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We consider the problem of a weakly ideal one-dimensional Fermi gas. A regular method is proposed for 
calculating the corrections to the energy and to the correlation functions of a zero-spin Fermi gas and of 
a Fenni gas with spin. The method is based on reducing the Fermi Hamiltonian to an equivalent Bose 
Hamiltonian whose wave functions are sought in exponential form. The distribution of the ground state 
of the Fermi gas in momentum is obtained in first order in the particle interaction constant. In the zero- 
spin case and for a 6-function interaction potential, this distribution has a regular behavior in contrast to 
the expressions found in the literature. For a Fermi gas with spin, correlators of the superconducting and 
densitydensity type have been calculated. The latter is functionally close to the corresponding correlator 
of an ideal Fermi gas. 

PACS numbers: 05.30.Fk 

1. INTRODUCTION 

Despite the many exact results obtained in the problem 
of a nonideal one-dtmensional Fermi gas,'-' this prob- 
lem is  by f a r  not completely solved. In particular, if 
the interaction potential, while small, is not a 6 func- 
tion, there is no regular method for calculating the de- 
pendences of the energy, of the spectrum, and of the 
correlation functions on the interaction constant. The 
methods of summation of ''parquet diagrams" and of the 
renormalization group yield only the leading terms of 
the corresponding quan t i t i e~ .~ .~  Although an approach 
based on the Bethe representation1-2 for the wave func- 
tions of the one-dimensional problem does yield the ex- 
act ground-state energy and an accurate spectrum of the 
lowest excitations (for a 6-function potential), it is too 
complicated for the calculation of the correlation func- 
tions. It is known, for example, that a one-dimensional 
Fermi gas with attraction has a gap in the spectrum of 
the single-particle excitations,' and the expression for 
the gap coincides basically with the BCS formula. Yet it 
is still not clear whether this system is a superconduc- 

The purpose of the present paper is to develop a regu- 
lar method of obtaining the corrections for the energy 
and for the correlation functions of a weakly non-ideal 
Fermi gas. We shall consider separately a Fermi gas 
without and with spin. A brief exposition of the gist of 
the paper is given in Ref. 11. 

2. THE BOSON REPRESENTATION 

We consider first the question of a zero-spin Fermi 
gas. We seek the wave function $kl ,  . . . , x,) of a sys- 
tem of zero-spin particles with Hamiltonian 

in the form 
$(xir. . . , zrr) =$o(2,, . . . , 5s) a, (z,, . . . , XN), (2) 

where & (xl, . . . , x,) is a symmetrical function, 
$,(x,, . . . , x,) is the wave function of the ground state 
(1) at v(x)=O, and is given, apart from normalization 
( N  is odd), by 

tor. 9. (z,, . . . , xn) =r]: sinn(z.-x,), 
,>k 

L 
A similar problem (we have in mind antiferromagne- 

tism) arises in the one-dimensional Hubbard model with I, is the length of the system. 
r ep~ l s ion .~  On the other hand, there is a group of 
papers, starting with Tomonaga's well known work,'-lo 
in which a real quadratic spectrum reduces to a linear 
one near the Fermi "surf ace" and two sorts of Fermi 
particles corresponding to two points on the Fermi sur- 
face. This leads immediately to a lower bound on the 
spectrum. The introduction of the "Dirac sea" in this 
situation is by no means a well substantiated operation. 
However, perhaps the most serious shortcoming of this 
approach is that the total wave function of the system 
has no symmetry. There are no arguments whatever 
favoring the opinion that neglect of the regular symme- 
t r y  is justified in the sense of some expansion in powers 

Substituting (2) in the equation &$=E J ,  we arrive at an 
equation for @ : 

&D=(E-E,)Q,  (4) 

where E,  is the energy of the ground state (1) at v&)=O, 
and H is of the form 

Since @ (x,, . . . , x,) is a symmetric function, the prob- 
lem of finding the wave function of zero-spin Fermi 
particles reduces according to (4) to the corresponding 
problem for a system of bosons with Hamiltonian (5). 

of some small interaction constant. A consequence of In similar fashion, the transition from the fermion to 
this shortcoming is, for example, the fact that a zero- the boson Hamiltonian can be made also in the presence 
spin Fermi gas with a 6-function potential has in the of spin. 
linear approximation8~ correlation functions that do 
not correspond to the formulas of an ideal gas. In fact, the coordinate part of the wave function 
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I)&,, . . . , x,;~,, . . . , y,) of a system of electrons in a 
state with S=O is a solution of the equation 

xi and y , are the coordinates of the particles with spin 
4 (a) and + @), respectively. 

