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A theory is developed of quantum decay of a metastable state in a class of problems in which quantum 
fluctuations governing subbamer evolution of virtual nuclei of the new phase are related to the local 
motion of single particles. A model of a crystal with two positions (states) of an atom in a unit cell is 
considered. The amplitude of the tunnel creation of a critical nucleus is found. It is shown that the 
associated characteristic sum over various "paths" can be found employing the conventional statistical 
methods. The discrete nature of the energy structure of the levels makes it necessary to allow for the 
interaction with phonons, which is done within the framework of the kinetic equation for the density 
matrix. The method can be applied also to analyze the decay of a metastable state via formation of finite 
clusters, when the macroscopic description is impossible. 

PACS numbers: 05.30. - d 

1. INTRODUCTION tastable state is  found to be associated with subbarrier 
tunneling of a virtual nuclei of the new phase in the con- 

Lifshitz and ~ a g a n l  (see also ~ordanskii and Fin- figuration space. This virtual growth of nuclei causes 
kel'shtekjna) developed quantum kinetics of phase transi- an initially homogeneous system to pass through a se- 
tions at temperatures close to T = 0. Decay of a me- quence of locally inhomogeneous states. Lifshitz and 
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Kagan' used a macroscopic description of these states 
presupposing slight changes of-all the phenomenological 
characteristics over interatomic distances and feasibil- 
ity of describing the kinetic energy in terms of the time 
dependences of these characteristics. Under certain 
assumptions and far from the lability point, the prob- 
lem can be reduced to one-dimensional and quasiclas- 
sical in the space of sized of compact nuclei and this 
problem can be solved directly. 

However, there is an extensive class of problems in 
which quantum fluctuations, which are generally re- 
sponsible for the evolution d nuclei, are  associated with 
the local motion of single particles and the resultant 
inhomogeneous states are  characterized primarily by 
the number of particles n in the new-phase nucleus. This 
situation occurs if a phase transition is accompanied by 
a change in the state of the particles or, for example, 
when a unit cell has two nonequivalent positions for an 
atom separated by a potential barrier, etc. If the spe- 
cific amplitude of a transition accompanied by a change 
in the number of particles in a nucleus is small, n is a 
good quantum number. Then, the part of the Hamilton- 
ian nondiagonal in respect of n acts as  the kinetic ener- 
gy. 

The corresponding Schrijdinger equation is of the f i -  
nite-difference type in the particle number space. It is 
important to note that it is in general impossible to go 
over to a differential equation for no>>l (no is the num- 
ber of particles in a critical nucleus) and to the u s d l  
quasiclassical structure of formulas for subbarrier tun- 
neling. This is due to the fact that the change in the 
action AS corresponding to An = 1 in the particle number 
space obeys the inequality 

In general, n is not the only quantum number. The state 
of a system with a given value of n depends on the con- 
volution of particles in a nucleus. The subbarrier evol- 
ution of a nucleus may pass through various sequences of 
such configurations. We shall show that the amplitude 
of decay of a metastable state giving rise to a critical 
nucleus is expressed in terms of a characteristic sum 
aver "paths" in which the individual path represents a 
definite sequence of configurations in the virtual growth 
of a nucleus. 

Determination of this tunnel amplitude is effectively 
the main problem in the kinetics of phase transitions at 
temperatures close to absolute zero. 

We shall consider a very general example of a phase 
transition which occurs in the light-atom sublattice of a 
crystal which has two inequivalent positions (states) in 
each unit cell. The Hamiltonian of the system is then 
analogous to the Hamiltonian of the Ising model in strong 
longitudinal and weak transverse fields. The solution of 
the appropriate SchrSdinger equation and determination 
of the wave functions are given in Sec. 2. The amplitude 
of the subbarrier creation of a critical nucleus is found 
and a detailed analysis of the sum of configuration paths 
is made in Secs. 3 and 4. 

The discrete nature of the energy levels makes it 
necessary to allow for the interaction with the phonon 

degrees of freedom. This is considered in S ~ C S .  5 and 
6 on the basis of solution of the kinetic equation for the 
density matrix, which makes it possible-inparticular- 
to determine also the preexponential factor in the tran- 
sition probability. The role of temperature and the 
change from the quantum to classical transbarrier kine- 
tics is considered in Sec. 7. 

2. FORMULATION OF THE PROBLEM. SUBBARRIER 
WAVE FUNCTIONS 

We shall consider a crystal which has a sublattice of 
light atoms. We shall assume that a unit cell has two 
inequivalent positions of a given atom separated by a po- 
tential barrier. Consequently, the regular sublattice 
may have one of two configurations, which generally have 
different energies. We shall assume that both sublat- 
tices have the cubic symmetry. For simplicity, we 
shall confine our attention to the case when only the in- 
teraction between the nearest neighbors is important. 
Then, the Hamiltonian describing the light-atom sub- 
system can be written in the form 

H=H,+H,,  (2.1) 

Here, the index "*" refers to the two positions in the 
unit cell, and their corresponding creation a+ and ab- 
sorption a operators introduced in the site (Wannier) 
representation. The summation over g applies to the 
nearest neighbors. 

The nature of the expressions (2.2) and (2.3) implies 
that the interaction between atoms is of the pair type 
and that the amplitude of a transition between two states 
in a unit cell is independent of the local configuration. 
The energy in Eq. (2.2) is measured from the value cor- 
responding to the energy of the sublattice with all the 
atoms in the "-" position. The sign in Eq. (2.3) is sel- 
ected for reasons of convenience. 

