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Role of slow relaxation processes in the formation of the 
Kapitza jump on the boundary between a superconductor 
and a dielectric 

M. A. Zelikman and B. Z. Spivak 
North-West Extension Polytechnic Institute 
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The effect of slow relaxation of excitons in a superconductor on the thermal Kapitza resistance between a 
superconductor and a dielectric is considered. It is shown that the presence of a hierarchy of relaxation 
length in the superconductor leads to the existence near the boundary of a region that is in strong 
disequilibrium. The observed Kapitza jump depends on the size of the energy gap. The results of the 
theory agree in order of magnitude with experiment. 

PACS numbers: 74.30.Ek, 77.90. + k 

When heat passes through a boundary between two 
media, a temperature jump i s  produced, called a 
Kapitza jump. The theory of this phenomenon on the 
boundary between superfluid He 11 and a solid was con- 
structed by Khalatnikov.'s2 Little3 extended this theory 
to the case of a contact between two bodies with differ- 
ent acoustic properties (densities and sound velocities). 

The conclusions of the theory'-3 reduce to the follow- 
ing. Only phonons transport the energy through the 
boundary. By virtue of the difference between the 
acoustic properties of the two media, the phonons have 
a definite probability of being reflected from the bound- 
ary. As a result, the energy flux 1, the boundaries is 
connected with the temperatures in the two media on 
the boundary by the relation 

Here A i s  a coefficient proportional to the probability of 
the passage of the phonons through the boundary. In the 
derivation of (1) it is assumed also that the phonon dis- 
tribution functions in both media remain in equilibrium 
up to the boundary, with temperatures T o  and TI. 

There exist, however, experimental facts which have 
so f a r  not been explained within the framework of the 
theory of acoustic mismatch.lJ One of them i s  that the 
Kapitza jump between a superconductor and a dielectric 

depends on the energy gap in the superconductor, which 
is varied in the experiments with the aid of a magnetic 
field (see, e.g., Refs. 4 and 5). In the superconducting 
state the Kapitza jump turns out to be larger than in the 
normal metal at the same temperature. The change in 
the Kapitza jump fluctuates in various experiments from 
a fraction of several hundreths to a factor of several 
times. 

This fact does not agree with the theory,'-3 since 
neither the sound velocity nor the coefficient of the 
phonon reflection from the boundary i s  dependent in 
practice on the energy gap in the superconductor. An- 
dreev6 and Little7 considered the influence d the con- 
duction electrons on the phonon transmission coefficient 
through the boundary. However, allowance for this - 
mechanism does not lead to a substantial improvement 
of the agreement between experiment and theory. 

On the other hand, the assumption that the distribution 
functions retain their equilibrium form all the way to 
the boundary in generally speaking incorrect, Equili- 
brium distributions set in only at distances from the 
boundary that are larger than the character\istic relaxa- 
tion lengths. In the immediate vicinity of the boundary 
the distribution functions d the excitations are not in 
equilibrium, and their form depends on the relaxation 
mechanisms. 

'\ 

377 Sov. Phys. JETP 49(2), Feb. 1979 0038-5646/79/020377-05$02.40 O 1979 American Institute of Physics 377 



The case when the medium contains only one type of 
excitation-phonons, whose relaxation is characterized 
by only one relaxation time 7 ,  was considered by Lev- 
inson.' The phonon distribution function depends in this 
case only on the dimensionless quantity z/wr Cz is the 
distance from the boundary and w is the speed of sound), 
while at the immediate vicinity of the boundary, at z = 0, 
the distribution of the phonon is described by a universal 
function that does not depend on T and is determined 
only by the structure of the collision integral in the 
phonon kinetic equation. Solution of this equation for 
the Kapitza jump yields an expression similar to (I), 
with a coefficientA that depends on the character of 
the reflection of the phonons from the boundary and on 
the structure of the collision integral, but agrees in 
order of magnitude with the expression obtained in 
Refs. 1-3. 

