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We investigate the manner whereby the ordinary "three-dimensional" properties of a system are restored 
with increasing probability of electron tunneling from string to string in a quasi-one-dimensional system 
made up of one-dimensional metallic strings with long-range interaction between the electrons (the 
Tomonaga-Luttinger model). In the case of weakly corrugated Fermi surfaces, modified parquet equations 
are obtained for the vertex. The critical temperature is calculated and the corresponding susceptibilities 
and the particle momentum distribution functions are obtained. The results differ from those obtained by 
the mean-field treatment of the transverse kinetic coupling of the strings. 

PACS numbers: 71.90. + q 

One of the basic models in the physics of one-dimen- 
sional Fermi systems i s  the Tomonaga-Luttinger (TL) 
model.' Because of the relative simplicity of the inter- 
action (only long-range interaction i s  taken into account), 
it was one of the f i rs t  many -particle models for which 
an exact solution could be obtained, and this made i t  
possible to reveal a number of important consequences 
pertaining to one-dimensional Fermi  systems. One of 
them is the special role of fluctuations of the electron 
density in one-dimensional systems and their quantum 
character. It is precisely the presence of such long- 
wave low-lying excitations which prevents the estab- 
lishment of long-range order in a one-dimensional sys- 
tem. Single-particle states turn out to be unstable to 
decay into such collective  excitation^.^ A manifestation 
of this effect is  the absence of a Fermi step in the par- 
ticle momentum distribution function.' 

The TL model was subsequently expanded to account 
for short-range interaction. Considerable progress 
could be made in this case by using for  the fermion 
operator the "Bose" representation introduced by Luth- 
e r ,  Peshel, and Mattis,= a representation f i rs t  estab- 
lished also within the framework of the TL model. As 
a result, the correlation functions4 and the excitation 
spectrum5 were calculated for a one-dimensional Fer- 
mi gas with a most general form of the interaction. 

Since the experimentally investigated objects a r e  
more readily quasi-one-dimensional than one-dimen- 
sional, i t  is of interest to study the generalized TL 
model for the quasi-one-dimensional case. It was es-  
tablished that the long-range interaction between elec- 
trons located on different strings does not change the 
main results obtained within the framework of the TL 
one-dimensional The critical temperature 
turned out to be equal to zero, a s  before. However, al- 
lowance for the direct o r  induced four-fermion interac- 
tion, in the course of which the electrons go from one 
string to another, is natural and can lead to a finite 
transition temperature. This can be a transition into a 
ferromagnetic state o r  a transition into a state of a 
Peierls or  anti-Peierls dielectric.' 

of transverse kinetic linkage (tunneling of the electrons 
from string to string). In this case the system is close 
to being three-dimensional and strongly anisotropic, but 
in contrast to the latter it i s  still subject to the strong 
effects because i t  is nearly one-dimensional. Recent 
attempts of this kind of generalization were based on 
the "bosonization" method.' The transverse kinetic 
coupling is taken into account by the average-field meth- 
od,? according to which the influence d the transverse 
motion reduces, in the macroscopic calculation of vari- 
ous correlators, to allowance for matched transitions 
of a pair of electrons or of a pair made up of an elec- 
tron and a hole from one string to another. This scheme 
of action presupposes the presence of strong correla- 
tions between the two particles making up this pair. 
Strictly speaking, such particles must be paired, and 
their binding energy A should be much larger than the 
transverse resonance integral w (w <<A is the condition 
of weak coupling in the transverse linkage). For two 
limiting cases (quasi-one-dimensional system of thick 
strings and a system of one-dimensional strings with 
extremely strong interaction on each of the strings') 
this situation can be realized. One can also hope that 
for other quasi-one-dimensional sys  tems, in which 
strong linkage sets in a t  low temperatures (regions II- 
IV of Fig. 2 of Ref. 4) the weak-coupling condition in 
the limit of w will be satisfied with respect to the trans- 
verse linkage. 

In the TL model, however, the parameter A = 0, and 
therefore the average-field me€hod cannot be used here. 
The influence of the transverse kinetic coupling will be 
more appreciable since the use of the "bosonization" 
method a t  w # 0 is also doubtful. 

We carry out the analysis of the present model by 
summing the most essential diagrams. In the case of 
the one-dimensional TL model this analysis yields 
approximation a qualitatively correct result even in the 
parquet. The value of the critical exponent obtained in 
this approximation is the f i rs t  term of the expansion of 
the exact in the interaction constant. in 
the case of a quasi-one-dimensional TL system, the 

We focus our attention below on the quasi-one-dimen- parquet approximation modified for  the case w # 0 also 
sional generalization of the TL model to include the case makes possible a detailed analysis whose result differs 
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from the average-field method when i t  comes to trans- 
verse kinetic linkage. 

1. THE MODEL 

It is most convenient to carry out the investigation 
within the framework of the following simple model of 
quasi-one-dimensional metal. We represented a s  a 
system of parallel metallic strings packed in a planar 
lattice with a distance a between the strings. The char- 
acter of the motion of the electrons along the string 
corresponds to the weak-coupling limit, and the motion 
across the strings corresponds to the strong-coupling 
limit, i.e., 

e (PI =~,,'/2m--wrg (PJ. (1) 
The Fermi surface of such a system constitutes two 
corrugated planes described by the equation 

The quantity w characterizes the amplitude of the cor- 
rugation. At w < &, the Fermi surfaces turn out to be 
open. The function q(p,) specifies the function of the 
corrugated Fermi surface. 

