
Cyclotron resonance of the nonlinear optical susceptibility 
of n-type lnSb 

M. S. Bresler and 0. B. Gusev 
A. l? Ioffe Physicotechnical Institute. Academy of Sciences of the USSR, Leningrad 
(Submitted 17 August 1978) 
Zh. Eksp. Teor. Fi. 76, 724-735 (February 1979) 

An investigation was made of the cyclotron resonance of the nonlinear optical susceptibility X")( - o,, o,, 
w,, - o,), responsible for the frequency,shift of the o, = 20, - o, type in n-type InSb. The experiments 
were carried out using a Q-switched CO, laser emitting simultaneously at two frequencies ~ ~ ~ 9 4 4  cm-' 
and ~ ~ ~ 1 0 4 4  cm-I. A semiclassical theory based on the solution of the equation of motion of a 
conduction electron in a nonparabolic band with the Kane dispersion law described well the position and 
profile of the cyclotron resonance line of X"' ( - o,, o,, o,, - 02) It was established that, in contrast to 
the linear cyclotron resonance case, the resonance of the nonlinear susceptibility of a doped semiconductor 
in the Voigt experimental geometry is not govuned by the frequency of magnetoplasma oscillations 
(oi + o:)"' but by the cyclotron frequency of one-particle excitations o,. The electron relaxation time at 
the difference frequency w2 - a,, as well as the magnitude and sign of the nonlinear optical susceptibility 
of bound electrons in InSb were determined experimentally. 

PACS numbers: 76.40. + b, 78.20.Dj 

Nonlinear optical phenomena have been used success- 
fully in the generation and conversion of electromagnetic 
radiation, and in obtaining information on the energy 
spectra of solids. 

Studies of the phenomenon of frequency mixing in 
narrow-gap semiconductors' have established that the 
main source of the nonlinearity of such materials is 
the conduction band nonparabolicity. 

In the case of cubic crystals it is convenient to inves- 

this effect a s  the cyclotron resonance of the nonlinear 
optical susceptibility. Subsequently, Wynne suggested 
a semiclassical theory3 based on the solution of the 
equation of motion of an electron in the conduction band 
of InSb subjected to a magnetic field; this theory ex- 
plains the principal experimental results of Ref. 2. A 
more rigorous analysis of the behavior of the nonlinear 
optical susceptibility in a magnetic field by solving the 
Boltzmann transport equation4 does not give any signif i- 
cantly different results  but explains the meaning of the 
electron momentum relaxation time introduced phenom- 
enologically by Wynne in the final result. 

tigate the nonlinear process of frequency mixing of the 
Yablonovich et al.' investigated only one sample of n- 

w, =2w, - o, type, which is described by the third-order 
type InSb and, therefore, in comparing the theory with 

nonlinear susceptibility X'3'(-w3, wl, w,, -w,). For a experiment Wynne varied several  parameters a t  the 
combination of frequencies such that w, is close to w,, 

same time in an arbitrary manner. We carried out a 
the frequency w3 lies in the same spectral range and detailed investigation of the cyclotron resonance of the 
the phase-matching condition is satisfied well, so  that nonlinear optical susceptibility of n-type InSb in a wide 
relatively weak nonlinearities can be detected. range of electron densities. 

From the quantum point of view the generation of 
radiation of frequency w3 is a coherent four-photon pro- 
cess occurring via three intermediate states. In this 
process the initial and final states of the electron sys- 
tem a r e  identical and the photons participating in the 
conversion obey the law of conservation of energy. 
When the difference between the photon energies E(w, - w,) is close to the separation between discrete o r  
quasidiscrete energy levels of electrons, the probability 
of transition to the second intermediate state increases 
resonantly and this gives r i se  to a resonance of the non- 
linear optical susceptibility. If a CO, laser  emitting a t  
two frequencies wl=944 and w,= 1044 cm" is used, the 
difference w, - o,= 100 cm-l corresponds to the separa- 
tion between the electron Landau levels of InSb in rela- 
tively weak magnetic fields of -20 kOe. Yablonovich, 
Bloembergen, and Wynne2 were the first  to observe a 
resonance of the nonlinear optical susceptibility X')(-w,, 
w,, w,, -w,) in the case when the difference frequency 
AW = w, - w ,  was equal to the cyclotron frequency o r  
twice that frequency. For brevity, we shall refer to 