We shall assume that a system which is in a stable 
state with atoms in the "-" sublattice (&< 0) experiences 
a t  t = 0 a change in the external parameters which result 
in E > 0. Then, the occupied sublattice becomes me- 
tastable. In the weak "supersaturation" case corre- 
sponding to 

e c x v  (2.4) 

(v is the number of the nearest neighbors) the decay of 
such a metastable state can occur only a s  a result of a 
simultaneous transition of a large number of atoms to 
the "+" state. On the other hand, in the most typical 
cases the amplitude of a subbarrier intrasite transition 
is small and we may assume that 

IL61(e,x. (2.5) 
If the condition (2.5) is satisfied, the state of the sys- 
tem can be conveniently represented by the eigenstates 
of the Hamiltonian H,. It follows from Eq. (2.2) that the 
Harniltonian Ho commutes with the total number of atoms 
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in the "+" state, which we shall now denote simply by 
n.  Thus, in this problem, the value of n is a good quan- 
tum number. However, the state and energy of the sys- 
tem depend not only on n but also on the configuration 
d the distribution of atoms in the "+" position. We shall 
introduce the index a to label the various configurations 
and we shall denote the eigenstates of the Hamiltonian 
H, by Ina,) or  simply by la,) in all  those cases when 
there is no danger d misunderstanding. 

We shall expand the complete wave function of the sys- 
tem in terms of these states: 

$= zrp.,, la,) .  
.a" 

Then, the Schrijdinger equation corresponding to the 
Hamiltonian (2 .1)  can be reduced to the following finite- 
difference equation: 

When n (n >> 1 )  atoms a r e  transferred to the "+" position, 
the minimum energy corresponds to a compact nucleus 
with the optimal surface configuration. The energy of a 
compact nucleus can in general be represented by 

En.=-en+B (a,)vxn"'. (2 .8)  

We shall use @, to denote the value of P(a,) correspond- 
ing to the configuration with the lowest surface energy 
for a given value of n. When the number of particles in 
the "+" state is increased, the energy of a nucleus f i r s t  
becomes less than zero for 

no-- (govx le )3  (Po-$..). (2.9) 

This is the critical size of a real  nucleus in the particle 
number space of the new phase. The subsequent fate d 
this nucleus involves evolution of energy and it  is not 
hindered by barriers. However, the transition from the 
initial state to the state with a separate critical nucleus 
is of pure tunnel nature and passes through a sequence 
d virtual nuclei with particle numbers n < no. 

We note that noncompactness of a nucleus increases 
greatly i ts  critical size. Let us consider a nucleus con- 
sisting of n particles in the ''+" state and p ( p  <<n) holes, 
i.e., particles in the initial "-" state. Then, 

E*-en+hx (n+p)"*+vxp. 

The number of particles in a critical nucleus increased 
by 

An=3vxp/eBp. (2.10) 

If we allow for  the exponential reduction in the transi- 
tion amplitude on increase of n (this is discussed be- 
low), the above result allows us to determine the prob- 
ability of appearance of a real  nucleus by considering 
only a transition to a state a,, corresponding to a criti- 
cal compact nucleus. 

It clearly follows from the above and also from Eq. 
(2.5) that the amplitude of a transition to the state a,, 
represents the sum of the amplitudes of formation of 
a critical nucleus along paths corresponding to transi- 
tions to a new state only of the atoms which lie within 
the region defined by the final configuration of a,,. Out- 

side this region the atoms a re  still in the "-" posi- 
tion. 

We shall now return to Eq. (2 .7 ) .  Let us assume that 
in addition to Eq. (2 .5 ) ,  the following inequality is 
obeyed : 

( ~ l ~ x ) ~ n ~ t l .  , (2 .11)  

We shall consider the solution of Eq. (2 .7)  which de- 
creases on increase of n and which corresponds to the 
initial metastable state E = O .  In this case, allowance 
for Eq. (2 .11)  and for the right-hand side of Eq. (2 .7)  
makes i t  possible to neglect the second term of prac- 
tically all values of n. Then, the solution of Eq. (2 .7)  
is obtained directly in the form 

$en- (anlH~1%-t) ~~-llHll~-2)...(allHl10) 
EanE,w,-,. . .El so. (2.12) 

(il. .a, 

It follows from the form of Eq. (2.12) that the con- 
figuration a,  is attained as a result d a minimum num- 
ber of steps, equal to n. Therefore, a l l  the intermed- 
iate steps a r e  limited strictly to the configuration of the 
unit cells corresponding to a,. Allowance for  the popu- 
lation of this configuration with particles in the "+" state 
gives the number of terms in any intermediate sum 

C - n - p + l .  
L l ~  

Consequently, the total number of additive terms in Eq. 
(2.12) is 

Each term effectively represents the product of the re-  
ciprocals of the energies which appear in each path a s  
n cells a r e  filled sucesssively with n particles in the 
"+" state. The filling sequence is random and the num- 
ber of paths is given exactly by Eq. (2 .13) .  

Bearing these results in mind and using the notation 

Eap=xe ( a p ) ,  

we can transform Eq. (2.12) to 

Here, gun) denotes functional summation over all  n ! 
paths which result in the configuration a , .  The sum in 
the exponential function represents all  the individual 
paths. 

Since the wave function (2.6) is in our case localized 
in the region of a critical nucleus, we can easily show 
that normalization of this function to unity subject to the 
inequality (2.11) corresponds to 

tpo--l. (2.16) 
We can similarly find the solution of Eq. (2 .7)  corre- 
sponding to a level with the index a,, (E = E  ), which 

s o  
decreases with depth in the barrier on increase in the 
difference no - n .  The inequality (2.11) now makes i t  pos- 
sible to omit the f i rs t  term on the right-hand side of 
Eq. (2 .7)  and all  the comments made in relation to Eq. 
(2.15) a r e  still applicable. 