Most media, however, are characterized by the pres- 
ence of several types of excitations and of several re- 
laxation times. In that case the form of the distribution 
function of the excitations at the boundary is not univer- 
sal and depends on the ratio of the relaxation times. In 
this paper we show that the presence of a hierarchy of 
relaxation lengths influences substantially the value of 
the Kapitza jump. We consider the contact between a 
dielectric and a superconductor at low temperatures, 
when the low concentration of the quasiparticles in the 
superconductor gives rise to a hierarchy of the relaxa- 
tion lengths of the quasiparticles and of the phonons. 
As a result, anUadditional" temperature jump is pro- 
duced in the volume of the superconductor, and its mag- 
nitude depends on the size of the energy gap. 

Two types of excitation exist in a superconductor: 
quasiparticles and phonons. The kinetics of the excita- 
tions in superconductors i s  described by the quasipar- 
ticle and phonon kinetic equations 

Here n , and N, are the distribution functions of the 
quasiparticles and phonons, respectively: &= ([2+~2) '";  

~=$/2m -q; p and q are the momenta of the quasipar- 
ticles and of the phonons; q is the chemical potential of 
the normal metal; A is the half-width of the energy gap 
in the superconductor; D =v~7,,/3 is the diffusion co- 
efficient of the electrons in the normal metal (we con- 
sider only the case when the momentum relaxation time 
rim is less than the remaining relaxation times); v, i s  
the Fermi velocity; J', , JLh are operators describing the 
recombination (generation) of the quasiparticles with 
emission (absorption) of high-frequency phonons; JS, JS,, 
are operators describing the scattering of quasipartic- 
les by phonons. Since we are considering only the case 
T<< A ,  x << 1, the corrections to the energy gap can be 
neglected. 

The mean free paths of the high-frequency (w>2A)& 
and low-frequency (w < 2A)l, phonons in superconductors 
at low temperatures (T < A )  are connected by the rela- 
tion 

l<=l>/xBl>. 

Here 

is the dimensionless concentration of the quasiparticles, 
and N(O)= mpF/n2 is the density of states of the Fermi 
surface in the normal metal (u is the spin). 

In addition, at low temperatures there exists in super- 
conductors a hierarchy of quasiparticle relaxation 
times: 

T.<T,<T,>. (5) 

Here 7,- ( ~ ~ / T ~ ) ( A / T ) ' ~  is the time of scattering of the 
quasiparticles by the phonons, 7 ,  - 82,/h3x is the quasi- 
particle recombination time, ?>, - €92, /h3x2 is the time of 
establishment of the equilibrium number of quasipar- 
t i ~ l e s , ~  and 8,=wpF is the Debye energy. This hier- 
archy of relaxation times is connected with a hierarchy 
of diffusion lengths: 

L.= (DT.) '"<L,=(DT,) '%L.>= (DT.>) #A. (6 

The energy is  transported through the boundary by 
the phonons. However, energy can be transported in the 
volume of the superconductor both by phonons and by 
quasiparticles, and the ratio of these two fluxes depends 
on the temperature.'' 

We consider first the case of not too low temperatures, 
when the energy transport in the superconductor is by 
the quasiparticles (as exact criterion will be written 
down later on), but assuming that T< A.  The presence 
of relations (4)-(6) leads to a distribution function of 
the form 

-e@-e>/T. 
L- (7) 

and 
N ~ = ~ ~ ~ ' - U ) ' T ,  ">2A, (8 a) 

The functions (7) and (8) cause all the collision inter- 
vals, both quasiparticle and phonon, to vanish in (2) and 
(3), with the exception of the terms that describe the 
absorption of the high-frequency phonons by quasipar- 
ticles and contain an additional small factor-the con- 
centration x <<I. Physically this is connected with the 
fact that the quasiparticles, becoming rapidly scattered 
by the low-frequency phonons, establish a quasiequili- 
brium distribution function with a chemical potential v 
and a temperature T. 