On the basis of general considerations we can expect 
that, in addition to the resonance a t  the cyclotron fre- 
quency w, = e ~ / m * c  (m* is the effective electron mass), 
the nonlinear optical susceptibility X6'(-w3, wl, wl, -w,) 
may also exhibit a resonance when the frequency differ- 
ence w, - w, becomes comparable with the spin fre- 
quency of the conduction electrons. This resonance has 
indeed been o b s e r ~ e d . ~ ~ ~  

We shall now consider the theory of the cyclotron 
resonance of the nonlinear optical susceptibility. 

THEORY 

We shall use the results  of the simpler semiclassical 
analysis of the behavior of the nonlinear optical sus- 
ceptibility in a magnetic field based on the solution of 
the equation of motion of an electron in the conduction 
band of a narrow-gap semicond~c to r .~  The application 
of the semiclassical approach is justified by the fact 
that in the case of resonance a t  twice the cyclotron fre- 
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quency Aw = 2wc, which will be the only case considered 
here, the inequality Em,<< c ,  is satisfied for practically 
all the electron densities of interest to us; here, c ,  is 
the Fermi energy of the electron system (at the tem- 
perature of liquid helium the electron gas in the conduc- 
tion band is degenerate in all  cases when the nonlin- 
earity is not too weak). We shall consider the motion 
of an electron in a band described by the Kane Hamil- 
tonain 

where c, is the band gap; m* is the effective mass at 
the bottom of the conduction band; p is the electron 
momentum. 

In this case the electron velocity is 

i.e., the electron velocity is a nonlinear function of the 
momentum because of the conduction band nonparabolic- 
ity. It is this factor which is responsible for the nonlin- 
ea r  optical phenomena in narrow-gap semiconductors 
of the InSb type. 

In the presence of a static magnetic field H the equa- 
tion of motion of an electron acted upon by an external 
high-frequency electric field E is 

where % = -eH/m*c is the cyclotron frequency of an 
electron a t  the bottom of the conduction band. 

It is convenient to seek the solution of Eqs. (2) and (3) 
by assuming that the nonlinearity is weak and expanding 
the momentum as a ser ies  in powers of the electric 
field 

p=p'Q'+p"'+ p"' t.. , , (4) 

where p6) is the electron momentum in the absence of 
the electric field (Fermi o r  thermal momentum in the 
absence of degeneracy); p(l),p@),. .. a r e  the corrections 
which are  linear, quadratic, etc. in respect of the elec- 
t r ic  field. 

The solution of Eq. (3) for the linear correction 
describes the usual cyclotron resonance a t  the fre- 
quency w, = w c  in the E, LH geometry. This resonance 
may occur also for the nonlinear optical susceptibility 
(because of an increase in the probability of transitions 
to the first  intermediate state), but in the case of n-type 
InSb illuminated with CO, laser  radiation it occurs in 
fields of the order of 100 kOe (Ref. 7). 

However, we can see  that in addition to the nonlinear- 
ity occuring in Eq. (2) and applicable to the velocity 
which results in frequency mixing in zero magnetic 
field, there is an additional nonlinearity which occurs 
in the expression for the Lorentz force in Eq. (3) and 
which appears in a magnetic field. 