Adopting $for the "right-hand" solution, we find that 
the coefficients of the expansion (2.6) a r e  
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-(an) 
M-1 

Van = exp [- (h - n) ln -1 S axp [- In [e (g) - e (czm)]} $%,. E 
pm 

Here, 3(an' denotes summation over the "hole" paths 
which appear when no - n atoms-return to the "-" state 
in a fixed configuration of no - n unit cells which a r e  not 
filled with the new-phase particles in the a, configura- 
tion (compared with the anO configuration). Once again 
the separate paths represent successive random "loss" 
of no - n particles and the total number of the "hole" 
paths is (no - n) ! . 

The normalization of the wave function 3 to unity in 
accordance with Eq. (2.16) corresponds to 

cb=..=l. 

The wave functions of the states a, (E =Em,) close to 
ano have the same structure as Eq. (2.17) if we make the 
substitution no- m ,  ano- a, and correspondingly allow 
for the changes in "hole" paths. 

3. AMPLITUDE OF A SUBBARRIER TRANSITION 

We shall now determine the amplitude of a transition 
from a metastable state to a state with a critical nucleus 
of the new phase. We shall introduce localized-state 
wave functions of the metastable phase $, ("left-hand" 
state) and of the phase with a critical nucleus JI, ("right- 
hand" state). The function $, is the eigenstate of the 
Hamiltonian H', which differs from Eq. (2.1) because of 
an additional potential wall for the an configurations 
which a re  located (on the energy scale) in the immedi- 
ate vicinity of a,. This results in truncation of the 
wave-function tail precisely in the region adjoining the 
point of emergence from under the barrier,  where the 
wave function $ of the Hamiltonian H of Eq. (2.1) has a 
characteristic peak because of the admixture of the rising 
solution. Elsewhere throughout the phase space the 
functions $, and JI, a r e  practically identical with one 
another and with the falling solution (2.15). Similarly, 
the function Ji, is the eigenstate of the Hamiltonian (2.1) 
in which Ho is replaced with Hi, suppressing the peak 
of the "right-hand" wave function near n = 0. Over most 
of the phase space the function JIr is practically identical 
with Eq. (2.17). 

We shall determine the matrix element of a transition 
from "left-hand" to the "right-hand" state employing 
mutually orthogonal functions $, and qr. Then, in the 
approximation linear in respect of the overlap, we have 

Hr1= ( $ 1  = ( r l H l l )  -'I2 (E,+El) ( r l l )  
='I2 (rl H-H1l 1 )  +'I8 ( 1  1 H-H' 1 r ) ,  

where ( 1 )  and Ir) denote the states g, and $,. 

We shall use the equations 
H%,--E,$I, H'S.=E,$., 

multiplied on the left by JI, and Ji,, respectively, and 
sum over p and a, with nr c p  c no, where n' is displaced 
considerably to no (but is still to the left of the potential 
wall). Subtracting the f i rs t  from the second equation 
and bearing in mind that in this interval we have Hr=H,  
we obtain 

(rlH-H'~l)'=(r~Hl~l)'-(llHllr)'-(El-E,) (r l l ) ' .  (3.2) 

Here, the primes indicate formally that the summation 
in the determination of the matrix element is limited to 
the selected region. 

The left-hand side of Eq. (3.2) is clearly identical with 
the f i rs t  term in Eq. (3.1) (to within i), because H -HI 

differs from zero only in the interval in question. The 
expression fo r  the second term in Eq. (3.1) (the cor- 
responding matrix element is denoted by two primes) 
can be found by following exactly the same procedure 
and selecting the summation region with p c n" , where 
n" << no. In this way the matrix element of a transition 
i s  found to be 

~,,~~/~[(r~H~~l)'-(l~H,~r)'+(l~H~~r)"-(r~H~~~)"l. (3.3) 

We have omitted above the term 

'lZ(Er-El) [ (rI1)"- ( r l l ) ' l ,  

because a direct analysis shows that in any case this 
term is small when n", (no -nr)  <<no (see also below). 

Equation (3.3) is very convenient for calculations. In 
fact, the differences measured from the kinetic energy, 
which occur in this equation, give nonzero contributions 
only a t  the ends of the selected interval, where JI, and 
$, a r e  practically identical with $ and $. Bearing this 
in mind, we find that the f i rs t  difference in Eq. (3.3) is 

The second term in the brackets is small compared with 
the f i rs t  in respect of the ratio ([/E%,)' and i t  can be 
ignored. 

The second difference in Eq. (3.3) reduces to the same 
expression if the substitution n' - n"is made. We shall 
now substitute the expressions (2.15) and (2.1 7) in Eq. 
(3.5). We shall ignore the small difference E o  - E,, 
[i.e., the small quantity c(amo)] in Eq. (2.17). We can 
quite easily show directly that Eq. (3.5) gives the follow- 
ing final expression for  the matrix element of the tran- 
sition: 

H ., = - E exp [- (no - l )  ln 5 
I 

We shall check only that the calculation of the path is 
correct. The formation of JI, ,-, states requires 
(n' - 1) ! paths. The number of paths participating in 
the formation of states q,, is (no - n') !. The sum over 
a,, in Eq. (3.5) is equal to the number of different con- 
figurations of n' particles in nr particles in no cells, 
i.e., 

no! 
n'! (no-n') ! ' 

Then the sum over an,-, is equal to the number of vari- 
ants of a transition from any state ant to a state with 
n' - 1 particles, i.e., simply nr. As a result, the total 
number of paths is 

nol 
(n'-I)  ! (no-n') ! nt=n0! . 

n'! (no-n') ! 

Thus, the amplitude of a transition to a state with a 
critical nucleus of the stable phase is given by E q .  (3.6), 
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where the summation is carried out over a l l  the no! 
paths representing a random sequence of filling of no 
cells with particles. 

