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The method of temperature Green's functions is used to investigate the spatial dispenion of the spin 
susceptibility of the conduction electrons in pure and "dirty" (i.e., containing magnetic and nonmagnetic 
impurities) superconductors. The Hamiltonian of the indirect exchange interaction of the localized 
moments is also obtained. It is shown that in a pure superconductor the susceptibility and the indirect- 
exchange Harniltonian have an additional nonoscillating and longer-range term that is exponentially cut off 
at a distance on the order of the coherence length 6,. For a dirty superconductor, the Fourier transform 
,yo of the susceptibility is obtained for an arbitrary wave vector q. In the p,,r>l approximation, a 
transition is effected to the coordinate space. It is shown that the effective radius of the indirect exchange 
interaction potential, which is equal to the mean free path I, in a normal metal, increases abruptly on 
going into the superconducting state, to a new coherence length ~=(~,1,)"2>1p. 

PACS numbers: 74.30.Ci, 74.70.Nr 

1. INTRODUCTION 

The study of the magnetic properties of normal and 
superconducting metals with paramagnetic impurities 
is connected with the investigation of the spatial dis- 
persion of the spin susceptibility of the conduction elec- 
trons. This is determined primarily by the fact that 
the indirect exchange interaction of the localized mo- 
ments is expressed directly in terms of the nonlocal') 
spin susceptibility (see, e.g., Ref. 1) 

where j  is the s - d ( f )  exchange integral, g and p,  are 
respectively the conduction electrong factor and the 
Bohr magneton, and x(q) is the Fourier transform of 
the conduction electron susceptibility. 

It is known that the main contribution to the integral 
(1.1) in a normal metal is made by the logarithmic sin- 
gularity of x(q) in the region g-2po (p, is the Fermi mo- 
mentum). It is natural to expect that the derivation of 
the Hamiltonian zx(r, -r,) in a superconductor calls 
for knowledge of X(q) for an arbitrary wave vector. 
Unfortunately, the paramagnetic susceptibility of the 
conduction electrons in superconductors has been in- 
vestigated so far only at small values of q .  The homo- 
geneous spin susceptibility with account taken of the 
spin-orbit and potential scattering by the impurities 
was obtained by Abrikosov and Gor'kov,' while X(q) at 
q  <<po was obtained by Kaufman and Entin-Wohlman.' 
This, however, is not enough to find the spin suscepti- 
bility X(Y) in the coordinate representation even at Y 

> > p i 1 .  

One can expect that when the metal becomes super- 
conducting the main change of the nonloc al susceptibil- 
ity, and hence also of the indirect exchange interaction 
(1.1), occurs inthe large distances Ir, - r,l. The reasonis 
that the Cooper pairing cannot alter substantially the local 
spin polarization of the conduction electrons in the im- 
mediate vicinity of a paramagnetic impurity, but the 
total spin polarization of the electrons by the given 

spin, which is proportional to x(O), should vanish at 
T = 0 (in the absence of magnetic scattering by other im- 
purities). This means that the local polarization is 
compensated over considerably larger distances-of the 
order of the coherence length. 

The long-range increment to the potential of the in- 
direct exchange interaction of the localized moments in 
a pure superconductors, due to the superconducting cor- 
relations of the conduction electrons, is given in the 
paper of Alekseevskii et a L4 

In Sec. 3 of this paper we obtain an expression for the 
spatial dispersion of the spin susceptibility of the con- 
duction electron in a pure superconductor. In Sec. 4 
we calculate the Fourier transform of the susceptibility 
of the conduction electrons in the superconductor for an 
arbitrary wave vector in the presence of potential and 
exchange scattering by the impurities. We next obtain 
in Sec. 5 an expression for the nonlocal susceptibility 
and for the Hamiltonian of the Ruderman-Kittel-Ka- 
suya-Yosida (RKKY) exchange interaction5 in a "dirty" 
(containing magnetic and nonmagnetic impurities) super- 
conductor. In Sec. 6, finally, we discuss the result. 