In the quadratic approximation with respect to E the 
nonlinear correction to the Lorentz force in Eq. (3) 
contains a component at the frequency Aw (whose am- 
plitude is proportional to w,) and this gives to a reso- 

nance of p(2) at the frequency Aw 50,. The nonlinear 
term in the expression for the velocity results  in mix- 
ing of the contribution p(') at the frequency A w  with p(l) 
at the frequency w,, which produces a correction to the 
frequency a t  w, =2w, - w, that resonates a t  the frequen- 
cy AW =o,. However, this type of cyclotron resonance 
of the nonlinear optical susceptibility is not the only 
one possible: we can also have a resonance a t  Aw =2wc. 

Although these two types of cyclotron resonance can 
be derived in a natural manner from the quasiclassical 
t h e ~ r y , ~  it is more convenient to account for their origin 
and for the geometry in which they a r e  observed by a 
quantum expression for the nonlinear current 

The summation is carried out over all the states i, j, 
'k, and I and over all the transpositions of the photons 
participating in the many-photon process; however, by 
way of illustration only the contribution to the resonance 
at the frequency Aw is included above (the other contri- 
butions do not resonate). 

In a magnetic field the electron states i ,  j, k, and I 
a r e  described by the Landau wave functions. It is known 
that for E LH the operator p shifts-as a result of an 
electron transition-the Landau quantum number by 
unity N' =N * 1, whereas in the E llH case the selection 
rule is  N' =AT. Therefore, the energy of the state k may 
differ from the energy of the state i either by 2fiwc or 
by Ew,, depending whether the electric fields a r e  direc- 
ted s o  that El,  E, LH or  whether they have components 
parallel to H. 

Both types of cyclotron resonance were observed in 
Refs. 2 and 3; we shall consider only the purely trans- 
verse geometry E1,E, lH,  which is not only simpler to 
realize experimentally but also more convenient for the 
comparison with the theory because in this case there is 
no superposition of two resonance contributions in the 
range of fields between the resonances. Going back to 
the quasiclassical approach, we shall now write down 
the final expression3 for the nonlinear current at the 
frequency w, in the transverse experimental geometry 
(E1,E2,E3IIx~Hllz): 

c,(os) =- {3/m.eI) (ie3E,.'E,/o,Zo2) {[D-"-8D-"z(p'012/2m'e,) 
+16D-1~(p~D"/2m'e , ) : ] - (16 /3 )  oCpo,'L (.la)' 

- (20 , ' )2]  - I  (p'P1'/2m'e,) - D-'[1-3D-'(pY"/2m'E.) 1'1, (6) 

where 

D-1+2p~ota/m.~,, w ~ = o ~ . D - ' ~ [ I - D - ~ ( ~ ~ ~ ' / ~ ~ ' E ~ )  1, 

wf is the cyclotron frequency of an electron with the 
momentum p(0) in the nonparabolic case,  and P?' is the 
transverse component of the electron momentum. 

The f i rs t  term in the brackets in Eq. (6) represents 
the nonresonance contribution to the frequency mixing 
in the absence of a magnetic field (nonresonance back- 
ground), whereas the second term describes the reso- 
nance in a magnetic field at Aw = 2w:. 

We can find the nonlinear current by summing the 
velocity expression (6) over all  the electrons in the 
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conduction band: 

Here, fO(&) is the Fermi  distribution function. 

By definition, the nonlinear optical susceptibility 
X(3)(-w3, w,, 4, -w,) is the coefficient relating the non- 
linear current to the electric fields exciting it: 

The power of the observed signal is proportional to 
Ij(w,) 1'. It follows from the expression (6) that the 
resonance contribution to the nonlinear current vanishes 
in the absence of a magnetic field. This makes it pos- 
sible to "calibrate" the experiment, i.e., to eliminate 
the influence of such factors a s  the change in the laser 
power from one run to another, mode structure of the 
laser radiation, thickness of the samples, etc. 

The resonance amplitude, relative to the nonresonance 
spectrum, can be estimated allowing for the relaxation 
processes which limit the resonance amplitude. In the 
Wynne theory they a re  allowed for phenomenonologically 
by replacing Aw with Aw - i / ~ ,  where T is the relaxa- 
tion time of the same order of magnitude a s  the momen- 
tum relaxation time. 