The result (3.6) is independent of the actual solution 
of n' and n" , because the potential walls truncating the 
wave-function tails l ie within the intervals (n', n,,) and 
(0,n"). Therefore, the ratios nv/n0 and (no -nf)/no can 
be made quite small. It should also be pointed out that 
if we ignore the difference E o  - Emno then the preexponen- 
tial factor in Eq. (3.6) becomes slightly modified. 

4. ANALYSIS OF THE PATH SUM 

~t follows from the preceding section that determina- 
tion of the amplitude'of a tunnel transition resulting in 
the formation of a critical nucleus can, in fact, be re-  
duced to the problem in ordinary statistics, with a 
characteristic summation of the paths in Eq. (3.6), which 
a r e  sorted a t  the same time. The transition to the clas- 
sical case in Eq. (3.6) corresponds to 5 -  0 (and the con- 
sequence is A- O), which reduces the transition ampli- 
tude to zero. It is important to note that the path sum 
in Eq. (3.6) is completely independent of 5 .  

Various paths in Eq. (3.6) lie in a fairly wide energy 
band shown shaded in Fig. 1. The lower edge of this 
band corresponds to trajectories of growth of a com- 
pact nucleus with the optimal surface configuration. It 
corresponds to Eq. (2.8). The maximum energy on this 
curve [see Eq. (2.14)] is 

The upper edge of the band is described closely by 
e ( p )  =vp, pc i / ,n0;  E ( p )  =v (no--p) ,  p>i/zno. (4.2) 

The function x in Eq. (3.6) has i ts  minimum value for 
the paths corresponding to the evolution of a compact 
nucleus. We shall consider the behavior of x in this 
case by separating the explicit dependence on the num- 
ber of particles in a nucleus. Then, allowing for  Eqs. 
(2.8), (2.9), and (2.14) we shall obtain the expression for 
the dimensionless energy &(a,) in the form 

It follows directly that x contains the dominant (nonlin- 
ear in n,,) term given by 

For arbitrary paths, whose majority corresponds to 
evolution via noncompact nuclei, the intermediate ener- 

"0 p 

FIG. 1. 

gies a r e  X / &  -rids times greater than for  a ucompacf9 
path [see Eqs. (4.1) and (4.2)]. In this case, we have 

e (a,) =pvv ( a p )  (4.5) 

and the corresponding dominant term of x is 
ln (no-1) !=no In (nole). (4.6) 

We shall now compare the number of paths in these 
two cases. For a purely random process of nucleation 
the number of paths is close to the total number of 
paths 

not, (4.7) 
whereas the number of compact paths is proportional 
to 

The last  result is easiest  to obtain by proceeding in the 
opposite direction, i.e., by dismantling a critical nu- 
cleus starting from the surface. In each step the num- 
ber of possible variants is proportional to the surface, 
i.e., to p2I3. 

Returning to Eq. (3.6) and comparing Eqs. (4.7) and 
(4.8) with Eqs. (4.6) and (4.4), we can see  that the in- 
crease in the number of paths in the f i rs t  approxima- 
tion compensates fully the energy "undesirability" of 
the formation of intermediate noncompact nuclei. The 
dominant terms in x cancel out completely in both cases 
and the argument of the exponential function in (3.6) 
loses the nonlinear dependence on no. This makes i t  
impossible to select a priori the optimal trajectories 
and makes i t  necessary to determine qualitatively the 
path sum in Eq. (3.6). 

A. Noncompact paths 

In general, the energy &(a,) corresponds to the energy 
of p particles in the "+" state scattered randomly over 
no cells. Therefore, if p >> 1, this energy is close to the 
average value 

e ( p )  ' = Y P ( I - P / ~ ~ ) .  (4.9) 

We shall now modify the expression for x by replacing 
the energy &(a,) with the average enery ~ ( p )  of Eq. (4.9). 
Changing from summation to integration, we find that 

m-* 

X-ln(no-1) I +  (no- l ) lnv+  j dpln( l -p /no) .  
B 

Bearing in mind that the number of paths in this case 
is practically equal to (4.7), we find that the matrix ele- 
ment of the transition (3.6) is 

B. Compact paths 

The compact paths lie far  from the statistical average 
paths and their number is negligible compared with that 
given by Eq. (4.7). There is no contribution from these 
paths in Eq. (4.10). 

We shall use Eq. (4.3) bearing in mind that 

Bovpa"=ns (p)vSo,  (4.11) 

where n,(p) is the number of particles on the surface of 
a compact nucleus with p particles in the "+" state; us, 
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i s  the average number of neighbors in the "-" state for 
particles lying on the surface of a critical nucleus. 

In the calculation of x for the compact paths we shall 
be interested mainly in intermediate states with n, >>l 
and then the energy &(ap) is close to its statistical 
average, which is obtained by making the following sub- 
stitution in Eq. (4.3): 

B ( a ~ ) l $ o + S = ~ ~ h o .  (4.12) 

where i7, is the average number of neighbors in the "-" 
state on the surface. 

We shall substitute Eq. (4.3) in the expression for x 
in Eq. (3.6), and we shall allow for Eqs. (4.12) and (4.11). 
Going over from summation to integration, we obtain 

4-1 
x = h ~ n S ( p ) + ( ~ - l ) l n v s 0 + ( n o - i ) p ( 6 ) .  (4.13) 

P 

Here, 

The above integral can be calculated in an elementary 
manner. 