2. FORMULATION OF THE PROBLEM 

We consider a model of a superconducting metal with 
an isotropic quadratic dispersion law for the conduction 
electrons, &(p)=$/2m * (where m * is the effective mass 
of the conduction electrons), in which magnetic and non- 
magnetic impurities are randomly distributed. The 
conduction electrons experience exchange scattering by 
the magnetic impurities (the so-called s - d(f  ) exchange) 
and potential scattering by the nonmagnetic impurities. 
This system can be described by the Hamiltonian 
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where %is the Hamiltonian of the kinetic energy of the 
conduction electrons, & is the BCS Hamiltonian, 
characterizes the potential scattering by the impurities, 
and %& characterizes the exchange scattering; to sim- 
plify the subsequent calculations, all the scattering po- 
tential are assumed 6-like; \k*,(r) and \k ,(r) are the 
electron field operators, the arrow subscripts desig- 
nate the projection of the electron spin on the chosen z 
axis; S, is the spin operator of the j -th impurity, J is 
the s - d exchange integral, and V is the potential-scat- 
tering constant. The indices i and j run respectively 
over the positions of the nonmagnetic and magnetic im- 
purities. 

The nonlocal spin susceptibility of the conduction e l e o  
trons in a superconductor can be expressed in the form 

1/r 
g2ga2 x (r1, r2) = - - lim 

2 ,,-,, J d ~ 2  

T ' - . , ~ o  
:b II 

x(TY+ (xi) Y ,+(x?)o ,~ 'Y~(x~)  Y+T(x') ), (2.2) 

where x =(r, r ) ,  and the angle brackets denote averaging 
over the Gibbs ensemble. After averaging over the im- 
purity configurations, the susceptibility will depend only 
on the argument difference r =r, - r,. 

All the calculations that follow will be carried out by 
the method of temperature Green's functionsO6 We in- 
troduce the following mean values: 

Here Gab, x') is the single-particle electron Green's 
function, and F ,&, x') and F*,(x, x') are the "anomal- 
ous" Green's functions of the conduction electrons and 
are characteristic of the superconducing state. 

The mean value under the integral sign in (2.2) i s  a 
two-particle-Green's function whose calculation yields 
in fact the nonlocal susceptibility. 

3. NONLOCAL SUSCEPTIBILITY OF THE CONDUCTION 
ELECTRONS IN  A PURE SUPERCONDUCTOR 

Owing to the presence of translational symmetry, the 
susceptibility (2.2) in a pure superconductor depends 
only on the argument difference r=r, - r,. The mean 
value of the four field operators can be broken up in ac- 
cord with Wick's theorem into a product of paired mean 
values that constitute the Green's functions of the un- 
perturbed Hamiltonian %+%: 

where GO,@), FO,(p), FE(p) are the Fourier transforms 
of the corresponding Green's functions (2.3), w 
= n ~ ( %  + I), 6 ,  =$/2m * - E, C, is the Fermi energy, and 
2A is the energy gap in the elementary-excitation spec- 
trum. 

The expression for the nonlocal susceptibility (3.1) is 
integrated exactly, and the result is 

The Hamiltonian of the indirect exchange interaction 
of the localized moments in the pure superconductor can 
be written in simpler form at p o r  >> 1: 

Here ~ ( 0 )  is the state density on the Fermi surface, and 
r is the distance between the interacting paramagnetic 
impurities. The first term oscillates with a period 
2pOr and decreases with distance like v - ~ .  Obviously, 
at A = 0 this term coincides exactly with the expression 
for the RKKY potential in a normal metal at po r  >>l. 
The second term, which vanishes at A =0, is due to the 
superconducting correlations of the conduction electrons. 
trons. It decreases with distance like r-,, so that the 
main contribution to the sum over the frequency is made 
by small o. The cutoff factor of either term is of the 
order exp(-r/co), where 5, is the coherence length in 
the pure superconductor. The contribution of the super- 
conducting increment to the total polarization i s  opposite 
in sign to the contribution of the first term, and it can 
be easily shown that the two cancel out completely2) at 
T=O. The reason i s  that the integral of the oscillating 
term converges rapidly over distances r < < E m  whereas 
the second term, as  seen from (3.4), acts over a longer 
range and does not oscillate. 

4. FOURIER TRANSFORM OF THE SUSCEPTIBILITY 
OF THE CONDUCTION ELECTRONS I N  A DIRTY 
SUPERCONDUCTOR 

In the presence of potential and exchange scattering by 
the impurities, expression (2.2) should be averaged 
over the positions and spin orientations of the impurit- 
ies. We introduce the notation (see Ref. 2) 

(the subscript"av" stands for averaging over the im- 
purities). The susceptibility is expressed in this nota- 
tion by 

where IIti(p, G;p+q, 8) i s  the Fourier transform of (4.1) 
and 8 is  defined below. 