Although the Hamiltonian (6) takes into account only 
interaction of electrons with antiparallel spins, the 
analysis of the spin case can be easily extended to in- 
clude also a more realistic Hamiltonian containing two 
types of interaction potentials, ~ , , (x)  and Vo,-,(x). In 
particular, this generalization will be made in Sec. 5 
when the momentum distribution function is considered. 

We seek Jl(x,, . . . , x,; y,, . . . , y,) in the form 
$ ( X I , .  . . X R ;  Y t ? .  . . Y N )  

= $ o ( x I , .  . . , x ~ ) $ ~ ( . Z / ~ ,  . . . , Y N ) @ ( X , ,  . . . , X N ;  Yi, . . . , Y N ) ,  (7) 

where Jl(x,,. . . ,x,) and Z)J(~,, . . . , yN) are defined in ac- 
cord with (31, and * ( x i , .  . . , x,; y,, . . . , y,) are functions 
that are symmetric in the coordinates xi and yi taken 
separately. 

The equation for @ ( x i ,  . . . , x,; yi, . . . , y,) is 

asp@ (x i , .  . . , X N ;  y i , .  . . , YN) =(E-Eo) @ ( X I , .  . . , X N ;  Y I ,  . . . , Y N ) ,  (8) 
where E, is the energy of the ground state of the elec- 
trons, and 

Formula (8) effects the transition to the boson repre- 
sentation for an electron system. 

The Hamiltonian (9) can be expressed in an equivalent 
second-quantization form: 

IT isp= xk2bh .+bho-  - z sign q (k , -k2)  b:+qob~-qob,bh,. 
L 

v(q) is the Fourier transform of V h ) .  

3. PERTURBATION THEORY FOR THE WAVE 
FUNCTION 

We consider now the task of solving Eqs. (4) and (8). 
We start with the zero-spin case. lf the potential 
V h ,  -xi) in (4) is equal to zero, then the function @ 
from (4) is equal to a constant. As shown by Bijl,12 the 
solution of (4) at V(x, -x,)+O should be sought in the 
form 

@ ( z , ,  . . . , z N )  =C exp {S (x , ,  . . . , x,) ) . (11) 
If V(x, -xi) is small, then Sh,,  . . . ,xN) is also small. 
Perturbation theory yields then for S a regular behavior 
over the "volume" of the system L. Bijl's method12 was 
subsequently refined by Bogolyubov and Zubarev,13 who 
used it to determine the spectrum of a Bose gas. The 

results were the same as in Bogolyubov's well known 
paper on a weakly ideal Bose gas.14 The use of Bijl's 
method, however, does not presuppose the presence a 
condensate, a most important factor in the one-dimen- 
sional case, which has been shown in Ref. 15 to have no 
condensate. It is natural to seek S(x,, . . . , x,) in the 
form of an expansion in two-, three-, etc. particle 
functions 

Going over to the momentum representation, we re-  
write (12) in the form 

For the two-, three-, etc. particle functions to be lin- 
early independent it is necessary that the summations in 
(12) and (13) be carried out with the restriction i#i in 
the first  term, i # j  # 1 in the second, etc. In this case 
the n-th term of (13) can be obtained by integrating the 
expression 

with respect to x,, . . . , x,. In other words, "orthogonal- 
ity" obtains for the two-, three-, etc. particle functions. 

A consequence of this orthogonality i s  that the vanish- 
ing of S (x,, . . . , x,) means vanishing of each term of the 
expansion. Such an expansion of S (x,, . . . , x,) (with the 
restrictions i + j etc.) will be called irreducible. Ob- 
viously, we could use also another expansion, such that 
the summation in (12) and (13) over i ,  j ,  etc. is effected 
without restriction. We shall call this expansion reduci- 
ble. The reducible expansion was used in fact in the 
already cited paper.'' It turns out to be appropriate for 
the Bose gas because the expansion inS,,S,, etc. coin- 
cides with the expansion in powers of the coupling con- 
stant. In the case of Eq. (4), however, to which the 
Fermi-gas problem reduces, the irreducible repres- 
entation is of principal significance. 