Bearing in mind that the number of the compact paths 
is 

we obtain the transition amplitude (3.6) in the form 

The actual value of the argument of the exponential 
function in Eq. (4.16) depends on the structure of the 
surface layer (in the direction of its thickness) and also 
on the lattice structure. The use of a fixed value of L 
given by Eq. (4.12) implicitly presupposes that the dis- 
tribution in the surface layer remains constant when the 
radius of a nucleus increases. In the opposite case we 
have to introduce the dependence of L on the number of 
the surface layer k (or on the radius) and then sum over 
k. This makes it  possible to apply some variational pro- 
cedure in each specific case. 

For simplicity, we shall consider the case when the 
symmetry of the analyzed sublattice is simple cubic. 
Then, if we bear in mind that no= US,,, we can assume 

veo-1. (4.17) 
If the surface structure consists of just one layer, the 
surface energy is close to the statistical average 

where p, is the number of particles in the "+" state on 
the surface, distributed in n, cells. Averaging this va- 
lue over the occupancy of the surface layer, we find that 
6 = 2 .  Calculation of the quantity in Eq. (4.14) carried 
out employing this value gives 

C~OI~ )  =-0.11. (4.18) 

However, these results postulate implicity that a nu- 
cleus grows like a cabbage: a given layer does not be- 

gin to fill until all the vacancies a re  occupied in the 
layer below. This corresponds to a special set of paths. 
We can easily see that then the number of paths needed 
to fill a single layer i s  n, ! instead of (a,)",. Therefore, 
the total number of paths decreases compared with that 
given by Eq. (4.15). Allowance for this change has the 
result that the expression for the transition amplitude 
(4.16) has 

~ 2 . 4 4 .  (4.19) 

The values of the arguments of the exponential functions 
in Eqs. (4.16) and (4.10) a r e  then close although that in 
Eq. (4.10) is greater than in Eq. (4.16). 

The loss in the number of paths in the cabbage-like 
growth of a nucleus is not compensated by the gain in the 
energy. The optimal process is the formation of a sur- 
face structure from several layers. For example, in the 
case of a two-layer structure on the assumption that the 
upper layer begins to fill when the lower is half-filled, 
we find that direct calculations of the energy and num- 
ber of paths give 

In this case the coefficient in front of no in the argument 
of the exponential function occurring in the expression 
for the transition amplitude is now smaller than in Eq. 
(4.10) but the values a re  still close. 

In the opposite case of a considerable thickness of the 
surface layer, we have 5 =  3 and 

(p(3) -0,8i. (4.21) 

Then, assuming that the total number of the compact 
paths given by Eq. (4.15) is realized [the amplitude of 
the transition is then given by Eq. (4.16) with the value 
of p from Eq. (4.21)], we find that the argument of the 
exponential function in Eq. (4.16) again has a value 
slightly greater than in Eq. (4.10). 

We may conclude from these results that the optimal 
intermediate compact nuclei a re  obtained for limited 
broadening of the surface layer. The extremal value 
is most probably close to that given by Eq. (4.21). We 
shall not go beyond this approximate estimate. 

It i s  clear that the evolution of a nucleus along the 
compact paths has advantages over the noncompact 
paths but the difference is not very great. This differ- 
ence may increase in the case of sublattices with larger 
numbers of the nearest neighbors. 

5. INTERACTION WITH PHONONS 

We shall show directly in the next section that the 
kinetics of a transition depends strongly on the interac- 
tion of a nucleus with the phonon subsystem. If allow- 
ance is made for the atomic vibrations in a crystal, the 
original Hamiltonian (2.1) should be supplemented by the 
terms 

H,,o+v, v=v,+v,+v,. (5.1) 

Here, H:, is the Hamiltonian of the phonon, subsystem 
for a homogeneous metastable phase; V,,,,, are  the 
terms in the Hamiltonian which appear when allowance 
is made for the dependences of c ,  x ,  and 5 ,  respec- 
tively, on the atomic displacements: 
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Here, B,, B,, and B, a r e  the operators in the phonon 
space. The operators Vl and V ,  are  diagonal in the 
la,) representation. For each such state the Hamilton- 
ian H:, + Vl + V,  governs the renormalized phonon spec- 
trum. The corresponding eigenstates a r e  denoted by 
(ya,), where y represents a se t  of the occupation num- 
bers. Consequently, the eigenstates of the Hamiltonian 

~a=Ho+HphO+V,+v,  

have the form 

1%) Iran). 

We shall f i rs t  ignore V,. Then, expanding the wave 
function of the system in terms of the states described 
by Eq. (5.4) [instead of those described by Eq. (2.6)], we 
find that the complete Hamiltonian &O,+H, is described 
by the Schrcdinger equation in the form similar to that 
of Eq. (2.7). We can again find the rising and falling 
solutions corresponding now to a fixed value of y. The 
only difference is that the matrix element of Hl between 
the states a, and a,,, equal simply to 5 in the earlier 
treatment, becomes 

E ( ~ a ~ l r a ~ * ~ ) = E f = . ( r ) ,  (5.5) 
i.e., allowance is made for the "polaron" effect when a 
single unit cell is considered. For simplicity, we shall 
assume that the polaron factor is independent of the 
configuration, i.e., of a, and also that the local polaron 
effect is fairly weak. Then, the coefficients in the ex- 
pansion of the wave function a r e  given by Eqs. (2.15) and 
(2.17) subject to just one substitution 

€.-%=if (7). (5.6) 

The phonon-diagonal matrix element of a coherent 
transition to the state with a critical nucleus is given 
by the earlier expression (3.6) subject to the substitution 
(5.6). It is interesting to note that if, as usual, f is 
represented in the form 

f=e-*o (5.7) 

(+,<<I), the new matrix element has an additional, com- 
pared with Eq. (3.6), factor 

typical of the polaron effect in the transition as a whole. 
Then, 

R,I=H.,e-n~"~. (5.9) 

A transition accompanied by creation of a critical nu- 
cleus and simultaneous excitation of the phonon subsys- 
tem is described by the operator V,  of Eq. (5.2), which 
is not diagonal in respect of a,. Interaction represented 
by this operator will always be assumed to be small 
compared with H, of Eq. (2.3). In this case the matrix 
element of the transition is 

We shall assume, for simplicity, that the phonon ma- 
trix element in this expression is independent of a,: 

(p,,lBal y'a,,.) =bl,, (n'=n*l). (5.10)- 
Then, the calculation of the matrix element becomes 

similar to the calculation of Eq. (3.6) (except that now 
we have an additional sum over n). In this way we ob- 
tain 

where H,, has the value given by Eq. (3.6). 