In the weak nonparabolic case (when the Kane disper- 
sion law can be expanded a s  a series),  we have D =  1 and 
for the ratio 5 of the cyclotron resonance amplitude to 
the background we have the estimate 

for moderately high conduction electron densities. 

It should be pointed out that because of the condition 
W,T, W,T >> 1 the relaxation processes a r e  unimportant 
for the nonresonance part of the nonlinear susceptibility 
xm, which is a real  quantity; the resonance susceptibil- 
ity xr has real  X: and imaginary X: parts. It follows 
from the above inequality that br(w3)/e Ij,,,(w3) 1; hence, 
the ratio of the signal powers at the frequency w, in the 
presence and absence of a magnetic field is  

The real  part of the resonance contribution to the sus- 
ceptibility X: exhibits dispersion and, consequently, if 
xr < x ~ ,  one can expect dispersion (frequency depen- 
dence) of the radiation power near the resonance. 

We shall compare the experimental results for the 
power P(w,) normalized to zero  H field with the results 
of calculations of 1 +2X:/X,r based on Eq. (9). 

EXPERIMENTS 

A Q-switched laser emitted at two frequencies w, 
= 944 and w, = 1044 cm-', corresponding to the wave- 
lengths 10.6 and 9.6 p.  The pulse duration was about 
250 nsec and the repetition frequency was 250 Hz. Since 
the active-medium gain at w, was higher than a t  w,, 
the maximum of a pulse at w, was observed several 
tens of nanoseconds earlier than at w,. The pulses were 
made to coincide in time by introducing a dispersive 
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element into the laser resonator: this was a NaCl 
wedge with a vertex angle of 1.2" (Ref. 8). This wedge 
initially facilitated the emission of radiation at the fre- 
quency w,. Rotation of the wedge made it possible to 
ensure that the radiation pulses a t  the two frequencies 
coincided and this produced a strong mixed radiation 
signal. 

The expression for the output radiation a t  the mixing 
frequency isg 

?56~'o~~P,~P~ (I-RIZ) ( I -R?)  
P, = 

( i + R s )  nl'n2n:ci (Y.'")? 

i l k - l a  

where R is the reflection coefficient; n is the refrac- 
tive index; w is the size of a focused spot produced by 
a Gaussian beam; LY is the absorption coefficient; k is 
the wave vector; the indices 1, 2, and 3 refer to the 
waves with the frequencies w,, w,, and w,, respective- 
ly; A a  =a ,  +(a,/2) - (a3/2); Ak=2k1 - k, - k,. It follows 
from Eq. (10) that, firstly, in the case  of small  absorp- 
tion coefficients a t  t h e  frequencies w,, w,, and w, the 
optimal thickness of the sample I corresponding to the 
maximum output radiation at the mixing frequency is 
equal to the coherence length (for electron densities in 
n-type InSb up to about 9 x 10" cm-,) and I =  l/a at 
higher densities (it is assumed that a, = a, = a,). Sec- 
ondly, the optimal ratio of the laser  powers at the fre- 
quencies w,  and w, for a constant total laser power P 
=P, +P, should be 2:l. The optimal ratio of the powers 
PI and P, was ensured by a suitable alignment of the 
laser  resonator and selection of the composition of the 
CO, - He - N, gaseous mixture. 