With respect to cp(p,) we shall assume that q(p ,  - 401) 
= -q(P,), where q: = (lrfi/a, ufi/a) is half the reciprocal- 
lattice vector. In this case we can expect in the system 
to observe strong fluctuations of the dielectric type. It 
is known that in a one-dimensional systems, besides 
the instability to electron pairing of the BCS type there 
always exists an instability with respect to electron- 
hole pairing due to the degenerate form of the electron 
spectrum in the one-dimensional case": 

where qO = 2p0. In a quasi-one-dimensional system the 
condition of dielectric instability (3) is approximate. It 
follows from (2) that it is satisfied accurate to  quan- 
tities of order wZ/&, for q2= (2po, 4:). AS a result, the 
corresponding phase transition appears a t  w higher 
than a definite value w,= (T,&,)'/~, where T, is the 
temperature of the phase transition calculated without 
suppression effect. 

We investigate henceforth the behavior of the system 
as a function of w and of the form of q(pI). An im- 
portant factor in this case is the behavior of cp(p,) near 
p, =*3q!. In the vicinity of these points, the condition 
for the superconducting the dielectric enstabilities is 
satisfied. In the concrete calculations we shall use be- 
low cp(p,) in the form 

The character of the evolution of the indicated in- 
stabilities is determined by the interaction. In the pres- 
ent problem, an important role is played by the inter- 
action of electrons belonging to different sections of the 
Fermi surface. It is subdivided into processes with 
large transfer of the longitudinal momentum, of the 
order of 2p0 (the constant g,), and a part  with a small, 
compared with Po, transfer of the angular momentum 
(the constant gJg: 

r,pra=giS.,bta-gzSaaSg~. 
(5) 

In accordance with the definition of the TL model, to 
which we confine ourselves in the present article, we 
have g, = O,g,=g# 0, i.e., we a r e  considering interac- 
tion with only a small transfer of the longitudinal mo- 
mentum. The bare constantg is assumed to be differ- 
ent from zero only for  electrons pertaining to differ- 
ent pieces of the Fermi surface and located in an energy 
s t r ip  with a width of the order of w,<<&, near the cor- 
responding Fermi  surface. 

Near the Fermi surface, the electron spectrum can be 
linearized with respect to the longitudinal momentum: 

e (P) -eP=v(P,) ( l P I -Po (PA) ), (6) 
where v(p,) =p,(pl)/m is the longitudinal component of 
the electron velocity on the Fermi surface. The function 
f(pI) characterizes the dependence of the state density 
and the Fermi surface. In Ref. 10 they investigated the 
effect of v(p,) in the absence of corrugation (this cor- 
responds to a "rinsed" Fermi surface). The resultant 
situation is known a s  "fast parquet" wherein there is a 
fast  dependence on the transverse momentum and a weak 
logarithmic dependence on the longitudinal momentum. 
In our problem the main three-dimensionality effect is 
the corrugation. The situation is the opposite of the 
fast  parquet. The dependence n the transverse momen- 
tum turns out to be weaker than the logarithmic depen- 
dence on the longitudinal momentum. In (6) the depen- 
dence of v on p, can be neglected in terms of the small 
parameter w,/&,. We therefore use finally a spectrum 
in the form 

E (p) -EP=U( lfii I -PO) -w(P(PI). (7) 

The effects of suppression of the dielectric transition, 
which a re  due to the next terms of the expansion of 
po(p,), will be taken into account by means of the con- 
siderations advanced above. 

2. PRINCIPAL LOGAR ITHMlC APPROXIMATION 

Many properties of a system of many particles, in- 
cluding the presence of thermodynamic instabilities in 
the system, can be established by investigating the 
scattering amplitude. The calculationof the correspond- 
ing diagrams lead to logarithmically large terms. The 
appearance of diagrams that produce the highest order 
of the logarithm in each order of perturbation theory 
(the so-called parquet effects) is due to the presence 
in the system of two anomalous scattering channels, the 
Cooper and Peierls channels. The general scheme for  
summing diagrams of the parquet type is well 
We shall therefore discuss only those singularities 
which ar ise  when the scheme is applied to a quasi-one- 
dimensional system. We note f i rs t  that in contrast to the 
one-dimensional situation, in the quasi-one-dimensional 
system the elementary "bricks" of which the total scat- 
tering amplitude is constructed depend on the transverse 
momentum. Thus, for example, the Cooper diagram 
(Fig. I ) ,  after intergrating with the respective frequency 

FIG. 1. 
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and longitudinal momentum, turns out to be 

Here w and k a r e  the summary frequency and momen- 
tum in the Cooper channel. It is seen from (8) that in 
the case of a continuous function ~ ( 1 , )  the expression 
for C can diverge if k ,  = 0. With logarithmic accuracy, 
C can be represented in the region of small w , vk ,, , 
wk,a/nPi,wk,a/nfi<<wD in the form C = -ig2N,t, where 
No= 2/n&a2 is the state density on the Fermi surface 
and 

We have left out above the imaginary part of 5, which is 
equal to -in/2 and appears a t  5 = ln(lwl/w,). If the cal- 
culations a r e  carried out a t  finite temperature, the 
temperature T enters in the definition of 5 under the 
logarithm sign in the curly brackets. A similar result 
takes place also for the Peierls diagram. A singularity 
appears in it if the transverse component of the momen- 
tum transfer turns out to be equal to q, = 9% Near this 
value it equals, with logarithmic accuracy, $ g 2 ~ q ,  
where 

(10) 
and q a r e  the transferred frequency and the momen- 

tum in the Peierls channel. 