The method of calculating mean values of the type (4.1) 
was developed in the papers of Abrikoscov and 
Gor'kw?s8 Summing ladder-type diagrams (p, l>> 1), 
we obtain an integral equation for the Fourier trans- 
form of (4.1): 
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a d '  - z(+)F; ( P )  G; ( p  + q) 1 2- IP ( p ' ,  &; p' + q, o) 
( 2 ~ ) "  
d '  - - z ( - )F;  I P )  F;+ (p + q) \ 2- (P ' ,  2; pr t q, 

( 2 ~ ) ~  
dp' + z(+'G; ( p )  F:(P + q) ---, I I ( ~ ' ( P ' ,  ;; P' q, ;). (4.3) 

c24 
The Green's functions in this equation are complete and 
are averaged over the impurities. They can be obtained 
from the corresponding Green's functions (3.2) of the 
pure superconductor by making the substitution {w ,  A) - (3, i}, where8 

where 7, and 7, are  the times of potential and exchange 
scattering by the impurities. In (4.3), 

and n and n' are the numbers of the potential and spin 
scatterers per unit volume. 

It i s  seen from (4.3) that to find II(l)Gc, -x,, x, -x') it 
is necessary to know three other quantities: 

where 

The equations for the Fourier components of these 
quantities are similar to (4.3). The result is a system 
of four integral equations for the Fourier transforms of 
the quantities (4.1) and (4.4). To obtain these equations 
we used the relation 

which can be easily proved by iterating the equations of 
the system. Integral equations such a s  (4.3) can be re-  
duced to algebraic ones by integrating both halves with 
respect to the momentum: 

:l'" (q,  a )  =K1" (q,  ( 5 )  +KI3' (q,  13) +z'-'A"~ (q ,  a )  K'" (q ,  5 )  
- z ( + l L i ~ 2 ~  (q. B ) K ' " ( ~ ,  a )  -z'-'A'~' (q,  3) KI3' (q,  a )  

+z'+l~\"' (q ,  @)KIZ1 (q,  a ) ,  
where 

A") (q, ;) = 1 & "(.) (p. ;; p + q, &), i = I ,  2, 3 .4 .  

. d 
K") H. = \ & q ( P I  G j  (P + 4. 

K") (% G )  - !-&$- Fi (p)  F i  ( p  + q), 

Thus, the system of integral equations has been reduced 
to a system of algebraic equations. It i s  easily seen 
from them that A(4)(q,3)=-A(2)(q,3). Taking this into 
account, we obtain a system of three equations: 
[l-z(-lKIIl ( - )  rn ],l'il+2z'+'K~Z'(@)A~z~_(-~~-~K131 ( a )  A(3)=K11) ( 6 )  +K(a) (a), 

-~I-lK<21(,3)~11"+[ (Kls> ( a )  -KI31 ( a )  ) ] ~ ~ l ~ ~ ~ z ~ - l ~ l ~ l ( ~ ~ ) , ~ ~ 3 1  

=KG1 ( a )  -KI21 ( -a ) ,  
zl-lKIJ' ( ~ ~ ) ~ ~ ' + 2 ~ l + l K l ~ ~  ( -~)h lZl+[I -z ' - lK(~l  ( -a)  ]A',' 

=-K"' (-8) -K'j' ( 6 ) .  

To abbreviate the notation, some of the arguments have 
been left out. 

We represent the solution of the system of equations 
for Atl)(q, 3 )  in the form 

L 1 a 1 A' -T[F(1+w)+F~]~s~3+L[4(1--  
1 

" ) 2 1, (w2+A2)" 

1 A2 i L J a  + --] L 'L~  - -- L.L, + -L.zL,), (4.7) 
1-' a2+A2 1- a'+A2 21,'l- 

6% 
~ ( q ,  a)=i -- { [$ ( I+- )  +$&I (LI-LZ) 

1 a? 