The laser radiation was focused by a BaF, lens onto 
samples which were immersed directly in liquid helium 
kept at T =1.8" K. These samples were inside a super- 
conducting solenoid capable of generating magnetic 
fields up to 75 kOe. Measurements were carried out on 
n-type InSb single crystals of 6 x  4 mm dimensions and 
thickness selected on the basis of the considerations 
mentioned above. Since a study was made of the car-  
rier-density dependences of the position, amplitude, 
and line profile of the cyclotron resonance of the sus- 
ceptibility X(3), it was important to select samples 
which had homogeneous carrier-density distributions. 
The electron density in our samples was determined 
from the Hall effect a t  liquid nitrogen temperature 
after grinding and polishing, and a correction was made 
for the geometric factor.@ The homogeneity was de- 
duced from the identity of the Hall emf's in identical but 
oppositely directed magnetic fields; disagreement be- 
tween these two values was typical of an inhomogeneous 
material. The electron density in our samples ranged 
from 1.7 x 10" to 2.5 x 10" cm-3 and the mobility from 
7 x  lo4 to 4 x lo4 cm2 x V - ' x  sec-'. Use was made of 
samples with the [loo] (IH, [ I l l ]  (JH orientations a s  well 
a s  of unoriented samples. However, since there were 
no effects associated with anisotropy, all the results on 
the oriented and unoriented samples were analyzed to- 
gether. 

Radiation at the mixing frequency w, =2w1 - w, emerg- 
ing from a sample was separated from the high-power 
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pump radiation transmitted by the sample; this was 
done using a two-step reflecting sapphire filter1' and a 
prism monochromator. Then, the radiation at the mix- 
ing frequency was recorded with a Ge:Hg detector 
cooled with liquid helium and a pulsed synchronous de- 
tector. (The time constant of this detector ranged from 
a few tenths of a second to 2.5 sec.) The reference sig- 
nal for the synchronous detector was the radiation re- 
flected from one of the Brewster windows of the COz- 
laser discharge tube. The output of the synchronous 
detector was applied to an X-Y plotter; the second input 
of this plotter received a signal proportional to the mag- 
netic field created inside the superconducting solenoid. 
The measurements were carried out in the Voigt ex- 
perimental geometry, i.e., the wave vectors a t  all the 
frequencies (w,, w,, w,) were perpendicular to a static 
magnetic field H. 

RESULTS AND DISCUSSION 

Figure 1 shows typical magnetic-field dependences of 
the power P(w3) at the mixing frequency corresponding 
to the wavelength of 11.8 p .  It is clear from this figure 
that the dependences do indeed show dispersion in ac- 
cordance with the above theory. An increase in the 
electron density enhances the resonance intensity and 
shifts the resonance toward stronger magnetic fields. 
In the case of a pure dispersion curve the resonance 
position corresponds to the point of inflection. In the 
case of a Lorentzian line profile the separation from 
the minimum to the maximum of the dispersion curve 
plotted against the magnetic field corresponds to the 
half-width of the double cyclotron resonance. The am- 
plitude of this resonance is taken to be the separation of 

sion law, we have 

e ~ =  ([it (2h2/m.e8) (3nZn)a'=]'b-l). 

Figure 2 shows the experimental results  and the theo- 
retical dependence of the position of the cyclotron reso- 
nance of the susceptibility X(3) ( -~3 ,  wI, wl, -wZ) on the 
electron Fermi  energy. The calculated curve is based 
on Eqs. (7) and (6) and it applies to magnetic fields close 
to the resonance value; the position of the resonance is 
deduced from the point of inflection of the calculated 
curve. Averaging of v(w3) over the angles was replaced 
by the averaging of PIP,! and integration with respect to 
the momenta was carried out on a computer. In this 
calculation use was made of the following band structure 
parameters: m*  =0.0144m0, c, = 235.5 meV (according 
to Pidgeon and Brown"). We can see  that the agree- 
ment between the theory and experiment is'quite satis-  
factory. 