The appearance of a dependence on the transverse mo- 
mentum in 5 and q a t  sufficiently large f ,  q < p = ln(w /w,) 
(it is assumed that w s uD) is a reflection of the fact that 
in a quasi-one-dimensional system a singularity in any 
particular channel is realized only a t  a definite value of 
the transported transverse momentum, in contrast to a 
one-dimensional system, where the singularity takes 
place a t  an arbitrary value of the transverse momen- 
tum. As a result, in diagrams of mixed type a t  5 < B 
and < P ,  the phase volume of the transverse momentum 
in which both instabilities a r e  simultaneously realized 
will decrease a t  large 5 and q.  We illustrate this cir-  
cumstance using a s  an example the diagram of Fig. 2. 
It is a Peierls loop inserted in one of the vertices of 
the Cooper diagram. After integrating with respect 
to frequency and the longitudinal momentum, the result 
can be represented in the form 

7 7 
~ ( l n ~ 2 - 2 1 n - l n - - i n 1 n -  OD Ice1 OD I . (11) 

Here 7 = m..(u,wlfj], where o = max{(wl, 1 ~ 1 )  and 
f=Sq( l l )  - fp( l ,+I , -~q~)  -qo(fd). If we introduce a func- 
tion N(Z ) defined by 

FIG. 2. 

where E, = maxl f l  [for ~ ( p , )  in the form (4) we have 
E, = 33'2/4], then expression (11) can be represented in 
the form 

where 

It is assumed in (13) that Iwl< Isll<w. 

The f i rs t  two terms in (13) can be combined with C and 
correspond to the corrections to the interaction constant 
in the Cooper channel. The next two terms describe the 
connection between the Cooper and the Peierls instab- 
ilities in the energy region 1 w 1,1521 < w and should be- 
come equalized with the terms of the type g3(5 - p)' and 
g3(q - p)2, which appear in the same order of perturba- 
tion theory a s  a result of grafts of pure Peierls and 
Cooper type. The degree of divergence of the last two 
terms of (13) depends substantially on the behavior of 
the function N(z ) a t  z << 1 ,  which depends in turn on the 
type of the function cp(p,) that describes the corruga- 
tion of the Fermi  surface. By definition N(z) has the 
meaning of the phase volume over the transverse part 
of the momenta, in which Cooper and Peierls instabil- 
ities a r e  simultaneously realized, i.e., the one-dimen- 
sional result is preserved. If N(z) is a slowly decreas- 
ing function of z , for example, if i t  tends to a certain 
constant limit d a s  2 - 0 (this corresponds to the pres- 
ence of flat sections on the Fermi surface), then C ,  
=4g3(5 -@)(q -B)  and such terms must be taken into ac- 
count, a t  not too small values of d, on a par with the 
terms of the type g3(5 - P)' and $(q - @)*. If the function 
N ( z )  i s  a rapidly decreasing function of z ,  s o  that I,&) 
reaches rapidly i t s  constant value I,(O), then such cor- 
rections can be combined with the f i rs t  two terms, thus 
leading effectively to a renormalization of the three- 
dimensionality parameter w . At small 11(0) << 1 this 
renormalization is of no importance and the correspond- 
ing corrections can be left out. However, when more 
complicated diagrams a r e  considered, when for 
example, instead of one Peierls loop one inserts in the 
vertex of the Cooper diagram a ladder consisting of such 
loops, then the rapid decrease of N(2)  a t  small z can be 
compensated by the presence of a singularity in this 
ladder. Therefore allowance for this type of correc- 
tions may turn out to be substantial also in this case. 
Since such corrections a r e  due to diagrams of the par- 
quet type, their summation can also be carried out 
within the framework of the parquet scheme. 

In the derivation of the corresponding equations we 
shall use below the principal ideas on which the Sudakov 
scheme is based. As applied to our case, the two-par- 
ticle cross section in each of the diagrams is so separat- 
ed that the longitudinal components of the momenta a r e  
closer to the Fermi surface than in other cross sec- 
tions. The integration over the transverse part of the 
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momentum is in this case over the entire reciprocal 
lattice. As a result we obtain for the scattering ampli- 
tude the follawing nonlinear integral equation: 

0 I 

r(E7rl,5)=g-jdt jdsp(s)r( t ,  (t,s,q), [s,ql)r(t ,  (t,s,6), [~,51) 
f -- 

We have changed over above to the dimensionless am- 
plitude and t o g ,  multiplying them by N,/4. The curly 
and square brackets in (1 5) stand for {t , s ,  77) = max(t, s ,  q) 
and [s,  q] = min(s, q). The logarithmic variable 5 in (1 5) 
is defined as 5 = [5,, L ,I, where 

Here c = el ,, and p =pl, ,  a re  the energy and momentum of 
the outer ends of the amplitude, corresponding to one of 
the scattered particles. We note that by virtue of the 
conservation laws the following equality holds: {L,, 5 3  
={5,771.12 