As can be shown below, the principal role in the deter- 
mination of the correlation properties of the system i s  
played by the two-particle function S,&, -xi). 

We proceed now to the problem of finding Sk,, . . . , x,) 
is first order in V(x).  Substituting (11) in (121, we ar- 
rive at the equation 

+ z V ( z I - ~ ) = E - E ~ .  (14) 
iu 

Neglecting in (14) the nonlinear term [this i s  justified 
in first-order perturbation theory in Vh)] and changing 
over to the function S = $,S, we obtain for S the equation 
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Since (15) is linear, S can be written as  

and S (q) takes the form - 

Formula (17) can be transformed into 

where exp(2qta/axi) is the xi-xi+2qt shift operator. 
Since we are interested in final analysis in the function 
S(q)/qo, and I);' has poles that do not coincide with the 
zeros of each of the terms of the sum over i < j in (18) 
(although, of course, S (q)/JI0 has no singularities), it is 
convenient to employ the device 

and let 6-0 at the end of the calculations. 

The quantity u,(k) in (13) is determined from the for- 
mula 

The integral in (20) is evaluated by changing to integra- 
tion along the unit circle in the z plane, where z 
=exp(2nxi/L); i = 1, . . . ,N. We calculate the integral in 
(20) [for the i ,  j term of the sum (la)] by residues 
in succession: first with respect to all variables except 
z i, z ,, z,, and z,, and then with respect to the remain- 
der. In the limit as  L -m and N- m (with N / L = ~ )  we 
get 

As k-0 the function u,(k) takes the form 

For a 6-function interaction potential, i.e., for constant 
v(q) ,  as seen from (21), u,(k)=O because in this case 
we have an ideal Fermi gas. 

In analogy with the preceding, we can calculate the 
energy E -Em the terms of the type o,(k,, k,, k,), etc. 
In particular, we have 

E-Eo=L-N j S  ( z , ,  . . . , zN) dz , .  . . &,. 
By calculating this intf gral we obtain the correction to 
the energy in the Hartree-Fock approximation. 

In analogy with the case of the system of zero-spin 
Fermi particles, we seek a solution of Eq. (8) in the 
form 

The expansions s(x,, . . . , x,; y,, . . . , y,) of the type 
(12) and (13) are given by 

+L-' x E o a p p ( k , ,  k., k,)exp(ikl+(+iki~/l+ika~i)+. . . . (25) 
h,+k,+ka-0 i J , l  

I ' f O  

It is easily seen that considerations connected with the 
orthogonality of ~ , (x ,  - ,), S .,(xi -xj), etc. permit the 
summation over i and j in the first term of (24) or (25) 
without any restrictions, in the second term i # j ,  in the 
third j # 1, etc. 

The problem of finding the function 
S(x,, . . . , x,; y ,, . . . , y,) in fir st  order in V(x)  is fully 
analogous to the zero-spin case. Introducing the func- 
tion 

S=go(x,, . . . , X X ) $ , ( Y , ,  . . . , gx)S ,  

we obtain for S the equation 

where 

The function S (q) [see (16)] is expressed in the form 

~n (27), exp(2qta/axi) and exp(- 2qta/ay,) are the shift 
operators of the arguments xi and y, of the functions 
I)~(X,,.  . .,x,) and I),(y,,. . ., y,), respectively. In the 
calculation of the function 

of interest, we use again a device involving the intro- 
duction of an infinitesimally small quantity 6 in accord 
with (19). The quantity u@(k) of (25) is determined 
from the formula 

Changing in (28) to integration over the unit circle in 
the (z,u) plane, where 

and calculating (28) by residues, we obtain the limit as  
L-m,N - - , N / L = ~ / ~  

o,@(k)  = - i / z v (k )  l(kg+2p,l k  1 ), pF=np/2. (29 
Evaluating integrals of the form 
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it is easy to verify that 
0.z.z ( k )  m s ~ ( k )  ==a,.(k,, ka, ks)  = . . . GO. 