Quasiparticle recombination gives rise to high-fre- 
quency phonons, which are absorbed over a small length 
I,, again producing two quasiparticles each. These pro- 
cesses establish the equilibrium between the high-fre- 
quency phonons and the quasiparticles without changing 
the number of quasiparticles. The number of quasipar- 
ticles changes only when the quasiparticles absorb high- 
energy phonons, each of which is equivalent to a pair of 
qua~iparticles.~ On the whole, the situation is perfect- 
ly analogous with that considered in Ref. 9, the only dif- 
ference being that in this case v and T are functions of 
the coordinates. In our case, when the energy in the 
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superconductor i s  transported mainly by quasiparticles, 
the relations I,<< L, and I,<< L, are satisfied. There- 
fore the phonons at each point adjust themselves to the 
local distribution of the quasiparticles. The quasipar- 
ticles establish a quasiequilibrium distribution over a 
length L,, while v and T vary over a length L: with 
v(m)=O. 

Here and below we express all the relaxation lengths in 
terms of the experimentally measured 1,. 

Equations (15) and (16) require four boundary condi- 
tions. Two of them can be obtained by specifying on the 
boundary the fluxes of the energy and of the number of 
quasiparticles: 

To determine vk )  and G (z) we must use the conserva- 
tion laws for the energy and for the number of quasipar- 
ticles. Multiplying (2) and (3) by E, and w, and summing 
respectively over p and q, we obtain the energy con- 
servation law: 

Igl an. I.=-D c-- - - av A a~ 
E a~ 2DN(O) [z  + (. + I )  %] ~ - W T .  (19) 

Prn Pa 

Summing (2) over p, we obtain the quasiparticle-num- 
ber conservation law: 

The energy flux through the boundary i s  determined 
mainly by the thermal (w -T) phonons, while the quasi- 
particle flux is determined by the high frequency (w > 2A) 
phonons, the number of which is exponentially small. 
These phonons, being absorbed over a length I, produce 
quasiparticle pairs. Therefore the fluxes of the energy 
and of the number of quasiparticles on the boundary are 
connected by the relation 

Here i is the polarization of the phonons. 

In the derivation of (9) and (10) from (2) and (3) we 
have used the exact relations 

As a result, accurate to e-2A1T el, we can put 1,(0)= 0. 

The third boundary condition reduces to the require- 
ment that the solutions be bounded at z- .c, and finally, 
the fourth connects the temperatures in the dielectric 
and in the superconductor at the boundary. 

In the immediate vicinity of the boundary, accurate to 

which express the conservation laws for the energy and 
for the quasiparticle number in the collisions ( l l ) ,  the 
fact that one high-frequency phonon is produced when 
two quasiparticles recombine (12) and the fact that at 
w< 2A the phonons can participate only in the scatter- 
ing of the quasiparticles and make no contribution to the 
recombination-generation processes (12). In addition, 
we have negkcted in the derivation of (9) and (10) the 
terms that describe the contribution of the phonons to 
the energy transport and to the quasiparticle number. 

Substituting (7) and (8) in (9) and (10) and using the ex- 
plicit form of J;, 

expression (1) remains valid for the temperature 
jump. To verify this, we can solve the phonon equation 
(31, which is linear for the specified quasiparticle dis- 
tribution function (7), and calculate the energy flux car- 
ried by the phonon through the boundary. 

The solutions of (15) and (16) at the given boundary 
conditions are 

y =voe-*/* (21) 
and 

where 

~[%(I-nP+3Nq-n,+q(I-nP)  (I+Nq)  I (14) 

(where V, i s  the matrix element of the electron-phonon 
interaction), we obtain in the approximation linear in v 
and in T two equations for v (z ) and T (z ) 

xe=2DV(0)(~2/~)e-A'T is the electronic thermal conduc- 
tivity of the superconductor, and C , is determined from 
(1). 