In the integration with respect to the transverse mo- 
mentum in (15) we have likewise changed over to a log- 
arithmic variable s ,  since the dependence on the trans- 
verse momentum in the amplitude appears under a log- 
arithm sign [see (9) and (lo)]. The substantial region of 
integration with respect to the transverse momentum is 
a circle near 1, =*$q:, where the conditions for the 
superconducting and dielectric instabilities a r e  simul- 
taneously satisfied. Therefore 

s-p='I3ln IT  (l,)-Vq('/2qlo) (1,-q,") I. (17) 

We have taken into account above the fact that the term 
linear in 11, -q?l enters in the definition of t. The func- 
tion p(s) in (15) is connected with the change of variables 
indicated above and is equal to 

It will be convenient in what follows to change over to 
another function with the aid of the relation 

and use subsequently just this function. In analogy with 
the previously introduced function N ( z )  [see (12)], R(s) 
characterizes the value of the phase volume with respect 
to the transverse part of the momenta in which the one- 
dimensional situation is preserved; that is to say, for 
electrons with energy &, reckoned from the Fermi sur- 
face, the curvature of the Fermi surface, can be neg- 
lected in a certain region of the reciprocal lattice, 
amounting to a fraction R[ln(~/w,)] of i ts  total area. 
The function R(s) is defined essentially by the form of 
the corrguation of the Fermi surface. In the case of a 
flat Fermi surface R(s) = 1 [the function of cp(p,) is zero 
practically everywhere], Eq. (15) coincides with the 
corresponding equations for the one-dimensional case. 
The transition to the one-dimensional case can also be 
carried out by assuming in (15) a corrugation amplitude 
w=o.  If 

I P P  Pua 
T(PL)=~{I -  I T \ -  lz I]* 

then the surface has flat section parallel to one another. 
The function R a t  small c then turns out to be constant 
and equal to $. For the function cp(p,) of type (4) the 
essential region of integration with respect to the trans- 
verse momentum in (15) is the vicinity near *iqy and the 
corresponding phase volume, which is accumulated pre- 
cisely on account of this region, decrease in power-law 
fashion a t  small c .  This corresponds to an exponential 
decrease in the logarithmic variables. When the nor- 
malization R(@) = 1 is taken into account, the function 
R(s) in the case of the spectrum (4)-(7) can be approxi- 
mated in the following manner: 

R(s) =exp {2(s-9)). (18) 

This expression is approximate in the region s - P, but 
here R(s) 31. Therefore the presence of this region re -  
duces effectively to a redefinition of the value of the 
parameter w (of the corrugation amplitude). 

With the aid of R (s) we can rewrite (15) in the follow - 
ing integro-differential form 

9 

The last two equations pertain respectively to the re-  
gions ( < q and q < (. In (19) we have taken account of the 
fact that a t  q s [(, q] there is no dependence of y((, q, 5) 
on 5 ,  and therefore y (5, q, 5) = y ( ( ,  q) [this can be veri- 
fied by integrating (19) o r  (15)]. In the region 5 a [ t  , q], 
in contrast to the one-dimensional case, the function 
y([, q ,5 )  is no longer expressed in terms of y (5, q) and 
to determine this function i t  is necessary to solve equa- 
tions (19) with boundary conditions y((, q, [( , r~]) = y((, q ) .  

If R (s) is a rapidly decreasing function (no slower 
than l/s). then the terms that contain R(s) in the ser ies  . , 
that can be obtained for  the amplitude in g by iterating 
(19), will have an additional smallness. Therefore in 
the approximation of the principal logarithm (which in 
our case corresponds to summation of the terms that 
give in each order of perturbation theory the highest 
powers of P, (, and q),  we must put R (s) equal to zero. 
As seen from (19), the total amplitude in the region 
f c P,q 6 6 takes the form of two ladders corresponding 
to independent summation of diagrams of the Cooper and 
of the Peierls type. Allowance for R (s), meaning a de- 
parture beyond the framework of the principal logari- 
thmic approximation, makes i t  possible to describe 
smoothly the manner in which the parquet degenerates 
into a sum of two ladders when the correlation between 
the fluctuations of the Cooper and Peierls types weakens 
with decreasing temperature. In the general case, since 
R(s)=O only as s-m, a n d ~ ( P ) = l ,  we can expect this to 
lead to a substantial change of the results obtained a t  
R (s) = 0. For our model, however, allowance for R(s) 
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is not important, even in the case of a weakly decreas- 
ing function R(s). To verify this, we approximate R ( s )  
in the following manner: 

Replacement of R(s) in (19) by a constant is valid near 
the singularity of the amplitude, and consequently, the 
present approach makes it possible to investigate the be- 
havior of the amplitude near the critical point. The pa- 
rameter p can be assumed to be of the order of p =R((,) 
= 1, where 5, is the position of the amplitude singularity 
calculated with allowance for (20). The system (19) with 
R(s) taken from (20) i s  now rewritten in the form 