We calculate also the function o,(kl, k,, k,) of (25). It 
is obtained from the formula 

Calculating the integral (31) in analogy with (28), we 
get 

aU,,(ki, kz, ka) --2-'nL-'v(k,) I k ,  I (k,'+2pFl k ,  I )-a 
x{eikz)f l (k , )  ( i - e ( k , )  )+ ( i - O ( k p ) )  ( I -O(ka) )O(k , ) } .  (32) 

4. MOMENTUM DlSTRlBUTlON IN THE GROUND 
STATE OF A FERMl GAS 

Inasmuch as the momentum distribution function in the 
ground state nfi($la,'a,l$) is the Fourier transform of the 
correlation function 

z') =(rpla+(x)a(z') I*) 

[a+&) and a (x) are the operators for the creation and an- 
nihilation of the zero-spin particles], we shall consider 
the correlation function. It is given by 

g(x, 2') = (exp(To /2 )  a+(x)a(x')exp(To/2)  ), /<exp To>,, (33) 
where (. . .), denotes averaging with the wave function 
$0, and 

It i s  convenient to transform (33) into 

g ( t ,  x') =exp (2S2(0)-2S2(&)](exp(To+T,)a' ( x ) a ( x l )  ) , / (exp To) , ,  (34) 
where 

and when changing from (33) to (34) we use the fact that 
?, and 2, commute. 

We calculate (34) by a diagram technique. Since the 
mean values in (34) are expressed in terms of connect- 
ed diagrams, we can represent g(x, x') in the form 
g(x ,  3') =b(x ,  z f ) exp[2SZ(O) -2Sz (&)  ] ( exp(To+Ti )  ) , / (exp To) , .  (35) 

We consider first the factor b&, x') in (35): 

b ( x , x l )  =go (&) -tL-l 
1 

ex~(-i~E+iq~)-((T~+T,)~a~,a,),,,,,, 
P.P "-1 

n! 

(36) 
where g0(5)= (n5)-' sinp,[ is the correlation function of 
the system without interaction. Since To has the usual 
four-fermion form, the construction of the connected 
diagrams (36) can be carried out in the standard man- 
ner. The corresponding diagrams consist of closed 
loops connected by the interaction lines 2o,(q). In each 
loop it is convenient to sum over all the particle and 
hole lines. We illustrate this with one of the diagrams 
( ~ 3 ~ , , ,  as an example (see Fig. 1). The b k ,  x? dia- 
grams contain two types of loops, shown graphically in 
Fig. 2. The contribution of a loop of n-th order (to 
which n interaction lines are connected) is 

FIG. 1. 

C Qn+r..z(qir. .  . , qn, P i r . .  . t P n ) i J r ( ~ i ) .  . . ~ J L ( P I ) .  (37) 

whe';k a = l , 2  corresponds to Figs. 2a and 2b, 

1 
Q,.. .(V~, . . . , q . ~ = ~  ~ ~ x P ( - - ~ P E )  ( ~ ( q , ) .  . . ~ ( q . ) a A a ~ ) ~ ~ ~ ~ , +  .,",-,; 

v.a (39) 

P ( q )  = &:,ap. 
P 

The following diagram equations hold in this case (see 
Fig. 3): circles on the diagrams denote "intrusion" of 
operators Tl into the loops, i.e., they correspond in- 
clusion of operators of Tl in the mean values (38) and 
(39). We note also that each diagram (36) contains only 
one loop of the type of Fig. 2b. 

In our earlier paper1' we established a number of pro- 
properties of the functions Q,, ,(q1, . . . , q, ) and 
Qn,,(ql, . . . , q,) (see Ref. 11, pp. 647 of original and 611 
of the translation), and have shown on their basis that 
the main contribution tog&, x? is made by diagrams of 
type of Fig. 4. At 5 >>pi1 the diagrams of this type, 
which contain n interaction lines, are of the order of 
-1n"(p,t). Their summation leads to the result: 

A x ,  x') =&!,(El g-., x-v'. 