It is seen from (22) that the usual thermal conductivity 
regime with v=O and with linear variation of the tem- 
perature is realized only aver lengths larger than X. 
Near the boundary there is a nonzero chemical poten- 
tial, and the temperature of the quasiparticles varies 
nonlinearly (see Fig. 1). If the Kapitza jump is taken to 
mean the temperature jump obtained as a result of lin- 
ear  extrapolation of the temperature dependence to in- 
finity, a s  shown dashed in Fig. 1, then near the bound- 

where 
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FIG. 1. Dependence of the temperature T on the coordinate 
z when heat flows through a boundary between a superconductor 
(S) and an insulator ( I ) .  

ary, w e r  length of order A, an "additional" tempera- 
ture jump is produced: 

It is important that this additional jump increases with 
increasing ratio A/T, in qualitative agreement with the 
results of the experiments.' 

It is of interest to calculate the ratio of the additional 
Kapitza jump 6T1 to the usual jump 6T, defined by rela- 
tion (1). (The total jump 6T is the sum of the two (see 
Fig. I).) We have 

I.  n't 
6T0-3AT9, A = = - .  

30ri1' 

Here T is the coefficient of transmission of the phonons 
through the boundary, 

l i m = ? i n l V ~ .  

This ratio increases exponentially with increasing ratio 
A/T. 

We consider now a criterion for the applicability of 
the results, i.e., for the smallness of the phonon ener- 
gy flux compared with the quasiparticle flux. Neglect- 
ing the high-frequency phonons, the phonon energy flux 
takes the standard form I Eh = -uphVT. The temperature 
gradient i s  maximal at the boundary (see Fig. 1) and 
therefore, using (22), we get 

where uph is the phonon thermal conductivity of the 
superconductor, obtained in the relaxation-time ap- 
proximation. 

The condition <<I, takes at z = 0 the form 

(xPt , /xa)  (A /T ) '< i  (27) 
and is less stringent than the corresponding condition in 
the volume (nph<<ue). This fact is connected with the 
strong disequilibrium of the distribution functions of 
the excitations at the boundary. 

Substituting in (27) the expressions for nph, ue we ob- 
tain ultimately 

Using the condition (281, we obtain the upper bound 

Actually the expression in the square brackets in (29) 
is of the order of the ratio of the electronic u; and pho- 
non u"ph thermal conductivities in the normal metal at 
the temperature T=A. Therefore the expression in the 
right-hand side of (29) is usually larger than unity (and 
in pure substances it can reach lo2), while at sufficient- 
ly low temperatures the additional jump can become 
larger than the regular one. 

The result can be explained qualitatively in the follow- 
ing manner. When (28) is satisfied and T<<A, the fluxes 
of the energy and of the number of quasiparticles in the 
interior of the superconductor are connected by the re- 
lationI,=I,A. On the other hand, on the boundary these 
fluxes are connected by relation (20), i.e., near the 
boundary the flux of the quasiparticles is exponentially 
smaller than the value that should obtain in the thermal- 
conductivity regime at a specified energy flux. There- 
fore near the boundary, at distances shorter than the 
characteristic length of establishment of the equilibrium 
number of quasiparticles, the concentration of the 
quasiparticles deviates from the equilibrium value and 
this results in a nonzero chemical potential. The re- 
verse energy flux, proportional to the gradient of the 
chemical potential, leads to an increase of the tempera- 
ture gradient in the region next to the boundary at a giv- 
en energy flux. The nonlinear change of the tempera- 
ture in the region next to the boundary is in fact the 
cause of the additional temperature jump (Fig. 1). 

Finally, let u s  compare the additional jump with the 
temperature "surge" 6T, over the length x in the re -  
gime of ordinary electronic thermal conductivity: 

6T,=I,Alx., 6T,/bT.= (A /T) 'B  1 .  (30) 
Thus, the additional jump 6Tl is substantially larger 
than 6T,. 