It follows from (21) that y(5, q ,  5 )  a t  arbitrary 5,  4, and 
5 can be obtained if we know y(f,  5) a t  arbitrary 5 and 
~ ( 5 ,  PI, ~ ( 5 ,  P, P) and Y(P, 5),y(P, 5, P) a t  5 P. To deter- 
mine the last  ones, in accordance with (21), we have 
(5 -' j3) 

a~ ( i ,  S ) l a E = ( I - p )  ly ' (5 ,  p ) - r 2 ( $ ,  'b) I .  
a r ( z ,  p ) / a t , = ( l - ~ ) ~ ( E ,  p, B )  Y ( 5 ,  P ) + I L Y  ( E ,  B ) Y ( E ,  c ) ,  

a. l(- , ,  3, ; i ) / a E = ( l - p ) ~ ? ( j ,  9 ,  B)+ p r 2 ( E  J ) ,  (22) 
a : ( $ ,  w a g = - (  1 - r - I ) Y  ( A E ,  B ) ~ ( P ,  6)-11r(P, E ) Y ( L  E ) ,  

ay (13, 5 ,  $ ) l J ~ = - ( l - ~ ) r ' ( $ ,  E, P ) - ~ r ' ( b ,  5 ) .  

In the region 5 c P  according to (21) we have y(5, [ ) = g  
and consequently the initial condition for (22) is the 
equality Y(P, P) = Y(P, P, PI =g. 

I f g <  0, then it follows from (22) that y(5,5), y({P), 
y(5, @, P )  increase in absolute magnitude in the region of 
large 5 whereas y(j3, 5) and y(P, 5,P) decrease. This 
result corresponds to the fact that in this model the 
dielectric and superconducting transitions exclude each 
other. Therefore the increase of fluctuations of one 
type leads to a suppression of fluctuations of the other 
type, and as a result the reaction turns out to be weak- 
ened. On the basis of these considerations we can leave 
out a t  g <  0 in the right-hand side of the equation for 
y(5,<) the quantity y(0, 5). Near the critical point, the 
sought amplitudes can be represented in the form 

where 

To determine 0, u, and v we have the following system 
of equations: 

From (24) we easily obtain the f i rs t  terms of the 
asymptotic series for 6, u, and v a t  x e l :  

It was assumed above that O <  p < 1. If we put in (22) 
p = 1, then the system (22) coincides with the system for 
the one-dimensional case. On the other hand a t  p = 0 
we have for  the amplitude the average-field result 

r ( 5 ,  $1 =r (E, B, B )  =- (E-5.1 -I,  

where 5, satisfies the equation 

lg l  ($-Ed = i .  

Thus, allowance for  ~ ( s )  (p # 0) can lead to an inyig- 
nificant logarithmic weakening of the pole singularity in 
the amplitude. Using (2 5) and the initial conditioning, we 
can obtain the constants t,, x, and c. In the region of 
small IJ. the corresponding equation for the determination 
ation of 5, will differ from (27) in the right-hand side by 
an amount on the order of p.  If i t  is recognized that 
p =R (5,) = exp[-2kl], then Eq. (27) must be regarded a s  
valid in the region of small interaction constants even 
when R(s) i s  taken into account. At g< 0 the expression 
for the critical temperature, which follows from (27), 

c r = W  ex* (- 
corresponds to the critical temperature of the super- 
conducting transition. The amplitude y(5, P, j3) corre- 
sponds to a sum of diagrams of the Cooper type. 

In the case of a repulsion interaction ( g >  0) Eq. (27) 
determines the position of the singularity in the Peierls 
channel, and (28) yields the value of the temperature of 
the dielectric transition. It must be borne in mind here 
that (28) i s  valid if T:c wZ/&,. At w > w,, where 

the Peierls transition is suppressed. Expression (28) 
was obtained under the condition that w .c w,. If w > w ., 
then in the right sides of (15)-(27) we must put P- 0, 
and T,, turns out to be T: , and if Ttq 2 w ~ / E ~ ,  then 
w, = (Ti  E,)"'. 

Knowing the solution (22) and using (21), we can cal- 
culate the total amplitude y(5, q ,  6 )  with the aid of which 
we can calculate the different susceptibilities. Thus, 
f ~ r  example, the propagator of the fluctuation Cooper 
pairs i s  expressed in the following manner in terms of 
r(5,tl,S): 

At < >  the behavior of C(<) coincides with the one- 
dimensional case: 

Near the critical point 5 5, we can obtain the singular 
part C ( 5  ) , namely 

As already mentioned, allowance for R(s) when the 
latter decreases rapidly takes us outside the frame- 
work of the principal logarithmic approximation in the 
region 5 , ~  > P, and a t  small g ,  as we have seen, it does 
not lead in our physical consideration to a substantial 
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change of the results of the preceding approximation. 
Corrections of this type, however, can appear also in 
the region [, q >  B. Here they have a purely one-dimen- 
sional nature and turn out to be essential for the de- 
termination of the critical temperature. In the next 
section we proceed directly to the analysis of these cor- 
rections. 

3. DEPARTURE FROM THE FRAMEWORK OF THE 
PRINCIPAL LOGARITHMIC APPROXIMATION 

The results obtained in the preceding section can be 
understood in the following manner; in the region of 
high temperatures the quasi-one-dimensional system 
behaves like a one-dimensional one, but a t  low tem- 
peratures there come into play three-dimensional ef- 
fects and behavior of the system is more reminiscent 
of a three-dimensional one. The region of energies 
(T>>w) in which the behavior of the system turns out to 
be one-dimensional was described by us in the parquet 
approximation, while the three-dimensional region 
(T<<w) was described in the ladder approximation. The 
temperature a t  which the one-dimensional behavior gives 
way to three-dimensional is equal in this case to w .  