We have considered s o  fa r  only the theory (which des- 
cribes well the experimental results) that ignores the 
interaction between electrons, i.e., the collective plas- 
ma oscillations of the electron gas. It is known1' that 
in the case of the linear cyclotron resonance in the 
Voigt geometry (klH, where k is the wave vector of the 
laser radiation) the resonance does not occur at the 
cyclotron frequency w ,  corresponding to one-particle 
excitations (conduction electrons) but a t  the frequency 
w = (w: + wz)lfZ of a mixed magnetoplasma wave resulting 
from the interaction between the collective plasma os- 
cillations of the electron gas and the cyclotron motion 
of the carr iers  (w: =4mzeZ/nm*, where w, is the plasma 
oscillation frequency, u is the permittivity and m *  is 
the effective electron mass at the Fermi  level). 

the minimum to the maximum of the dispersion curve 
For the Fermi  energy E, =40 meV corresponding to 

plotted a s  a function of the power. We shall mean this 
the middle part  of the range of carr ier  densities inves- 

type of curve when we shall consider later the position, 
tigated by us, the plasma frequency is w, = 161.5 cm-', 

half-width, and amplitude of the double cyclotron reso- 
nance of the nonlinear optical susceptibility. We shall which is considerably greater than Aw. It follows that 

consider the dependences of the position, half-width, 
the cyclotron resonance at the magnetoplasma wave 

and amplitude of the double cyclotron resonance on the frequency cannot be observed at this carr ier  density. 

Fermi energy of the conduction electrons in InSb, i.e., However, the experimental results  indicate that the non- 

on the electron density. In the case of the Kane disper- linear cyclotron resonance is insensitive to the plasma 
oscillations. 

FIG. 1. Dependences of the radiation power at the mixing 
frequency P(w4 on the magnetic field applied to n-type InSb 
samples with various conduction electron densities n (crnm3) : 
1) 1.96 x loi6; 2) 4.8 x loi6; 3) 2.4 x loi7.  The points are the 
results of calculations carried out allowing for the nonlinear 
susceptibility of the bound electrons. 

FIG. 2. Position of the cyclotron resonance of the nonlinear 
optical susceptibility XC() ( -~3 ,  wl, wl, -wZ) as a function of 
the Fermi energy of the conduction electrons in n-type InSb. 
The curve is  calculated using Eqs. (6) and (7); the points are 
the experimental results: x)  [I001 11 H; 0) [I l l ]  11 H; 0) 
unoriented. 
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In fact, if we use the equations of motion of an elec- 
tron, we can show that the nonlinear macroscopic cur- 
rent a t  the frequency w, - o, vanishes for a material 
with a spherically symmetric Kane band and, conse- 
quently, it cannot excite coupled magnetoplasma oscil- 
lations s o  that  the nonlinear cyclotron resonance cor- 
responds to a transition between unrenormalized one- 
particle states and is governed by the frequency w,. 

As mentioned above, the relaxation time T which has 
to be allowed for to limit the resonance amplitude, is 
introduced phenomenologically in Eq. (6) by replacing 
A w  with A w  - i/r. In Wyme's paper the relaxation time 
is used a s  one of the adjustable parameters and is 
varied in a fairly wide range. However, before Wynne's 
paper, Rustagi13 developed a theory of the nonlinear 
optical susceptibility in the absence of a magnetic field 
by solving the Boltzmann transport equation. Rustagi 
showed that the correction to the distribution function 
due to the nonlinear force a t  the frequency w,  - w, does 
not decay at a ra te  given by the relaxation time T, oc- 
curring in the expression for the mobility but a t  a ra te  
characterized by a different time T, corresponding to 
the relaxation of the second (and not the f i rs t )  Legendre 
polynomial in the expansion of the nonequilibrium dis- 
tribution function in terms of spherical harmonics. A 
similar result was obtained by Almazov and Dykman4 
in their analysis of the nonlinear susceptibility in a 
magnetic field. According to Rustagi,13 in the case of 
elastic scattering by ionized impurities, we have 

z2(k) ln(i+z)-z/(l+z) -= 
T, (k) (3+6/z)ln(l+z) -6 

Here, k is the electron wave vector, z =4k2R2, and R 
is the Debye screening length 

n is t he electron density, and x is the permittivity. 
The expression (12) applies to a degenerate Fe rmi  gas. 
The conduction band nonparabolicity can be allowed for 
approximately if the mass a t  the bottom of the conduc- 
tion band m* in Eq. (12) is replaced with the density- 
of-states effective mass (mass a t  the Fermi  level). 