The matrix element (5.10) describes the local "shak- 
ing' representing the excitation of the phonon subsys- 
tem accompanying the transfer of one particle to a dif- 
ferent state. In principle, this may occur during any 
stage of a transition and this is why the factor no ap- 
pears. 

6. EQUATION FOR THE DENSITY MATRIX. 
TRANSITION PROBABILITY 

The discrete structure of the energy levels correspond- 
ing to the formation of a nucleus subject to the self-evi- 
dent condition I H , ,  I <<E,  n makes i t  generally necessary 
to allow for  the interaction with the phonon subsystem 
in transitions of the kind considered here. A consistent 
description of the transition kinetics in the presence of 
coherent and noncoherent processes requires solution of 
the relevant equation for the density matrix. 

We shall use H to denote the Hamiltonian whose matrix 
elements describe a coherent transition diagonal in re-  
spect of the phonon variables [see Eq. (5.9)]. In accor- 
dance with the nature d selection of the "left-hand" and 
"right-hand" wave functions (Sec. 3), all the matrix 
elements in the Hamiltonian fl vanish with the exception 
of that corresponding to a transition to the state ano 
and to the corresponding degenerate states, a s  well a s  
possibly to a certain number of levels in the immediate 
vicinity of E = 0 and directly to the right. All these 
levels will be denoted by the index r'. 

The noncoherent interaction with phonons i s  charac- 
terized by two mechanisms: (1) a transition to a trans- 
critical state accompanied by shaking described by the 
matrix elements (5.11); (2) fluctuation jitter and decay 
of a level r' corresponding to an irreversible interaction 
with the phonon subsystem. The corresponding Hamil- 
tonian of-the interaction with phonons will be denoted by 
H'. 

We shall now introduce the density matrix for a nu- 
cleus : 

Here, p denotes the total density matrix of the system 
and the trace (spur) applies to the phonon variables. 
Then, assuming that the interaction withphonons isweak 
and retaining only the terms quadratic in respect of this 
interaction, we obtain (see, for example, Refs. 3 and 4) 

aflat+i[a,f] =-J,  (6.2) 

J=SP~~[H' , [H' ,~P~~I  I .  (6.3) 

Here, the brackets contain a commutator; p,, is the 
equilibrium density matrix of phonons; - 

~ = ~ d t e ~ ~ [ - i ( ~ + ~ l , ~ ) t ] ~ ' e x ~ [ i ( ~ + ~ ~ h ) t ] .  (6.4) 
0 

The characteristic time of the transition kinetics is 
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governed by the tunnel leakage amplitude. This time is Substituting the above relationship into the second 
long compared with any other times of the problem and, equation of the system (6.6), we then obtain with the aid 
in particular, with the time taken to drop from any of Eq. (6.9) 
level 7' when the process is accompanied by phonon afll/at=- wfle 
emission. Therefore, we may assume that 

(6.11) 
ZQ,,, 1 

(6.5) 
+-. 

fvr.-0, f,..r@. "= 1R""2 (E,  - E,.)' + N,, T I  (6.12) 
Bearing this in mind, we shall rewrite Eq. (6.2) for the 
density matrix components in the form 

J 

An analysis of Eq. (6.3) shows that the dominant term 
of the nondiagonal element of the collision integral is  

~,,=Q[,fi~, (6.7) 

where 
Q , , = n ~ p , , ( r ) 6 ( ~ , - ~ , ~ )  1 ( ~ ' ) ~ ' ' 1 '  

11' 

Here, E y  is the energy of the phonon subsystem. 

The first term in Eq. (6.8) describes decay of the co- 
herent phase as a result of scattering of phonons by a 
nucleus. The second term is associated with transitions 
of a real nucleus from a level r to lower level accom- 
panied by phonon emission. This term predominates: 
in the limit T- 0 i t  remains finite, whereas the first  
term then vanishes. 

Using Eqs. (6.3) and (6.4) and ignoring the contribution 
due to the nondiagonal elements of the density matrix, 
we obtain directly the following expression for the dia- 
gonal element J l l : 

where 

Equation (6.9) is derived using Eq. (6.5). 

The expression (6.10) describes the noncoherent de- 
cay time of a metastable state accompanied by excita- 
tion of the phonon subsystem. The matrix element of 
the transition in the expression (6.10) is given by Eq. 
(5.11). 

We shall substitute Eq. (6.7) on the right-hand side of 
the first  equation in the system (6.6). The expression 
for SZ,, given by Eq. (6.8) does not contain the overlap 
integral and it is finite in the limit T - 0. In consider- 
ing the kinetics of a subbarrier transition we can always 
ignore the time derivative on the left-hand side of the 
first  equation of (6.6) because the corresponding reci- 
procal transition time is proportional to the square d 
the overlap integral. Consequently, we obtain 

(we are retaining here f,,,, only to demonstrate directly 
the Hermitian symmetry on transposition I=  7'). 