+2 [ l t , a C A z + ~ s l  -- I AS La 1 -- 81- { [ $ ( I + G F )  

1 A2 1 W' -2 -- 

where 

v ,  i s  the electron velocity on the Fermi surface, I ,  and 
I ,  are the electron mean free paths due respectively to 
the potential and exchange scattering, and p * 
=p,(l *i(ij2 + 

Using relations (4.2), (4.5), and (4.6), we obtain for 
the susceptibility the expression 

It i s  obvious that by letting I, and I, to go to infinity in 
(4.7) and (4.8) we obtain the Fourier transform of the 
susceptibility of the conduction electrons in a pure 
superconductor for arbitrary q. In this case (9, 3 )  be- 
comes simply equal to unity, and what are left of X(q ,  3 )  
a re  the first three terms, two of which have logarithmic 
singularities with the real part of the wave vector q -2p, 
while the third term has a pure imaginary logarithmic 
singularity. It i s  these singularities in momentum 
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space which cause the oscillations of the first term and 
the non-oscillating character of the second term in the 
RKKY Hamiltonian (3.4) of the pure superconductor. 

At h=0, Eq. (4.6) goes over naturally into the corre- 
sponding equation for the normal metal.g 

For small q (q <<po) the expression (4.8) for the sus- 
ceptibility coincides with that obtained in Ref. 3. 

5. NONLOCAL SUSCEPTIBILITY OF CONDUCTION 
ELECTRONS IN A DIRTY SUPERCONDUCTOR 

To find the spatial dispersion of the susceptibility it is 
necessary, as  follows from (4.2), (4.5), and 4.8), to 
take the Fourier transform of y(q). From expressions 
(4.7) and (4.8) for the Fourier transform of the suscepti- 
bility we see that the latter has the following singularit- 
ies  on the complex plane: two logarithmic branch points 
with real part of the order of 2p, just as  in the normal 
metal, one pure imaginary logarithmic singularity, and 
a pole that occurs at small q (q << p,). The equation for 
finding the pole is of the form Y(q, 3)=0. At small q it 
takes the form 

It can be shown that this equation has a pure imaginary 
solution for which the approximate expression i8' 

We choose the integration contour shown in the figure. 
The integrals along the large semicircle and the small 
circles vanish when their radii go respectively to infin- 
ity and zero. The sought integral consists thus of the 
residue at the pole of (5.1) and the integrals along the 
edges of the cuts from the branch points of the log- 
arithms ,?,, L,, and L,. We present only the final re- 
sult, which is valid at p o r  > 1: 

g ' ~  "(0) x ( ~ ) =  -B - cos (2p0r+2@) 

2 ( p o r ~ ~ 2 ~ ~ ~ ~ & ~ + ~ ~ ~ - q ~ ~ ~ n ~ p o r ~ ~ ~ p o ~ p ~ ~  

FIG. 1. Integration contour for the calculation of (5.2); 2p+, 
-20-, and p' - p -  a r e  the branch points of the logarithms Li, 
L I .  and L S ,  and qo is  the pole of (5.1). The dashed lines show 
the cuts from the corresponding branch points. 

Here 
up-1 l p  uz I ,  

r . = - -  In 4p0r 
uZ+l 31, ' =-- 

t g  @ = ( I - q ) - .  
uz+ l  31, ' 4 p o l u  

The Hamiltonian of the RKKY interaction in supercon- 
ductors with impurities is obtained by substituting (5.2) 
in (1.1). 

6. DISCUSSION OF RESULTS 

The susceptibility x(r)  contains three terms, the first 
of which oscillates like cos2por and goes over exactly 
into the susceptibility of the normal metal at 6=0,' 
while the second term has the same nature as the cor- 
responding expression in (3.4). Its non-oscillating char- 
acter is explained by the fact that the Cooper pairing 
upsets those phase relations between the conduction- 
electron wave functions, which lead to Friedel oscilla- 
tions of the spin density in a normal metal. The third 
term, which is likewise non-oscillating, decreases with 
distance like r-' and is exponentially cut off at distances 
on the order of the new coherence length 5: 

