
The above approach can b e  extended, by renormaliza-  
tion d the formulas,  to the case of "destruction" of 
o r d e r  atoms or small-charge ions colliding with multiply 
charged ions. 
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Characteristics of electron and photon spectra associated 
with interaction between quasistationary terms 
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An analysis is made of the energy spectra of electrons or photons emitted as a result of decay of two 
quasistationary terms which interact with one another in accordance with the Demkov or Nikitin models. 
General expressions are obtained for describing the lines of isolated atoms and of the background 
corresponding to decay of a quasimolecular state. The profiles of atomic lines, their satellites, far wings, 
etc., are investigated. The general problem of the interaction of discrete states with degenerate continua, 
corresponding to different directions of electron or photon emission and different decay channels, is 
considered. The interaction of discrete levels via a continuum is related to interference in the final states. 
It is shown that each model of the interaction of quasidiscrete levels predicts a variety of spectra which 
differ in respect of the nature of interference. 

PACS numbers: 3 1.90. + s 

8 1. INTRODUCTION conveniently be descr ibed  in t e r m s  of formation and de- 

cay of the  corresponding autoionizing states of a quasi- 

Ionization in A + B -  A +B++e atomic collisions at ve- molecule. In con t ras t  to the  usual  d i s c r e t e  levels ,  such 

locities lower than the charac te r i s t i c  e lec t ron  value can  states are charac te r ized  not only by the  dependences, 
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on the internuclear distance R ,  of their energy E(R) but 
also of their width r ( R )  which describes the feasibility 
of ionization of a given state. Similar description can 
also be used for the noncharacteristic radiation emit- 
ted in collisions of atoms. Detailed information on the 
process and on the characteristics of quasistationary 
states is contained in the energy spectra of the result- 
ant electrons and photons, which have recently been 
attracting the attention of experimentalists and theo- 
reticians. '12 

In earlier papers3s4 we formulated the theory of inter- 
action of several quasistationary states with one (non- 
degenerate) continuum and we considered the character- 
istics of the spectra which appear in a number of physi- 
cally interesting cases,  when only one quasistationary 
term is present4s5 and also when there a r e  two terms 
forming a Landau-Zener pseudocr~ss ing .~  In the pres- 
ent paper we shall study systematically another impor- 
tant (in atomic physics) case of the interaction between 
two states when the terms a r e  parallel over large in- 
ternuclear distances and become strongly repulsive on 
reduction of R. In this case, nonadiabatic transitions 
a re  usually described by the Demkov model7 or the 
more general Niktin m ~ d e l . ~ . ~  

The Demkov model was f i rs t  suggested to describe 
charge exchange in the case of a small  resonance de- 
fect and has subsequently found numerous applications 
in the theory of nonadiabatic transitions between quasi- 
molecular terms in collisions. In particular, Meyer- 
hof1° applied it to describe a redistribution of vacancies 
between the orbitals of a quasimolecule when a vacancy 
forms on close approach to one of the orbitals and this 
vacancy is then transferred to other orbitals during the 
subsequent motion of the colliding atomic particles. 
This mechanism frequently predominates in the forma- 
tion of vacancies in deep internal atomic shells. The 
states of a quasimolecule with vacancies a r e  unstable 
(quasistationary) and may decay in the course of colli- 
sions s o  that the vacancies become filled with electrons 
from outer shells, and electrons and photons a r e  emit- 
ted, a s  found e~per imental ly .~ '"  Therefore, a calcula- 
tion of the relevant energy spectra is a pressing prob- 
lem. 

One of the reasons for the popularity of the Demkov 
model is the fact that the exponential repulsion of the 
terms allowed in the model has a clear physical origin 
because it is associated with the exchange interaction of 
the states of a particle in potential wells which approach 
one another. The magnitude of this interaction can be 
determined from the asymptotic theory only on the basis 
of information on isolated atoms." The Nikitin model,8mg 
one of whose special cases is the Demkov model, has 
an additional f ree  parameter which provides, in princi- 
ple, a greater flexibility in reproducing the real  quasi- 
molecular terms. However, the choice of the param- 
eters is no longer as  clear and meaningful. Interesting 
results have been obtained recently on applying the 
Nikitin model to the problem of a redistribution of 
v a ~ a n c i e s ' ~ * ' ~  and the parameters have been selected by 
fitting to the known quasimolecular terms. An impor- 
tant advantage of the Nikitin model is the ability to 

tackle also the case of crossing diabatic terms when, 
in contrast to the Landau-Zener model, the terms tend 
to constant limiting (atomic) values a s  atoms move 
apart. In investigations of the spectra this is particu- 
larly important because it makes it possible to consider 
in an unified manner both the atomic lines and the quasi- 
molecular background. In view of this, we thought it 
would be useful to consider separately the simple Dem- 
kov model (5 3) and the mathematically more complex 
Nikitin model (5 4), and to study the relationship be- 
tween them. 

In the case of some interacting quasistationary terms 
it is exceptionally important to allow for the possibility 
of decay to several  (degenerate) continua, which cor- 
respond either to different directions of electron emis- 
sion or to different final states of a quasimolecular ion 
AB+ formed by decay of a quasimolecule AB. There- 
fore, in % 2 we shall refine the type of interaction via 
a continuous spectrum and consider interference phe- 
nomena in such cases. 