It will be shown below that all the remaining diagrams 
are "extraneous" at p, >> 1 and their summation does 
not alter the character of the singularity obtained in 
Ref. 11. 

We turn now to the problem of calculating b k ,  x'). A11 
the possible types of diagrams for this quantity are 
shown in Fig. 5. We denote the factor corresponding to 
the "generalized" loops of Fig. 5 (i.e., the shaded 
squares to which n interaction lines are connected) by 
IIn(ql, . . . , 4,). We consider first  diagrams of type 5a. 
Let such a diagram contain n l  generalized loops of first- 
order, n, of second order, etc., with nl+2n,+. . .+& 
=m (m is the number of interaction lines on the dia- 
gram). The total contribution of this diagram is 

FIG. 2.  
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FIG. 3. 

1 1 where{p,q}=(p,,.. .,P,; -91, .. . , -qnl; -9%. -., 
- q2,,,, -qR12! - q:, -q& -9:. . . , the superscript of the 
momentum q is the order of the loop to which it per- 
tains; N ,  is the number of diagrams and equals 

2"mI/n,! (2!)"'n,I . . . ( t ! )  "rn,! . 
It can be shown that the quantity Q,,,(q,,. . . , q,) can be 

represented in the form 

We include in (41) initially only the first term. Substi- 
tuting for Qn+,,,({p, 4)) in (40) the function go(S), which 
does not depend on {p, q} and taking the sum ?n, n I, 

n,, . . . , n, (so that n,+&z,+. . .=m), we find that the cor- 
responding contribution to b(x, x') is equal to go(6)a(5), 
where 

2 2% 
a ( i ) = e x p { ~ ~ . ( ~ ) - 2 ~ 2 ( ~ ) + T ; C  ~ ~ , ~ q ~ ) ~ . ~ q . ) + - ~ ~  ~ ( u . .  sz)az(s1)  

' 1 8  '11'12 

z3 
xo.(q2)+T c n , ~ q l . q z , q . ) ~ z ( q l ) ~ 2 ( ~ 2 ) 0 2 ( q 3 ) +  - . ]  (42) 

PlPlPI 

In the expansion (41) we consider now, for example, the 
termf ((8, a}), where 

{ p , q } = ( p 1 , .  . . ,pa0; -qt1,. . . , -q.%'; -q:, -qsz,. -. 9 -q:.,-1;. . . I 7  
so<n, sl<n,, . . . , s , S n l .  

We substitute f ((3, Q}) in (40) in place of Q,+,,,({P, 9)) 
and introduce new summation indices: 
SO, &=n-s,; s,, lr-nl-8,; SZ, ?z=n2-sz; . . . ; st ,  g,=n,-s,. 

We can sum in (40) over S, S ,, . . . , S, independently, 
and this yields a (6). Taking also the sum over 
S, s,, . . . , st, we obtain as  the result 

where G is the topological factor of the diagram and de- 
pends on (3 ,  Q}. 

FIG. 4. 
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The total contribution made to b b ,  x? by diagrams of 
type 5a is thus 

where the functions (p,,,(~) are  sums of quantities of the 
type uf the coefficient a(5) in (43). We can similarly 
calculate contributions from the diagrams of type 5b, 
5c, etc. It turns out that they take the form 

n-a "-2 

etc. We get ultimately for b(x ,  x') 

We now clarify the character of the behavior of 
b (x, x') at p, 6 >> 1. It nust be noted here that since 
u2(q)-lqI-' a s  9-0, it is obvious that the most substan- 
tial contributions to the quantities in (45) come from 
integration in the .region of small q. Analysis of the 
expression for Q,,,(q,, . . . , q,) shows that it differs 
from zero if all lqi1z2p,, i = 1,. . . ,n (then 
~,,,(q,, . . . , q,)), or if it is small (1 qi1<<2p,) then one of 
the momenta q,, . . . , q, (in this case Q,,,= (qil/2n). AS a 
result, the expressions 

n , ( q , ,  . . . , q . )02(q l ) .  . . oz(q..) 