We consider now the region of very low temperatures, 
when an inequality inverse to (27) is satisfied, and the 
entire energy transport in the superconductor is due to 
phonons. We assume that the fastest process is elastic 
scattering of phonons by the impurities, and the energy 
relaxation of the phonons is characterized by a single 
relaxation time. In this case it is easy to show that no 
additional temperature jump takes place in the volume 
of the superconductor. 

In the case A=O, when all the phonon mean free paths 
are of the same order I, and all the diffusion lengths 
are also of the same order L, there is likewise no ad- 
ditional jump, accurate to 1 / ~  << 1. As a result, the de- 
pendence of 6T1 /6T, on A/T, which can be measured by 
varying the temperature of the thermostat and the mag- 
netic field strength, has a maximum at the point where 
the condition uPh-ue is satisfied (see Fig. 2). 

In a magnetic field stronger than critical, when the 
superconductivity is completely destroyed, we have 
6T1=0 and the total jump is 6T=6To. When the magnetic 
field is turned off, the measured jump increases by an 
amount equal to the additional jump 6T1. 

In conclusion, we present an expression for the addi- 
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FIG. 2. Dependence of bT1/6To on A/T;  

tional Kapitza jump in the case of a superconductor with 
finite thickness d assuming identical boundary conditions 
on both boundaries 

GT, (d)lbT, (m) =2th (dl71.). (31) 
The coefficient 2 is connected with the fact that we have 
calculated the additional jump on both boundaries. With 
decreasing sample thickness, the additional jump tends 
to zero. To observe this phenomenon it  is necessary to 
have samples with thickness d<h. 

In order of magnitude, h is equal to ~ > , " e ~ ' ~ l f t  (this 
can be verified by recognizing that the electron-phonon 
and phonon-electron relaxation times are  proportional 
to the same electron-phonon interaction constant and 
differ only in the final state densities), and can vary in 
a wide range, depending on the purity of the sample 
(i.e., on I,,) and on the temperature. For example, at 
1,,=10-6 cm and A / T = ~ ,  1,= cm we have ~ = 1 0 - ~  cm, 
while at 1,,=10-2 cm and A / T = ~  we have X = l  cm. 

The sign of the additional jump and its order of mag- 
nitude can be reconciled with the experimentally ob- 
served values. For a more detailed comparison of ex- 

periment with theory, however, measurements in alarg- 
e r  temperature interval are needed. 

A phenomenon similar to that considered above can 
arise also in He II, where there is likewise a hierarchy 
of phonon and roton relaxation  length^,^ and according to 
estimates2." the energy is transported through the 
boundary, in the region T 2 1 K, the rotons make the 
main contribution to all the thermodynamic functions and 
it is precisely they which transport the energy. This 
should produce in He II a relaxation region similar to 
that considered in the superconductor. We shall not, 
however, discuss this possibility in greater detail. 

We thank A. G. Aronov for valuable advice and sup- 
port and I. B. Levinson for discussions. 
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The dependence of the energy of the ground state of a one-dimensional metal on the amplitude of a 
periodic deformation is considered in the Hubbard model for different values of the interelectron- 
interaction parameter. It is shown that a Mott one-dimensional dielectric is unstable to the Peierls 
deformation at all values of the interaction parameter. Relations are obtained between the responses to the 
perturbations with wave numbers Q = 2k, and 4k, in the limiting case of strong and weak electron 
interaction. 
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INTRODUCTION this state is of interest because of the advent of new 
quasi-one-dimensional ~onduc to r s .~ -~  

The instability of a one-dimensional metal to lattice 
deformation leads to the onset of a Peierls-Fralich The conclusion that a one-dimensional metal is un- 
~ t a t e . " ~  The investigation of various characteristic~ of stable to lattice deformation was deduced by Peierls on 
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