of various characteristic~ of stable to lattice deformation was deduced by Peierls on 
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the basis of a calculation in the noninteracting-electron 
approximation, in which the period of the deformation 
is X, =n/k,, where k, is the Fermi  momentum. The 
influence of the interaction of the electrons on the ap- 
pearance of instability has not been sufficiently well in- 
vestigated. At the same time, this question is impor- 
tant, since the interelectron distance in a one-dimen- 
sional system also gives r ise  to a transition into a di- 
electric state, namely the Mott transition.'-l4 An in- 
vestigation of the system in the very-strong-interaction 
limit points to the appearance of instability to deforma- 
tion, with a period Xp/2.15*16 

Methods based on the single-determinant approxima- 
tion for the wave function a re  insufficient for the de- 
scription of a one-dimensional system of interacting 
e l e ~ t r o n s . ~ - ' ~  The need for using more complicated ap- 
proximations is the cause of the main difficulty en- 
countered in the study of the role of interelectron inter- 
action in a one-dimensional metal. In the present paper 
we describe a multielectron system by a previously 
described" variational approach which makes it possible 
to take correlations effect into account. We consider 
on the basis of this approach the influence of the elec- 
tron interaction on the Peierls  instability in an infinite 
chain of identical centers, containing p electrons per 
center. We consider in greatest detail the case p = 1, 
when the one-dimensional system is a Mott dielectric. 
For the case p< 1, we discuss the role of deformations 
with periods A, and X,/2 a t  different values of the inter- 
action parameter. The analysis consists of a study of 
the dependence of the system ground-state energy on the 
amplitude of the periodic deformation, i.e., in the ap- 
proximation of a frozen-in core. The results a r e  used 
to discuss the experimental data on the Peierls  instabil- 
ity of a number of quasi-one-dimensional systems based 
on TCNQ.8.18 

1. LATTICE DEFORMATION I N  A LINEAR HUBBARD 
CHAIN 

To describe the conduction electrons we use the one- 
dimensional Hubbard Hamiltonian 

where &>0,  cmo + is the operator for the creation of 
an electron with spin o a t  the si te m, and N is the num- 
ber of sites. 

We assume that in the undeformed chain all the reso- 
nant integrals a r e  identical: b,= @. In this case the 
Hamiltonian (1) is characterized by a single parameter 
u = ~ / B .  Displacement of the mth atom of the chain as  a 
result of periodic deformation will be represented in 
the form 

x,=Ar,/a=x cos (Qma+cp), (2) 

where a is the constant of the undeformed lattice, x is 
the dimensional amplitude of the deformation wave, and 
cp is its  phase. The appearance of displacements of the 
atoms leads to a change in the bodies of the resonant 
integrals, which a r e  functions of the interatomic dis- 
tances. In the simplest case of a half-filled band the 

Peierls  deformation reduces to a doubling of the period 
of the lattice, i.e., 

At small  displacements, the parameter A is linearly 
connected with the deformation amplitude ax: 

where j3' is the derivative of p with respect to the inter- 
atomic distance. 

We reduce the problem of investigating the instability 
of a one-dimensional metal, following Peierls,  to the 
study of the dependence of the energy of the ground state 
on the parameter A. The lattice contribution will be se t  
equal to M ( w ~ ) ~ / 2 ,  where M is the mass of the ion, and 
w is the "bare" frequency of the acoustic oscillation with 
wave number Q = 2kF. Thus, to  solve our problem we 
must find that value of A which minimizes the expres- 
sion 

e,  ( A )  =e ( A )  + A2/2b, (5) 

where the symbol &(A) stands for the specific electron 
energy in units of 8, and b =(B')~/#MW~ is a dimension- 
less parameter that characterizes the magnitude of the 
electron-phonon interaction. 