In the investigated range of densities from 2 x 10" to 
2 x  lo" cm-3 the relaxation time deduced from the mo- 
bility varies slowly and, on the average, it is equal to 
8.0 x lo-'= s e c  (in this estimate an  allowance is again 
made for the dependence of the effective mass on the 
electron energy). In the same range of carr ier  densi- 
ties the ratio T ~ / T ,  is almost constant and equal to 0.53; 
consequently, the relaxation time of the correction to 
the distribution function a t  the frequency w, - w, is T, 

;J 4.2 x 10'13 sec. A calculation of T, from the experi- 
mentally determined relaxation time 7, makes i t  pos- 
sible to allow for any compensation of impurities in InSb. 

The correction for the relaxation time has little in- 
fluence on the position of the double cyclotron resonance 
of the susceptibility X(3)(-~3,  wl, w,, -w,) and shifts the 
resonance by not more than I%, which is difficult ex- 
perimentally. 

On the other hand, the half-width of the resonance 
line is related directly to the relaxation time T,. An 

analysis of the resonance function 

where v2 =T;', we can easily show that the position of a 
maximum and a minimum of the dispersive part of the 
resonance function is governed by the conditions 

and 

Here, AH is the resonance half-width defined a s  above; 
a t  low ca r r i e r  densities (Fermi energies) it is governed 
only by the relaxation time (m* is the effective mass a t  
the bottom of the band); at higher densities, m repre- 
sents the cyclotron effective mass which depends on the 
Fermi  energy. 

The experimental values of the half -width of the 
double cyclotron resonance of X ( 3 ) ( - ~ 3 ,  w,, w,, -w,) a re  
compared in Fig. 3 with the theoretical calculations on 
Eqs. (6) and (7). The experimental points fit well the 
curve calculated for T =T, = 4.2 x 10-l3 sec ,  which con- 
forms that the relaxation time of the double cyclotron 
resonance differs from the relaxation time of the mo- 
mentum which occurs in the mobility. 

The amplitude of the double cyclotron resonance de- 
pends not only on the relaxation time T, but also on 
several  other factors. In our experiments a CO, laser 
generated radiation a t  several  lines of the rotational 
spectrum of the C02 molecule near the frequencies w, 
= 944 and w, = 1044 cm-'. This operation produced 
several spectral lines in the range w, = 844 cm-', which 
could be observed directly or in the spin resonance 
spectra of the nonlinear optical susceptibility x(~)(-w,, 
w,, w,, -w2) (Ref. 6). This will be considered in detail 
later; here, we shall point out that the spin resonance 
spectra make it possible to determine the strongest 
lines corresponding to the frequency w, - w,. There 
a r e  five such lines a t  frequencies 99.1, 100.9, 102.7, 
104.5, and 106.3 cm-'; their intensities (averaged over 
the results  of several  measurements) a re  in the ratio 
0.58:0.95:1:0.95:0.58. In fact, the number of the rota- 
tional lines is greater but in theoretical calculations of 
the amplitude of the double cyclotron resonance and line 
profile only these five lines with the power weighting 
factors are considered. Allowance for rnultifrequency 
laser  emission does not affect significantly the position 

0 20 40 60 80 
SF. meV 

FIG. 3. Dependence of the line width of the cyclotron reso- 
nance of X'S' (-us, w,, w ~ ,  -w2) on the Fermi energy of the 
conduction electrons in n-type InSb. The curve fs calculated 
and the points are experimental results: X)  [1001 II H; 
0) [I111 11 H; 0) unoriented. 
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and half-width of the resonance, which can be explained 
by the strong homogeneous broadening of the resonance 
a s  a result of the relatively short  relaxation time 7,. 