for n22 will be finite a s  q -0 and upon integration with 
respect to q,, . . . , q, they yield functions that are not 
singular a s  5 -m . As to the quantity II ,(q,), it includes, 
in particular, the diagrams of Fig. 6 and therefore 

x & ( q i ) o a ( q l )  -ln(p&). 
a, 

This is precisely the class of diagrams that was 
summed in Ref. 11. It is also easy to see that the dia- 
grams of other types in II,(q) do not lead to singularit- 
ies as  5 -m. Summing the diagrams of Fig. 6 we obtain 
for a (5) 

We now estimate the quantities cp,(~), which enter in 
(45), as -a. We consider, in particular the coeffi- 
cient of a(5) in (43). The most "dangerous" from the 
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FIG. 6. 

point of view of the appearance of singularities in : is 
the integration with respect to p,, . . . ,pSo and q:, . . . , q:, 
at small values of these momenta. [Integration over all 
other momenta does not lead to singularities by virtue 
of the aforementioned properties of the function 
Q,,,(q1, . . . , q,)]. We note now the following fact. At 
small q,, . . . , q,, or more accurately speaking at 

1 q t 1 4 ~ 1 ;  1 qr+qjI  PI; ... ; ( q ~ + . .  . +qml < ~ P F $  

we have 

Substitution of (47) in (43) leads to the appearance of 
factors 

and integration with respect to pi yields zero. 

For this reason (the presence of "odd" functions), the 
integrals with respect to q:, . . . , q: are equal to zero in 
the region of small q. Integration aver large q, on the 
other hand, can be readily seen to lead to cp,-6-'. 

We consider next the quantity 
( e s p ( T , + T , )  ) , / < e x p  T o ) ,  

of (35). We express it in terms of the connected dia- 
grams: 

Examination of the corresponding diagrams with account 
taken of the properties of the functions Q,,,b,, . . . , q,) 
shows that the largest (-lllp,[) contribution to the argu- 
ment of the exponential (48) is made by the term 
(~3,,,,, and also by the diagrams (T",'!~) ,,,, of the 
type shown in Fig. 7. The remaining diagrams in (48) 
are nonsingular a s  5 -a. On the other hand, calculat- 
ing (~3~ , , ,  and summing the diagrams of Fig. 7 we get 

( e x p ( T o + T , )  ) J ( e x p  ~ . ) . = e x ~ { 2 n - ~  j ( l - c o s  qE)qoZ2(q)dq  
(I 

* 

+ 4 r 3  I qzo? ( q )  (I-eoa q g )  ( I - 2 q n - ' a  ( q )  1-1 d q )  . (49) 
0 

Taking (35), (42), (45), (46), and (49) into account we 
get ultimately for g(t): 

where 

FIG. 7. 

and F ,(v, f ) and $,(!) are functions that are not singular 
as -m . The distribution function 

np=($ l  a,+n,lq> 

takes at Ipl=p,, according to (5), the form 

5. CORRELATION FUNCTIONS OF THE GROUND 
STATE OF A FERMl GAS WITH SPIN 

We consider now the question of the calculation of the 
correlation functions for a system of particles with spin. 
Our primary interest here is whether the singularity 
obtained in the zero-spin case in the distribution func- 
tion n, (51) of the particle momenta in the ground state 
is preserved also for a system of particles with spin. 
We consider in  this connection the correlation function 

gsp(x, x') =($ la ,+(x)a , (x ' )  +ap+(x)ao(x' )  I Q). 
~t is easily seen that gs,(x, x') can be expressed in the 
form 

gsp!2, x') =2(exp(W+T, , )aa+ (z )a , (x ' )  ) , /<exp W ) , ,  (52) 
where 

L L 

@=2 I dz dzrS,,(z-z')n.(z)np(zr), 
0 0 

Expressing the mean values in (52) in terms of contri- 
butions of only connected diagrams, we represent 
g,(x,x') in the form 