Let us l ist  briefly some of the results concerning the 
Peierls  instability of a system with Hamiltonian (1) a t  
&=p. At U=O, the ground state of the system is de- 
scribed by a Slater determinant @,, made up of Bloch 
functions corresponding to the operators that diagonal- 
ize the kinetic energy in (1), i.e., 

where kF =pn/2a. This state is unstable to a deforma- 
tion of the type (2) with Q =2kF. The reason for the in- 
stability is that the expansion of the energy in powers 
of A contains a term proportional to h2 lnA, which mini- 
mizes the energy (5) at 

In the case U- m the system with Hamiltonian (1) can 
be regarded in the spinless-fermion appr~xirnat ion, '~- '~  
and then the wave function of the ground state is 

Since all the levels with Ikl c 2k, a r e  filled in the 
state (8), this state is unstable to a deformation of the 
type (2) with Q =4k,, but no instability to a deformation 
with Q =2kF appears.16 

The question is now whether the period of the deforma- 
tion changes with changing U smoothly from X, to Xp/2, 
o r  whether the two instabilities coexist a t  UzO. An 
answer to this question is given in Ref. 19, in which i t  
is shown that zero-gap excitation with Q =2k, exists in 
a Hubbard chain a t  al l  values of U. The instability to 
deformations of type (2) can be attributed to singularities 
of the response function, and for such singularities to 
be present zero-gap excitations must exist. It follows 
therefore from the results  of Ref. 19 that instability to 
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deformation with period A, takes place also a t  U # 0. 
What remains unanswered, however, is the question of 
the deformation with period ~ , / 2  and the ratio of the 
responses to these deformations at finite values of the 
interaction parameter U. 

We consider now the dependence of the ground-state 
energy (5) on the amplitude of the deformation (2) with 
Q = 2k, and 4kF, using for the calculation of the electron 
energy a procedure described in Ref. 17. The varia- 
tional function used in Ref. 17 takes, when generalized 
to the case p < l ,  the form 

y. = ~ ~ ~ ( f , . + + . f ~ + +  cos a+i.;+f.,+ sin a) 10). (9) 

where pN=2L- m is the number of electrons, while the 
Fermi operators fma andf-,, correspond to the Wannier 
functions of the occupied and vacant subbands localized 
near the point R, = (m + 6)n/kF: 

d,,=n,, cos O,+ni,i -in 0,. 

.T,,=cr,.i sin B,+n:, cos O,, 
- 
k = k - 2k, signk, while a! and 8, a r e  variational param- 
eters. The energy of the system per particle (in units 
of p) is 

e (A)-Upi4=-e,(U, A) 
=I/: ( t+T)  +t/:(t-i) cos 2 a i i / ? l  sin 2z. 

where t and i a r e  the average values of the kinetic ener- 
gy in the states f, and f,,,, respectively, and I is the 
matrix element of the interaction of the electrons be- 
tween the states f;+ f ;+ 10) and pm+pm, (0). Variation of 
the energy (12) with respect to the angle a! leads to the 
relation" 

As shown in Ref. 17, for the case p = 1 the function (9) 
describes correctly the dependence of the electron 
energy on U, does not violate the spin and charge sym- 
metry of the system, and yields a lower ground-state 
energy than other variational calculations. 

We examine now the dependence of the electron energy 
(12) on the parameter A [ ~ q .  (4)] a t  different values of 
the parameter U. To simplify the analysis we assume 
that 8,=0 in (11). In this approximation I = c ~ p / 4 ,  
where the constant c is of the order of unity. This 
choice of the parameter 9, provides a good description 
of the energy of the ground state at U< 1. In the limit 
U- m, the choice off,, and consequently of Oh, be- 
comes of great importance for the determination of the 
correct  asymptotic form af the energy (12). In the next 
section we present one of the possible methods of 
choosing f, for the cases p = 1 and p = +. As will be 
shown later, the choice of 9, is not s o  important for our 
problem. 