It follows from Eq. (6) that the resonance amplitude 
should be determined unambiguously by the relaxation 
time 7, (for a given carr ier  density n). However, i t  is 
clear from the dependence of the resonance amplitude 
on the electron Fermi energy (Fig. 4) that curve 1 cal- 
culated on the basis of Eqs. (6) and (7) fails to describe 
satisfactorily the experimental data because i t  gives 
overestimated values. This discrepancy between the 
calculations and experiment can be removed allowing 
for the contribution made to the nonresonance part  of 
the susceptibility X(3) ( -~3 ,  w,, wl, -w,) by the bound elec- 
trons in InSb, i.e., by the electrons in the valence and 
deeper bands. 

In the absence of a magnetic field, we have 

where X, and xf a r e  the contributions of the bound and 
free electrons; the calculations given s o  far apply only 
to x,. If allowance is made for the contribution of the 
bound electrons, the amplitude of the double cyclotron 
resonance can be calculated from 

where 8f X; and a, ax; represent the nonresonance 
background of the free and bound electrons, respec- 
tively; A, is the amplitude calculated from Eqs. (6) and 
(7); the quantity 8, can be regarded as an adjustable 
parameter. It is assumed that 8, is constant throughout 
the investigated range of free-electron densities. A 
comparison with the experimental results shows that a 
satisfactory description of the carrier-density depen- 
dence of the resonance amplitude is obtained when the 
contribution of the bound electrons to the nonlinear 
susceptibility X(3)  is equal to the contribution of the 
free electrons of density n =5.5 x 1015 cm-3 and of the 
same sign a s  xf. 

The dependence of the resonance amplitude A on the 
Fermi energy of the conduction electrons calculated 
allowing for the bound-electron background is in satis- 
factory agreement with the experimental data (Fig. 4). 
Moreover, a good description is then obtained of the 
experimentally observed profile of the double cyclotron 
resonance [the calculated values of the ratio P(w3, H)/ 
P(o,, 0) a re  represented by open circles on curve 3 in 
Fig. 11. 

The nonlinear susceptibility of the bound electrons is 
in agreement with the estimate given in the litera- 
t u r e , ' ~ ' ~  but its sign is opposite to the sign of ~ 1 3 )  ob- 
tained by Jha and Bloembergen14 by the bonding orbital 
method. It should be noted that in the case of german- 
ium and gallium arsenide the sign of ~ 6 3 )  also differs 
from that predicted by the bonding orbital model, which 
suggests inadequacy of the model. 

Our investigation of the double cyclotron resonance of 
the nonlinear optical susceptibility xf3)(-w3, w,, wl, -w,) 
a s  a function of the conduction electron density in InSb 
thus shows that a simple quasiclassical theory based on 
the solution of the equations of motion of a conduction 

E ~ ,  meV 

FIG. 4. Dependence of the amplitude of the cyclotron reso- 
nance of X ( 3 )  (-w3, w', wl, -wZ) on the Fermi energy of the 
conduction electrons in n-type InSb. Curve 1 is calculated 
using Eqs. (6) and (7); curve 2 is calculated allowing for the 
nonlinear susceptibility of the bound electrons; the points are 
the experimental results: X)  [I001 1 8; e) [I111 ll a; 0) unoriented. 

electron in a nonparabolic band with the Kane dispersion 
law describes satisfactorily all  the experimental results  
if we bear in mind that the relaxation times of electrons 
a t  the difference frequency w, - w, is not equal to  the 
relaxation time of the momentum of these electrons. 
The sign and magnitude of the nonlinear optical sus- 
ceptibility X(l)(-w3, o,, w,, -w,) a r e  determined for the 
bound electrons in InSb. 

The adopted investigation method can also be applied 
to study the nonlinear optical susceptibility of other 
narrow-gap semiconductors, including those of lower 
symmetry than InSb. 
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