In the present section we attempt to go outside the 
framework of the parquet approximation, and take into 
account corrections to the mass operator and the f i rs t  
unpaired diagrams for the vertex function. The diagram 
of lowest order in the interaction constant, which de- 
scribes the renormalization of the Green's function, is 
shown in Fig. 3. After integrating with respect to f re-  
quency and to the longitudinal angular momentum, the 
result of the calculation of this diagram takes the form 

where 

f=u(pII-~o)+w[cp(ll)-cp(L)-~(ll+L2-~,)1, p,,>O. 

Integration with respect to transverse part of the mo- 
menta is best carried out with the aid of the function 
p(z) defined by 

The expression for  (w , p) then takes the form 

where y = v(p ,, -p,), and E l  and E ,  a r e  the limiting val- 
ues of c, between which the function p(z )  is different 
from zero. We note that (w , p )  depends on the trans- 
verse momentum only via p(z). It was assumed above 
that l y 1  , lwl <<wE,=wE,.  In the case of the opposite re-  
lation we have, with logarithmic accuracy, 

m a x ( l o l ,  l y l )  . n 
~ ( u , p ) = = $ ( a - y )  {ln O D  

This result, which corresponds to the one-dimensional 
case, also follows from (33) if we put p(z) = 6(z). For 
cp(pI) in the form (4) (this is precisely the case con- 
sidered from now on) p(z) has a t  zero a weak singular- 

-e- 
FIG. 3. 

ity (z-"~), and therefore the f i r s t  term in (33) con- 
stitutes the main contribution to the mass operator. For  
example, 

where 
S b  ' d z  3"; 

~ ( z )  =2 5 dz' ( z ' ) .  I ,  (z) = j  y ~ ( z ) ,  El=-Ez=Ea= 4 - 
0 

[cf. (12) and (14)]. At w =y << WE, we have 

where I , (O) z 1.8. 

Thus, the obtained corrections constitute a renormal- 
ization of the residue a t  the pole of the Green's function 
and the values of the width of the band in the transverse 
w direction, and also of the regular corrections to the 
velocity on the Fermi surface. Leaving out the correc- 
tions of the last  type, since they a r e  small  in the inter- 
action constant, we can express the total result of the 
calculation of (w , p )  in the form 

A similar result is obtained also for  the f i rs t  non- 
parquet diagrams of the third order in the interaction 
constant. We present here the result of the calculation 
of the vertex function by perturbation theory up to third 
order in the interaction constant: 

The external momenta of the vertex function r a r e  se t  
equal to iiqO. In (35), s stands for s =max(lel,w) under 
the condition that I > Iw l  , lnl ,  where E i s  the frequency 
transferred in the third channel. 

It is seen from these calculation results that the cor- 
rections to the parquet approximation in the high-ener- 
gy region coincide with those for the one-dimensional 
system,' and that a t  energies above a certain charac- 
teristic value they cease to operate (they turn out to be 
temperature-independent). It is therefore best to take 
these corrections into account by using the renormaliza- 
tion-group method previously proposed for the one-di- 
mensional system.' The Green's function in accordance 
with the character of the obtained corrections must be 
represented in the form 
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and then the function d is connected with the mass oper- 
ator Z in the same manner a s  in the case of the one- 
dimensional system: 

d=[ l -Go(@,  pll)Z(o, P) I - ' .  (37) 

The functional relations of the group of multiplicative 
renormalizations must in this case be supplemented by 
one more relation for w [see (39) below] 

Here z , and z , are  renormalization factors that depend 
on the size of the scale transformation, andg'  i s  an in- 
variant charge having the meaning of the effective in- 
teraction constant a t  an energy of the order of o,. 

Generally speaking, the left- and right-hand sides of 
(38) and (39) contain besides w the parameter W, which 
remains invariant under scale transformation. Accord- 
ing to (36) and (39), i ts  value is 

and it has the meaning of the effective width of the band 
in the transverse direction a t  an energy of the order of 
w. Calculating the diagrams corresponding to the f i rs t  
orders of perturbation theory, we have verified that in 
the region w > W they do not depend on W. Extending this 
result to higher-order made up of the considered dia- 
grams, we can state that in the considered approxima- 
tion (second order in the renormalization-group meth- 
od) the influence of the transverse motion can be neg- 
lected in the region w < W, and consequently the param- 
eter W can be left out of (39). Taking (40) into account, 
we can rewrite the condition o > W in the form w > T,, 
where T, satisfies the equation 

The quantity T, determines the limiting value of the 
energy, above which the behavior of the system turns 
out to be one-dimensional, and below which a transition 
takes place from the one-dimensional to the three-di- 
mensional behavior. A s  follows from (41), i t  can differ 
from w .  