At U=O, according to (lo), ( l l ) ,  and (13), the func- 
tion (9) goes over into the Slater determinant (6 ) ,  and 
the energy (12) coincides with the average kinetic 

energy of the filled part  of the band t. The dependence 
of t on the amplitude of the deformation (2) with Q =2k, 
contains a term of the order of AZlnA. It is also ob- 
vious that the dependence of the average kinetic energy 
2 ( k , ~  Ik I g 2kF) of the vacant subband on the amplitude 
of this deformation will be determined by a similar 
term, but with the sign reversed. A deformation of the 
type (2) with Q = 4kF_leads to the appearance of a term 
logarithmic only in t (the average kinetic energy o: the 
vacant subband), since a gap appears in the single- 
particle spectrum under such a deformation a t  the points 
k=*2kF. Thus, if we neglect the dependence of the inte- 
gral  I on the amplitude of the deformation, then the elec- 
tron energy (12) a s  a function of the deformation ampli- 
tude takes the form 

E ( A )  -e(0)=q(A21n A )  cos 2a+O(A2) (Q=2k,). (14) 

e (A) -e  (0) =q (A2 In A) sin2 a + 0 ( A 2 )  (Q=4k,), (15) 
where q = 1. 

Using expressions (13) and (15) we arr ive  a t  the con- 
clusion that an instability to deformation with Q =4k, 
se ts  in even for a weak interaction (U<< I) ,  but the lead- 
ing term of the expansion of the electron energy in the 
deformation amplitude contains the small  factor @. 
Therefore the equilibrium value of the amplitude of such 
a deformation, determined by the minimum of the ex- 
pression (5), is 

In the same limit, a s  seen from (13) and (14), the 
response to a deformation with Q =2kF depends little on 
U. In the other limit U>> 1, the response to the deform- 
ation with Q =2kF becomes weaker, inasmuch a s  accord- 
ing to (13) and (14) the principal term of the expansion 
of the electron energy in the amplitude of this deforma- 
tion contains the factor I/-', since cos2a -U-'. 

We note here once more that estimates (14) and (15) 
given above a re ,  generally speaking, valid only at small 
U. However, the conclusion drawn above concerning 
the presence of a factor U-' in the leading term of the 
expansion (14) a t  U>> 1 is confirmed both by the more 
complete analysis of this limit for the cases p = 1 and 
p = Q, which will be given in the next section, and by the 
result  of an investigation of an instability of the Peierls 

type in a Heisenberg chain of  spin^,'^-^^ which is a 
good model for the description of a Mott-Hubbard one- 
dimensional system a t  p = 1 in the limit U- a. In fact, 
the decrease of the energy of the ground state of the 
chain of spins is proportional to the exchange integral, 
which is equal to 4@/y for a Hibbard  hai in."*'^-'^ 

On the basis of expressions (14) and (15) one should 
expect the responses to deformations with Q =2k, and 
4k, to be comparable in magnitude in the region of in- 
termediate values of the parameters (PI = 2 It 1). 

In the derivation of expressions (14) and (15) we have 
neglected the dependence of the integral I on the deform- 
ation amplitude. The existence of this dependence is 
due to the fact that when a deformation of type (2) is 
produced the band states near k=ik,  become restruc- 
tured. This restructuring leads to a strengthening of 
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the localization of the function (lo), and consequently 
to an increase of the modulus of I. Allowance for these 
effects shows that they enhance the Peierls  instability. 
This aspect of the problem is considered in greater de- 
tail in the next section for the case p = 1. 

2. PARTICULAR CASES OF BAND FILLING: p = 1 
AND p = 112 

At p = 1, the system with Hamiltonian (1) is a Mott di- 
electric a t  any U> 0.8'12.14 In this case the main values 
of the kinetic energy in (12) a r e  connected by the rela- 
tion i= -t. 