g (.r, x ' )  = 
( e x p (  W + T d  )O 

SP ( e x p  W ) o  { g o  ( E )  + 2 exp(-ipE+iqx) 
9.q n-1 

The connected diagrams (53) are constructed in accord- 
ance with the same rules as in the zero-spin case, subject 
however to the simplifying circumstance that the contri- 
butions of the closed loops, due to pairings of Fermioper- 
ators withdifferent spin indices, are  equal tozero. In 
particular, loops of the type of Fig. 2b contain no intrusions 
of the operators T16 i.e., Eq. (37) has no terms with k # 0 
and (Y = 2. It is also easily seen that all the considerations 
concerning the estimates of the behavior of the diagram 
contributions a s  [ -a and separation of the class of 
singular diagrams, which were made for the zero-spin 
case, are valid here, too. In particular, the diagrams 
that make the principal contribution to the curly-brack- 
et term of (53) take the form shown in Fig. 8. We re- 
call that the unshaded loops in Fig. 8 correspond to 
absence of terms with k+O from (37). Summing the dia- 
grams of Fig. 8 and taking into account, just as in the 
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FIG. 8 .  

zero-spin case, the principal contributions to 
( e ~ p ( w + T , ~ )  ),/(exp W ) o ,  

we obtain for g,b, x1)=gSp(S) 
gs,(E) = 2 g o ( b )  (p&)-? ~=v2(0) /32nzpFz.  (54) 

In accord with (54), the distrilution functionn, takes 
the form (51) with ~ = g .  

The same form is possessed also by the distribution 
functionn, for a spin system with a more realistic Ham- 
iltonian containing two types of interaction potentials 
(see Sec. 2). In this case v2(0) and (54) is replaced by 

V,;,(O) + [v , , (O)-~oo(2~r)  1'. 

For a system of particles with spin, it is also of in- 
terest to calculate the correlator 

G(x, x') =<ly la,+(z)abf (x)ar(x')a,(x') 19). 

It is easy to show that it takes the form 
G ( z ,  2') =exp{2Sab (0) -2S.p(E) 

x (ex*( W+T,.-t-T,B)a,+ ( x )  a, ( s f )  ab+ ( z )  ag ( z l )  )o<exp W)o -L .  (55) 

where % and andl, are defined in accordance with (52). 
The separation of the singular diagram is easily done 
in analogy with the preceding cases. In this case 
~ ( x ,  x ? = G ( ~ )  is given by 

G(5)  =go"(b) (paE)-@'. (56) 
We consider, finally, the density-density correlator 

R(5)=<$ln(z)n(xr) -pZ19), n ( z ) = x  n a b ) .  

It takes the form 
R(E)=<exp(W) [n(x)n(xl ) -pz]  h/(exp W h .  (57) 

Analysis of the expression shows that the diagrams cor- 
responding to (57) are nonsingular and their contribu- 
tions - E - ~  as  e-CO. Accurate to terms of first order in 
the interaction constant, we have 

IP. 

%PI 

The first two terms in (58) correspond to R (5) for an 
ideal one-dimensional Fermi gas, while the last two 
terms likewise behave like e-' (as 5-00), but contain 
the small factor v. We note, to conclude this section, 
that in the calculation of g ,(t) we have neglected in 
S(x,, . . . , x,; y,, . . . , y,) all but the two-particle terms. 
The basis for this is that u,,(q), a ,,,(q), etc. are non- 

singular functions that are integrable at small q (see, 
e.g.; (32)), and consequently contribute a s  5-00 only the 
higher-order terms of the expansion in em' to the corre- 
lation functions. 

6. DISCUSSION OF RESULTS 

It is appropriate to compare in conclusion the results 
with the available published expressions for the corre- 
lation functions. We note that expression (51) for n, 
is of the same form as the analogous expressions of 
Refs. 8-10, i.e., the step in the Fermi distribution in 
the momenta becomes smeared out, but, on the con- 
trary, f l  has in (51) a different value and vanishes, a s  
it should, for a 6-function interaction potential. We 
note that the smearing of the step in the Fermi distribu- 
tion for the ground state takes place at arbitrarily small 
interaction and that this agrees with the conclusions ob- 
tained in the linear model.1° 

According to (58), as 5-m the density-density corre- 
lator R(5)- 5" just a s  for an ideal gas. This fact agrees 
with Feynman's formula for collective excitations 

e ( k )  =kz /R(k) .  (59) 

Here R(k) is the Fourier transform of R([)-!-' as  5 - m  

we have R (k)-(kl and according to (59) we get &(k) - (kl 
in agreement with the existing exact solutions for a 6- 
function interaction potential.6.16 
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