Thus, in the region w > T, the situation turns out to 
be similar to the one-dimensional one. In the TL model, 
the invariant charge in the second order of the renor- 
malization-group method, just as in f i rs t  order (the 
f i rs t  order of the renormalization-group method cor- 
responds to the parquet approximation), remains equal 
to the unrenormalized value. The reason is that the 
corrections to the mass operator and the vertex func- 
tion in the function of Gell-Mann and Low cancel each 
other. For the function d, which describes the renor- 
malization of the residue a t  the pole of the Green's 
function, we obtain in this approximation the following 
expression: 

and consequently 

The total scattering amplitude in the symmetrical point 
5 = q =  1 is connected with d ( [ )  and with the invariant 
charge g(5) [5 = ln(lw 1 /wD) ]  by the relation 

which enables us to obtain y(5) a t  w > T,: 

In the region w < T,  or  w < W the lower-order dia- 
grams, which contribute to the second order of the re -  
normalization-group method, do not depend on w and 
"freeze" their value a t  w = T,. Generalizing this result 
to diagrams of higher order in g, we find that in the 
region w < W the functions d and W remain constant and 
equal to 

d= ( ~ / o , ) ~ * .  W=W ( w / o D ) " ' .  (46) 

The relation (44) makes i t  possible to obtain the total 
scattering amplitude also in the region w < T,. It must 
be borne in mind here that it suffices to calculate the 
function g ( [ )  of (44) in the principal-logarithm approxi- 
mation, since the next-approximation diagrams do not 
depend on 5 .  In addition, in the approximation of the 
principal logarithm, the parquet diagrams of the mixed 
type, a s  shown in the preceding section, a r e  also of no 
importance in the region w < W. The corresponding in- 
variant charge was in fact calculated in the preceding 
section in a more general form a t  6 + r ] .  If we use the 
results of the preceding section, then we have for the 
scattering amplitude y(5, q ,  g) in the region 5 ,  q ,  1 
s 6 = ln(T,/w,), 

We have neglected here the influence of the transition 
region, and have put = 0 in (21). 

The present results corresponds to the next scheme 
for summing the perturbation-theory ser ies  for the 
scattering amplitude. We carry  out f i rs t  a partial sum- 
mation of the ser ies  terms that contain the parameter 
w.  In the parquet approximation these a re  the terms 
g(gP)", and in the next higher approximation (second 
order in the renormalization group), these a re  the 
terms of the type g(gfi)n(g2~)m. This i s  followed by 
gathering together the rearranged ser ies ,  the general 
term of which takes the form &?(q - $)1" o r  gf g(5 - b) j", 
where g is the invariant contribution (equal to the num- 
ber of normalized contribution in our model) and B =  6. 
Within the framework of Ref. 13, the proposed approach 
would correspond to scheme 111. ?here is ,  however, 
a substantial deviation from the complete scheme III. 
On going from the problem with two "cutoff" parameters 
w, and w to the problem with a single parameter, the 
renormalization of the interaction constant is  accom- 
panied also by renormalization of the lower cutoff pa- 
rameter, namely w - TI. Generally speaking, if w, 
in Ref. 13 is regarded not as a formally specified cut- 
off parameter, but a s  a physical quantity to be deter- 
mined in the problem (for example, the Debye frequen- 
cy in the phonon subsystem), then on going from the 
problem with two "cutoff" parameters E, and w, to the 
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problem with one parameter w, we get besides the re- and a t  w w, - 
normalization of the interaction constant also a change 

LIT,ITc,O=(Tc,OIw)', 
in the lower parameter, i.e., w, - w6, which causes a 

and i t  is  this which allows us to speak of a critical tem- softening of the phonon spectrum. It is important here 
perature in the entire range of variation of w. that g l+  0. In the present model g, = 0 and there is no 

renormalization of o,. 
4. CONCLUDING REMARK 

Expression (36) can be obtained with the average-field 
or  similar approximation from the transverse kinetic 
linkage. Here, however, this pertains only to the 
single-particle Green's function, whereas in Ref. 6 
such an approximation is used to calculate two-particle 
correlation functions. In addition, in contrast to Ref. 
6, an important role is played in the present problem 
by corrections to the results of the field averaged over 
w. The region of applicability of (36) is limited by the 
condition o> T,. At energies below T, the influence of 
w reduces to a "freezing" of the one-dimensional ef- 
fects. As a result, in this region the system is more 
reminiscent in its properties of a three-dimensional 
system. The critical temperature, defined a s  the posi- 
tion of the pole singularity of the amplitude with re-  
spect to w ,  turns out to be1) 

Its change compared with (28) is due to renormaliza- 
tion of the transverse width of the band from the value 
w to TI. At gl> 0 Eq. (48) determines the temperature 
of the dielectric transition, and a t  gl< 0 i t  determines 
the temperature of the superconducting transition. In 
the case of the dielectric transition it must be kept in 
mind that (48) is valid for w < w,, where w,, as before, 
is obtained from (29). At w a w,, the dielectric transi- 
tion is suppressed. 

It is known that in a one-dimensional Fermi system 
the particle momentum distribution function does not 
have the Fermi step. In a quasi-one-dimensional sys- 
tem the step is restored and i s  equal to 

The result obtained in Ref. 14 corresponds to the f i rs t  
two terms of the expansion in the interaction constant 
(49). 