The non-oscillating behavior of this term is due to the 
joint action of the super conducting correlation and of 
scattering by the impurities on the phase shifts of the 
electron wave functions. As already noted above, the 
homogeneous susceptibility of the conduction electrons 
in the absence of magnetic scattering should vanish at 
T=O. It is easy to verify that our expression (5.2) for 
x(r)  satisfies this requirement. For this it is necessary 
to integrate it over the entire space and sum over the 
freqnency, putting I,=m (i.e., U = U / A , X = ~ = ~ ) .  TO pre- 
vent a formal divergence in the summation over the fre- 
quency, we must add and subtract the susceptibility of 
the normal metal.' It turns out then that the first term 
in (5.2) gives the Pauli susceptibility while the second 
term, which has compensated in the pure superconduc- 
tor the contribution of the oscillating part, is cut off at 
distances -I,<<<, (1, - 10-'I - lo-' cm, to- - cm) 
and makes practically no contribution to ~ ( 0 )  at small 
I,. The third term has a much larger range and is cut 
off, as  already mentioned, at distances of the order of 
the new coherence length (>>I,. It is precisely this term 
which is responsible for the complete compensation of 
the normal part of the homogeneous susceptibility in a 
cold superconductor. Thus, the effective radius of the 
indirect-exchange potential, which equals the mean free 
path in a normal metal I,, increases sharply to 5 >>I, on 
going into the superconducting state (in strong magnetic 
scattering, the spin mean free path 1, begins to compete 
with the new coherence length 6 ) .  

In the investigation of magnetic ordering in dilute 
superconducting alloys it is important to know in fact 
the spatial dispersion of the spin susceptibility, rather 
than its Fourier transform at q=O or at small q. Actual- 
ly x(q=O), for example, is in fact an integral of the non- 
local susceptibility over all of space, and contains con- 
tribution from distances shorter than interatomic, where 
the amplitude of the susceptibility oscillations is a maxi- 
mum. On the other hand, in the ordering problem we 
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must know the molecular field at the impurity, namely 
the sum of x(v)  over the lattice, starting at least from 
the nearest neighbor. The oscillating character of the 
susceptibility at short distances makes all the quantities 
containing sums over the lattice highly sensitive tothe 
discreteness and parameters of the lattice. This fact 
must be taken into account in the analysis of magnetic 
ordering. 

The expression obtained by u s  for the nonlocal sus- 
ceptibility can be used also in the study of the question 
of the line width of paramagnetic resonance on local- 
ized magnetic moments along with the study of the Kor- 
ringa mechanism of relaxation in a supercondu~tor.~.'~ 

' h e r e  and below nonlocality i s  understood in the sense of spa- 
tlal dispersion. 

2 ' ~ h e  RKKY potential in a pure superconductor was also ob- 
tained in Ref. 7, but it differs from (4.3) and does not satisfy 
the condition that the homogeneous susceptibility vanish a t  
T =  0. 

3 ' ~ e  note that it differs from the numerical solution by several 
percent when I, , ,  Is and w vary in a wide range. - 
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The diamagnetic properties of "dirty" superconducting metals above the transition temperature is 
systematically investigated. The dependence of the fluctuation-induced increment to the magnetization on 
the temperature and on the magnetic field of type-I1 superconductors is calculated under conditions close 
to surface superconductivity. It is shown that the magnetization varies strongly near TC3(H) and near the 
third critical field Hc3(T). The conditions under which the contribution made to the magnetization by 
surface-type superconducting nucleation centers is larger than the contribution of the volume centers are 
determined. 

PACS numbers: 74.40. + k, 74.60. - w, 74.70.Nr 

1. INTRODUCTION correctly accounted for. Corrections for the short- 

The change produced in the diamagnetic susceptibility 
of a superconductor by fluctuations of the superconduct- 
ing phase was observed in a large range of temperatures 
above T,. Gollub et al.' observed diamagnetism due to 
electronic pair fluctuations in strong magnetic fields 
[H- H,,(O)] and at high temperatures (T -2Tc0) in bulky 
samples. The fluctuation-induced mechanism was in- 
vestigated by Schrnidf and by PrangeS on the basis of 
the Ginzburg-Landau Theory. This theory describes 
correctly only the behavior of long-wave fluctuations, 
so that the theoretical results of Schmidt and Prange 
are not in good agreements with the experiments of 
Gollub et al.' at high temperatures and in strong mag- 
netic fields, when the short-wave fluctuations must be 

wave fluctuations were introduced in the calculations of 
the magnetization of superconductors above T, on the 
basis of the Gor'kov theory in a number of papers.'-' In 
these papers, the dependence of the magnetization on 
the temperature and on the applied magnetic field was . 
determined by the procedure developed in Schmid's 
paper,' namely, by calculating the free energy of the 
system. The results agree well in the main with the 
experimental data. 

In other experiments, Gollub et a1.' measured the fluc- 
tuation-induced magnetization of bulky type-11 supercon- 
ductors under conditions close to surface superconduc- 
tivity. If a stationary magnetic field is applied parallel 
to the sample surface, fluctuation-induced surface nu- 
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