Let us examine briefly the results for U =O. The 
change of the resonant integrals of the type (3) causes 
a restructuring of the single-particle band states that 
enter in the function (6). It can be shown that this re- 
structuring is determined by expression (11) provided 
that 

At U =0, the energy is equal to the average kinetic 
energy t, which depends on z and on A: 

where E(w) is a complete elliptic integral of the second 
kind. Variation of the expression (18) with respect to z 
yields z = A  and the electron energy, a s  a function of A ,  
takes the known form (see, e.g., Ref. 5) 

By varying the total energy (5) with respect to A, we 
obtain for the optimal value A =A, 

Aa=4 exp ( -n /4b) .  (20) 

If U*O and A =0, then it follows from the results of 
Ref. 17 that 0, =O. A regular behavior of the energy (12) 
in the entire interval of values of U from zero to infinity 
can be obtained by choosing 8, in (11) in the form (17). 
It follows therefore that the lattice deformation and the 
interaction of the electrons cause identical restructur - 
ings of the single-particle states. Therefore at U* 0 
and A # 0 the conversion parameter in (17) is z > A. Let 
us explain this result qualitatively. 

When the deformation amplitude increases, the param- 
eter A increases and consequently also z in (9). The in- 
crease of z increases the localization of the Wannier 
functions (10) a t  the si tes 2m and 2m + 1. In the limit a s  
z -  1 this localization becomes complete (0,- k/2).17 
Localization of the Wannier functions contained in the 
function (9) increases the exchange integral I in (12), 
i.e., decreases the energy of the system [I = ~ / 3  a t  0, 
= O  and I = u / ~  at  Ok=k/2 (Ref. 17)]. 

Minimizing the energy (12) with respect to z for the 
case U<< 1, we obtain 

in accordance with the qualitative considerations ad- 
vanced above. Neglecting the small correction to z in 
(21), we represent the dependence of the electron energy 
on A in the form 

II'A 
e (A)  -Lip/4=-e,(O, A) -P/8e,(0,0)  - - 

e,(O,O) ' 

where I' is the derivative of the integral I with respect 
to z a t  z =A. By virtue of the foregoing qualitative con- 
siderations, the product II' is positive. Therefore 
minimization of the total energy (5) with respect to A, 
with allowance for the dependence of the electronic com- 
ponent (23), yields a larger value of A a t  the minimum 
point than a t  U=O [see (20)]. Thus, the Peierls  instabil- 
ity becomes stronger in the region of small  values of 
the electron-interaction parameter. 

In the case U 2 4, the value of the conversion param- 
e ter  z depends little on A and is determined by the con- 
dition of the minimum of the electron energy (12). To 
obtain estimates in this region of values of U, we put 
8, =zk. Then, taking (I), (3), and (9)-(12) into account, 
the average kinetic energy is 

The expansion of the electron energy takes the form 

E ( A )  -E ( 0 )  = Z ~ ~ ( O ,  Z )  AIE,(U, 0 ) .  (24) 

The value of the parameter z a t  U 2 4 is in the range + s z c *.I7 The minimum of the total energy (5), when 
(24) is taken into account, lies a t  

It follows from (24) and (25) that the Peierls  instabil- 
ity is preserved also in the region of large values of the 
interaction parameter. However, the response to the 
deformation becomes weaker because of the presence 
of the factor U-' in the expansion of the energy in A (at 
U>> lc,=U/4, Ref. 17). 

We now consider the case of p = $, i.e., k, =n/4a. To 
simplify the analysis, we assume that the functions (10) 
a re  fully localized on quartets of atoms (the index m in 
this case denotes the number of the quartet). This ap- 
proximation is accurate enough, since the sum of the 
squares of the moduli of the quantities fm over the atoms 
of the quartet amounts to approximately 0.8 even a t  0, 
= O  in (11). Optimization of the energy with respect to 
O,, a s  noted above, increases the localization. There- 
fore, in particular, the localized functions f,,, describe 
the system better a t  larger values of the interelectron- 
interaction parameter. We represent the coefficients of 
the expansion of the functions f, and fl, over the atoms 
of the mth quartet in the form 

where 2(u2 +vZ) = 1. We express in t e rms  of these co- 
efficients the average kinetic-energy values that enter 
in (12): 

The indices of the resonant integrals in (27) number 
the atoms of the quartet. A deformation of type (2) 
with Q = 2k, (quadrupling the period of the initial lattice) 
a t  p = n/4 corresponds to a change of the resonant inte- 
grals of the form 
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and when the period is doubled (Q =4kF) we can put, in 
accordance with (3), 