As in the problem of quantum subbarrier diffusion (see 
Refs. 3 and 4), the probability of decay of a metastable 
state accompanied by creation of a transcriticn! r,sbbus 
W is the sum of the probabilities of the coherent [the 
first  term in Eq. (6.12)] and noncoherent transitions. 

I f  O,,<<E, the sum over r' in Eq. (6.12) includes a con- 
tribution only from the nearest level, which in fact 
represents a critical nucleus. In principle, this level 
is degenerate and the degenerate and the degree of de- 
generacy go depends on the surface configuration of the 
critical nucleus. We shall denote a,, for this level by 
56, and the energy difference E ,  - E, by AE. Bearing in 
mind Eqs. (5.9), (3.6), and (4.16), we obtain 

2QO Wcoh - e-2noa,lH,,lz- 
AE' + 80' go 

The value of the constant c can be found on the basis of 
the results in Sec. 4. The preexponential factor in the 
matrix element corresponds to the evolution of a com- 
pact nucleus [see Eq. (4.16)]. 

If under real conditions the degeneracy is  lifted and 
the spectrum is quasicontinuous, then 

Here, g(0) is the density of states to the left of E= 0. 
(It is  interesting to note that in this case the expression 
for Wmh has apparently a structure of the kind obtained 
in the quantum theory of decay accompanied by a transi- 
tion to a continuous spectrum and the preexponential fac- 
tor ceases to depend in any way on the phonon subsys- 
tem and temperature.) 

The explicit form for the probability of a noncoherent 
transition can be obtained if we use Eq. (5.11) and sub- 
stitute it in Eq. (6.10). On the basis of Eq. (2.5) the ma- 
trix element H,,, decreases considerably for states d 
lower energy. Therefore, in the sum over r' in Eq. 
(6.10) we can retain only the level corresponding to a 
critical nucleus. [If AE i s  found to be very small and 
there is a correspondingly low density of states in the 
phonon spectrum a t  w - AE,  it may be necessary to allow 
for transitions to lower levels in Eq. (6.10).] Then, 

W",,<,M - e - 2 ~ a ~ l H , ,  l2no'y ( A E )  - - exp { -2n, ( m i  + b7)) (xcnOns)'r(AE), (6.1 5) 
where 

r ( A E )  = 2n p P h ( r ) 8 ( ~ ,  - E,. + AE) I b,,. la. (6.16) 
1,' 

Comparing Eqs. (6.15) and (6.13), we can see that the 
main exponential dependence is the same in both cases. 
The only difference is  in the preexponential factor. 
Both probabilities remain finite in the limit T -  0. The 
dependences change with rising temperature. For AE 
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< a,, the two preexponential factors exhibit opposite be- 
havior: in the coherent transition case the factor de- 
creases with rising temperature, whereas in the non- 
coherent case, i t  rises. 

We have considered s o  fa r  the probability of creation 
of a transcritical nucleus in a definite region of a me- 
tastable phase. If regions of the order of n, a re  regard- 
ed a s  independent, we find that the probability of crea- 
tion of a single transcritical nucleus per unit volume is 

where No is the number of unit cells per unit volume. 

7. KINETICS AT FINITE TEMPERATURES 

The kinetics of a phase transition is considered in the 
preceding section on the assumption that T = 0 and that a 
metastable system is in its lowest energy state. An in- 
crease in temperature results in filling of higher ener- 
gy states which correspond to the appearance of par- 
ticles or clusters in the "+" position. These levels a re  
characterized by a higher probability of tunnel transi- 
tions. 

In view of the exponential smallness of the subbarrier 
transition probability, we may assume that an equili- 
brium distribution of the "left-handw states is established 
in a time which is short compared with that deduced 
from the decay probability. In this case the total prob- 
ability of creation of a transcritical nucleus is given by 

where E(1) is measured from E(O), which is the energy 
of the lowest state of the metastable phase in question. 
The index 1 describes successive states a, located to 
the left. 

An increase in 1 causes the probability W, to r ise  ex- 
ponentially because of a reduction in the effective width 
of the barrier. Then, W, is described by an expression 
of the (6.17) type provided no in Eqs. (6.13) and (6.15) 
is replaced with n, (<ad. Consequently, we have to con- 
sider the optimal path of a transition, i.e., the optimal 
combination of activated excitation and tunnel leakage. 
This optimal path corresponds to the minimum value of 
the function 

where A (1) is the argument of the exponential function in 
W&,h and ~f , , ,  given by 4s. (6.13) and (6.15) for a tun- 
nel transition from a level I. The f i rs t  excited level has 
the energyE, = xu. The value of n, corresponding to this 
energy can be found by considering a tunnel transition 
involving the compact paths (Sec. 4). 

It follows from Eq. (2.8) that 

When temperature increases f rom T = 0, the f i rs t  ex- 
cited level becomes important a t  a temperature 

However, since E" (1) < 0, and the derivative A' (I) is 

nearly constant, the minimum value of the function (7.2) 
a t  T = T, is displaced and coincides with the values atthe 
top of the barrier.  Then, the transition from pure quan- 
tum subbarrier leakage from a lower level to the clas- 
sical transbarrier motion occurs suddenly a t  To< T,, 
bypassing intermediate levels (a similar result is given 
in Ref. 1). 

The transition temperature is given by the following 
expression [see Eqs. (4.1), (2.14), and (7.3)]: 

At temperatures T >  To the transition kinetics is of the 
classical activated type. The dynamics near the top of 
the barrier is governed by the operator V3 of Eq. (5.2), 
which is responsible for the inelastic (in respect of 
phonons) r i se  in the number of particles in a nucleus. 
Using Eqs. (5.11), (6.15), and (6.17), we find that the 
probability of creation of a transcritical nucleus per 
unit volume is 

W M Eaf 7 (AE,)  g,e-Em'T - - : [cm:.,J ; 1 
Here, the index m applies to the top of the barrier and 
g, is the degree of degeneracy characteristic of the 
levels which a r e  also near the top of the barrier. 