In the investigation of the three-dimensional region 
we made use of the ladder approximation, which from 
the point of view of the phenomenological theory of 
phase transitions is an approximation of the average- 
field type. It is therefore valid only outside a certain 
vicinity of the phase transition point, in which the fluc- 
tuations of the corresponding order parameter a r e  al- 
ready significant. To determine this region we can use 
the known formulas for the estimate of the fluctuations 
of the order parameter from the phenomenological 
Ginzburg-Landau theory for an anisotropic system. As 
a result we find that the region of the essential singular- 
ity near the phase-transition point extends over a tem- 
perature interval" AT,, , equal to 

ATr=TCn(WTA1, (50) 
where T, depends on w in accordance with (48). Sub- 
stituting (48) we find that the fluctuation region around 
the transition point is quite narrow: a t  w G o, 

ATdz -(Tc:/oD)' 

We have confined ourselves above to consideration of 
a quasi-one-dimensional system, in which there is no 
short-range interaction (g, = O), the so-called TL mod- 
el. It is known that the one-dimensional TL model is 
equivalent to the problem considered in Ref. 12. It was 
shown there that in the parquet approximation the cor- 
rections to the scattering amplitude determined a t  a 
symmetrical point cancel out in each order of perturba- 
tion theory, on account of the diagrams of the mixed 
type [this property can be noted directly in (35)], i.e., 
the correlation between the fluctuations of the two types 
i s  substantial in our problem. From the foregoing analy- 
sis i t  follows that the fluctuations corresponding to dif- 
ferent types of instability suppress each other.' The 
cause of this effect is that for  one sign of the interac- 
tion constant. in the absence of correlation, fluctua- 
tions of one type increase whereas the fluctuations of 
the other type a r e  suppressed. As a result, even in the 
parquet approximation, the critical temperature in the 
purely one-dimensional TL model turns out to be equal 
to zero. 

The situation is entirely different in the presence of 
a short-range interactiong,+ 0. At gl< 0 the fluctuations 
of both the Cooper and the Peierls type can grow, and 
allowance for  the correlation between them leads to 
their mutual enhancement and to the appearance, in the 
one-dimensional system in the parquet approximation, 
of a new state in which Cooper and Peierls pairing co- 
exists." However, in order to obtain in the one-di- 
mensional case a t  gl+ 0 a ze ro  critical temperature it 
is necessary to go outside the framework of the parquet 
approximation. Therefore, in a quasi-one -dimensional 
generalization of the model with two types of interac- 
tion, which can be carried out within the framework of 
the parquet approach, we can expect new singularities15 
to appear in the behavior of the system a t  a function of 
w, for example an increase of T, in the region of small 
but nonzero w . 

"According to the average-field method with respect to w 
(Ref. 6 ) ,  the critical temperature for this model is  equal to 
T-*= w ( W / C O , ) - ' ~ ' .  -- - 
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Role of slow relaxation processes in the formation of the 
Kapitza jump on the boundary between a superconductor 
and a dielectric 
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The effect of slow relaxation of excitons in a superconductor on the thermal Kapitza resistance between a 
superconductor and a dielectric is considered. It is shown that the presence of a hierarchy of relaxation 
length in the superconductor leads to the existence near the boundary of a region that is in strong 
disequilibrium. The observed Kapitza jump depends on the size of the energy gap. The results of the 
theory agree in order of magnitude with experiment. 

PACS numbers: 74.30.Ek, 77.90. + k 

When heat passes through a boundary between two 
media, a temperature jump i s  produced, called a 
Kapitza jump. The theory of this phenomenon on the 
boundary between superfluid He 11 and a solid was con- 
structed by Khalatnikov.'s2 Little3 extended this theory 
to the case of a contact between two bodies with differ- 
ent acoustic properties (densities and sound velocities). 

The conclusions of the theory'-3 reduce to the follow- 
ing. Only phonons transport the energy through the 
boundary. By virtue of the difference between the 
acoustic properties of the two media, the phonons have 
a definite probability of being reflected from the bound- 
ary. As a result, the energy flux 1, the boundaries is 
connected with the temperatures in the two media on 
the boundary by the relation 

Here A i s  a coefficient proportional to the probability of 
the passage of the phonons through the boundary. In the 
derivation of (1) it is assumed also that the phonon dis- 
tribution functions in both media remain in equilibrium 
up to the boundary, with temperatures T o  and TI. 

There exist, however, experimental facts which have 
so f a r  not been explained within the framework of the 
theory of acoustic mismatch.lJ One of them i s  that the 
Kapitza jump between a superconductor and a dielectric 

depends on the energy gap in the superconductor, which 
is varied in the experiments with the aid of a magnetic 
field (see, e.g., Refs. 4 and 5). In the superconducting 
state the Kapitza jump turns out to be larger than in the 
normal metal at the same temperature. The change in 
the Kapitza jump fluctuates in various experiments from 
a fraction of several hundreths to a factor of several 
times. 

This fact does not agree with the theory,'-3 since 
neither the sound velocity nor the coefficient of the 
phonon reflection from the boundary i s  dependent in 
practice on the energy gap in the superconductor. An- 
dreev6 and Little7 considered the influence d the con- 
duction electrons on the phonon transmission coefficient 
through the boundary. However, allowance for this - 
mechanism does not lead to a substantial improvement 
of the agreement between experiment and theory. 

On the other hand, the assumption that the distribution 
functions retain their equilibrium form all the way to 
the boundary in generally speaking incorrect, Equili- 
brium distributions set in only at distances from the 
boundary that are larger than the character\istic relaxa- 
tion lengths. In the immediate vicinity of the boundary 
the distribution functions d the excitations are not in 
equilibrium, and their form depends on the relaxation 
mechanisms. 

'\ 
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