In the limit as U- a, the need for excluding the con- 
tribution proportional to U in the energy (12) leads to 
the condition u = v =ii = D. Using this condition and ex- 
pressions (12), (26), and (27)-(29), we a r r ive  a t  the 
conclusion that doubling of the period is energywise 
favorable. Quadrupling the lattice period decreases the 
electron energy by an  amount proportional to P ' / ~ ,  in- 
asmuch a s  cos2a = U-' according to (13). consequently 
the response to a deformation with period A, decreases 
in this limit a s  a result  of the presence of the factor 
U-' in the leading t e rm of the expansion of the electron 
energy in the deformation amplitude, in analogy with the 
case  p = 1 and in agreement with expression (15). 

The case  p = 1 considered above was investigated pre- 
viously also on the basis  of another variational ap- 
proach, which is customarily called the method of dif- 
ferent orbitals for different spins,  o r  the generalized 
Hartree-Fock method (GHFM).'~ It was just in this ap- 
proximation that the dielectric character  of the spectrum 
of the system was f i r s t  d e d ~ c e d . ~  The question of the 
instability to doubling of the period within the framework 
of the GHFM can be investigated only numerically. The 
corresponding caIculations (see the review14 and Refs. 
23-25) show that the interelectron interaction suppres-  
s e s  partially ( U e  1) o r  completely (U> 1) the Peier l s  
instability. The conclusions obtained in the present  
paper agree qualitatively with the results  of the GHFM 
only in the l imit  U>> 1. In this limit, according to (24) 
o r  (14), the leading t e rm of the expansion of the energy 
contains the smal l  factor U-', i.e., the instability be- 
comes weaker, although it is not completely suppressed. 
On the other hand, according to our results ,  the Pe i e r l s  
instability does not become weaker in the case  of a weak 
interaction. 

We present a number of arguments that enable us to 
estimate the degree of accuracy of the resul t s  obtained 
by us on the basis  of the approximation (9). In the 
limit U<< 1, the leading te rm of the expansion of the 
energy (12) in powers of U in the absence of deforma- 
tion (A =0) differs from the exact solution only by a fac- 
tor =l.17 On this basis  one can assume that a t  U<< 1 the 
results  obtained with the aid of the function (9) a r e  
reliable. In the case  of strong interaction (U>> 1) both 
the function (9) and the GHFM function give practically 
the same asymptotic expression for  the energy.17 As 
noted above, comparison with the results  of an  investi- 
gation of Pe ier l s  instability in a spin chain21*22 leads to 
the conclusion that the weakening of the instability in the 
strong-interaction limit is connected with the presence 
of the factor U-' in the expansion of the energy in the 
deformation amplitude, a s  is the case  in expressions 
(14) and (24). Favoring the presence of an  instability 
of the Peier l s  type a t  U> 1 is also the presence, estab- 
lished by exact calculations, of zero-gap excitations 
with Q =2k, in the spectrum of the system for a l l  values 
of u."*'~~'~ This point of view agrees  also with the ex- 

per  imentally observed doubling of the period of the 
TCNQ chains in TCNQ complexes with alkali  metal^.^ 
Such a system is a Mott dielectric with a la rge  (=I eV) 
gap in the spectrum of the current  ex~ i t a t i on . ' ~  

The foregoing data show that the approach used in the 
present  paper accounts well, on the whole, for the de- 
pendence of the energy of the ground state (5) on the 
amplitude of the Pe i e r l s  deformation: a t  U<< 1 the value 
of A which minimizes (5) depends weakly on U, and the 
Pe i e r l s  instability decreases  smoothly with increasing 
V ,  but vanishes only in the limit U- p. (and not a t  finite 
values of U a s  when the GHFM is usedz3). At the same 
time, the change from a dependence of the type A* 1nA to 
a linear function of A in the expansion of the electron 
energy (12) can be attributed to  the approximate calcula- 
tion method used by us. In other words, in the case  of 
the exact solution the form of the expansion (14) may 
ei ther  be preserved o r  may contain a linear te rm a s  
well a s  a logarithmic one. 