It should be pointed out that in a more rigorous clas- 
sical analysis of the kinetics one would have to allow 
for changes in the distribution function compared with 
the Bolkmann type, which occurs in the direct vicinity 
of the top of the barrier. This results in some renor- 
malization of the preexponential function in Eq. (7.5). 
We shall not pursue this point any further. 

In conclusion, i t  should be noted that-according to 
Eq. (7.4)-the temperature of the transition from the 
quantum to the classical knietics depends on the scale 
of the "supersaturation" governed by the parameter &. 

8. CONCLUDING REMARKS 

The structure d the expressions (3.6), (4.16), and 
(4.10) obtained above for the amplitude of subbarrier 
creation of a critical nucleus of the new phase is fun- 
damentally different from the structure d the expres- 
sions obtained in Ref. 1. This is largely due to the dis- 
cre te  nature of the configuration space inwhich tunneling 
takes place. The formulas obtained a r e  not quasiclas- 
sical and cannot be reduced to the determination of the 
action. Moreover, an analysis shows that each step in 
the discrete particle-number space may correspond to 
the change in the action by an amount >>R. It is then fun- 
damentally impossible to go over from the finite-differ- 
ence equation (2.7) to an ordinary differential equation 
in the limit of a large number of particles in a nucleus, 
i.e., in the limit no >> 1. This very general problem will 
be analyzed separately in the case of subbarrier re- 
laxation of a large spin, whose kinetics is described by 
an expression of the (2.7) type but the configuration 
paths a re  fixed. 

The above results a r e  obtained on the assumption that 
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the number of particles in a critical nucleus is fairly 
large. Hawever, i t  is important to note that the adopted 
method can be applied effectively to those cases when 
the size of a critical nucleus is finite and the macro- 
scopic description is difficult. This becomesparticular- 
ly clear when we turn to the results of Sec. 4, which 
demonstrate proximity of the subbarrier transition am- 
plitudes for the evolution of a compact nucleus and pure- 
ly random formation of the interior of a critical nucleus. 
In particular, the results make i t  possible to analyze 
an intrinsic class of problems corresponding to decay 
of a metastable phase by formation of clusters with very 
much modified atomic configurations. It should be noted 
that in the latter case the discrete nature of the energy 

levels is very pronounced and the inelastic interaction 
with the phonon subsystem, considered in Sec. 5, may 
be of fundamental importance. 
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Motion of domain walls in an external magnetic field 
V. M. ~leonski, N. N. Kirova, and N. E. Kulagin 
(Submitted 10 August 1978) 
Zh. Eksp. Teor. Fi. 76, 705-710 (February 1979) 

It is shown that in a range of magnetic fields exceeding the known value of the Walker limiting field, 
there can exist stationary-profile waves corresponding to moving domain walls with a definite internal 
structure. 

PACS numbers: 75.60.Ch. 75.30.D~ 

1. Investigations of steady-state motions of domain 
walls'n2 have shown that with allowance for uniaxial an- 
isotropy of the ferromagnet, dissipation, and an extern- 
a l  magnetic field directed along the anisotropy axis, the 
velbcity of a stationary-profile wave is bounded from 
above by the value 

( A K )  " 
U- = 2171 - u- (&) . 

M. 
(1.1) 

Here the following notation i s  used: 
u - ( ~ ) - = ( l + e ) ' " - I ,  &=2nM.'/K (1.2) 

The present paper discusses the possibility of exist- 
ence of stationary-profile waves in the external-field 
range Hz> HI. Waves of this type correspond to station- 
ary motions of domain walls that a re  characterized by 
a definite internal structure. Specifically, turning of 
the plane of rotation of the magnetic moment leads to 
the appearance of a definite number of "internal" do- 
main walls, because of the fact that the projection of the 
magnetic moment on the direction of the external field 
changes sign several times during passage from the 
region of uniform magnetization along the external field 

y is the gyromagnetic ratio, A and K a re  the exchange to the region of uniform magnetization opposite to  the 
and the uniaxial-anisotropy energy constants, and M, is external field. 
the saturation magnetization. Furthermore, a s  was In the case considered, the system of Landau-Lifshitz 
first  mentioned by Walker,' the range of existence of equations has the form 
stationary motions of domain walls of the Bloch-Landau 
o r  NBel type, characterized by a constant orientation of 0 " -  (I+O"& COS' cp)sin o cos 0-h, sin @=UU sin 0-sue', 
the plane of rotation of the magnetic moment, is (o sinz 0)'i-E sinZ o cos cp sin cp=-a0'sin 0-auo sinZ 0.  (1.4) 
bounded from above by a value of the magnetic field o=cp'. 

equal to 

2K 1 
H - - h , ,  h , = - a & ,  '- M. 2  

a is the damping parameter. 

Here u is the velocity of the stationary-profile wave 

(1.3) divided by the characteristic velocity 2 ( y ((AK)"~/M,;  
h, is the external magnetic field divided by the aniso- 
tropy field ~K/M,; 6 and cp are  the polar and azimuthal 
angles of the vector magnetic moment; the differentia- 

A solution of the Landau-Lifshitz equations that corre- tion is with respect to the variable [ l x - u t  (the spatial 
sponds to a stationary-profile wave with a constant variable x has been divided by the characteristic thick- 
orientation of the plane of rotation of the magnetic mo- ness (A/K)"~ of a Bloch wall). 
ment cannot be continued into the external magnetic - 
field range H,>H,. For a stationary-profile wave, corresponding to 
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