From the methodological point of view i t  is of interest  
to note a lso  the following. The permutation symmet- 
r y  of the spatial  part  of the function (9) corresponds to 
a Young pattern with line-cell numbers making up the 
natural ser ies .  The spatial symmetry of the GHFM 
function is characterized by a Young pattern with maxi- 
mum possible deviation of the cel l  numbering from the 
natural s e q u e n ~ e . ~ '  Thus, the GHFM function and the 
function (9) correspond to two extreme cases  of permu- 
tation symmetry. One must therefore expect the exact 
solution to have intermediate properties. As follows 
from the foregoing, this is precisely the situation rea l -  
ized with respect  to the Peier l s  instability: within the 
GHFM framework the contribution of the Peier l s  de- 
formation to the energy is underestimated, whereas the 
use of the function (9) s e e m s  to  overestimate somewhat 
this contribution, (U>> 1). 

CONCLUSION 

We call attention to a number of consequences of the 
analysis performed in the present  paper. According to 
expressions (14) and (24), the value of the amplitude of 
the Peier l s  deformation, which minimizes the total 
energy of the ground state,  remains finite a t  a l l  finite 
values of U. It follows therefore that a one-dimensional 
Mott dielectric is unstable to lattice deformation a t  a l l  
values of the interaction parameter. In other words, 
Mott and Peier l s  instabilities coexist. This conclusion 
explains the presence of s tat ic  Pe ier l s  deformation a t  
low temperatures in TCNQ complexes with alkali 
metals8-Mott dielectrics with large gap in the current- 
excitation spectrum.26 Let  us estimate, on the basis  of 
x-ray s t ruc ture  data, the electron-phonon interaction 
constant b, which enters  in (5), for one such crystal, 
namely Rb-TCNQ. According to low-temperature mea- 
s u r e m e n t ~ , ~ ~  the alternating interstitial distances in the 
TCNQ chain a r e  3.77 and 3.42 A. Therefore, the ampli- 
tude of the deformation is ax=0.18 A and x =0.5. Putting 
$ a / ~ = l  in (3), we ge t  A =0.05. Taking (25) into ac- 
count, we next obtain b = 0.3 - 0.15 (at U 2 4) we have 
$ a z S i, Ref. 17). Expression (20), which is valid a t  
U =0 ,  yields, 8 ~ 0 . 2 .  In this case  both expressions lead 
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to quantities of the same order (we have assumed that 
U- 4). If ~ ' a /p=O. l ,  then we find on the basis of (25) 
that b =0.015-0.013, and from (20) it follows that b-0.1. 
An estimate of b from the relation b = (,!?')2/pkf~2 using 
the TCNQ mass and Debye temperature 8, = 100 K leads 
to a value b- 

The foregoing analysis of expression (14) and (15) 
leads also to the conclusion that at medium values of 
the electron-interaction parameter U a one-dimensional 
system with Hamiltonian (1) is unstable to periodic de- 
formations of the type (2) with Q =2kF and Q =4kF. In 
experiments on x-ray scattering by the quasi-one-di- 
mensional crystal TTF-TCNQ,18 characteristic symp- 
toms of instability to both deformations were observed, 
and the x-ray scattering amplitudes were comparable 
in magnitude for Q =2k, and Q =4kF. In light of our 
analysis this means that the effective interelectron in- 
teraction in this crystal is of the order of (or larger 
than) the width of the conduction band (0.5 eV, Ref. 29). 
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The behavior of the dynamic form factor in He I1 near the sound line o = up is obtained. General 
formulas are derived for the asymptotic forms of the imaginary parts of the Green's function at high 
frequencies and large momenta. 
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1. FORMULATION OF PROBLEM. KINEMATIC superfluid helium in the case when the conservation 
RELATIONS laws permit such a decay only simultaneously into a 

large number of phonons. 
The purpose of the present study was to investigate 

the decay of elementary excitations into phonons in It is. known (see, e.g., Ref. 1) that a t  small  momen- 
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