$2. INTERACTION OF QUASISTATIONARY STATES 
THROUGHDEGENERATECONTINUUM 

Let us assume that there a r e  Ndiscrete states Icj) 
( j = l , 2 ,  . . . , N )  with energies Eoj(t) which appear against 
a background of continua with wave functions Ika), 
where k is the momentum of the emitted particle and 
the index a (a = 1 ,2 , .  . . , M) indicates the decay channel, 
i.e., the state in which the system remains after emer- 
gence of a particle; we shall denote the energy of this 
state by ga(t). The Hamiltonian of the system is repre- 
sented in the form H =Ho + 3, in which the operator H, 
is diagonal in the selected basis: 

where w = k2/2 and n =k / (k (  represent, respectively, the 
energy and direction of the emitted particlt. Only the 
following matrix elements of the operator V differ from 
zero, 

v ? h ( t ) 4 6 j 1 Y ( t )  1 SI,, v&(k ,  t ) = ( L j ( V ( t )  lka), (2.2) 

and they describe the interaction of discrete states with 
one another and with continua. 

Repeating in this case the procedure adopted in our 
earl ier   paper^^*^ and using similar assumptions, we 
find that in the adiabatic approximation the amplitudes 
of populations of the discrete states aj(t) a r e  described 
by the system 

with the effective Hamiltonian 
M 

(%tt)p-Eoj(t)6jk+v~~((t --in 2 I vja vka'. (2.4) 
0-1 

The last  term describes the interaction of states via 
a degenerate continuum; we shall represent this later 
in a different form. The amplitude b,(k) of the popula- 
tion density of states in a continuum Ika) is calculated 
from 
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N - Y h '  

b. ( k )  =-ix j V,(k, t)a,(t)exp iwt-i L ( t n ) d t f  ] dt, (2.5) [ J w c , ) - ~ ~  Sj?bja(o) C.). 

j-1  ta 
0-1 1. -1 

where 
where t, is the moment a t  which the initial condition is 
specified. Equations (2.1)- (2.5) generalize directly the ,-i 1 [-$I "'%(t)exp [imt-i j8= (t.) d t t ]d t .  
results obtained earl ier  in Refs. 3 and 4. 

I$ 

For each discrete state 15,) and a given decay channel 
a we shall find the "proper continuum" Jljwa),  i.e., 
such a linear combination of the functions of the continu- 
um with a given electron energy w that, in the absence 
of other discrete states, the state It;,) decays only to 
this continuum. We have to assume that 

where c,, is the normalization coefficient. The other 
states of this se t  I ~ j w a )  will be found by the usual or- 
thogonalization procedure taking the state Iljwa) a s  the 
first. The index A andthe wave functions I ~ j w a )  gener- 
alize, respectively, the concept of the orbital momen- 
tum and of a partial wave in the spherically symmetric 
case. 

We thus obtain 

and, on the other hand, we have 

A 

where P,, is the operator of the projection on the sub- 
space of states in the continuum with an energy w and 
an index a. Comparing Eqs. (2.7) and (2.8) we obtain 

( A i o a  I V 1 51) = c , , 6 ~ , ,  (2.9) 

which indicates that direct decay of a state 15,) in a 
channel a occurs only to the proper continuum. It also 
follows from Eq. (2.9) that the partial width of decay of 
the state It;,) in the channel a ,  associated with the dia- 
gonal element in the matrix of the interaction via a con- 
tinuum [see Eq. (2.4)], is 

Calculations similar to those given above make i t  pos- 
sible to represent the nondiagonal elements of the inter- 
action matrix of states 16,) and It;,) via a continuum: 

1 
jdn V*Vr.'= -(rj,r,.)".S,:"! 

2n (2.11) 

where s($) is found from 
< l j oa l  1kw'~)-S,,'"6,86(w-w') (2.12) 

and i t  describes the degree of overlap of the proper 
continua for the two discrete states under consideration. 

Thus, the degree of overlap governs the interaction 
via a continuous spectrum and interference in the final 
state. If each state decays to its own proper continuum 
(s!:) = 6,,), the energy spectrum is found by simple addi- 
tion of the spectra IbJ,(w) l2 corresponding to the decay 
of each of the interacting quasistationary terms. If the 
proper continua overlap, then interference occurs in 
accordance with Eq. (2.14). 

In the case of a single nondegenerate continuum (M 
= 1, s::) = 1) the interference is complete, i.e., it cor- 
responds to the addition of the amplitudes. The degree 
of the overlap (2.12) is governed by the problem in 
question and cannot be found in its general form. 
Therefore, we shall calculate only the amplitudes b,,(w) 
and, for simplicity, we shall assume that there is only 
one decay channel s o  that the index a can be omitted. 
This allows us also to ignore the dependence g,(t) in 
Eq. (2.15) on the assumption that the energies E,,(t) a r e  
already measured from the lower limit of the continu- 
um. The initial conditions a re  specified for the adiaba- 
tic states in the limit to- -m and they have the form 
[see the discussion in Ref. 4; E,(t)  is  the energy of the 
initially populated adiabatic term,  i.e., the eigenvalue 
of H,ff I 

in the limit t- -.o. The constant G is found from the 
condition of matching Eq. (2.16) to the solution of a mo- 
del problem which describes the process of formation 
of a vacancy on close approach between the atoms. 
Since all the amplitudes of a transition to a continuous 
spectrum a r e  proportional to G, we shall simplify fur- 
ther treatment by assuming that G = l. 

We shall conclude by noting that Dalidchik et ~ 1 . ' ~ * ' ~  
considered the interaction of resonance states,  includ- 
ing the interaction via a continuous spectrum, in a num- 
ber of concrete cases. The results  of these investiga- 
tions and those obtained in the present paper a r e  analog- 
ous but not completely so,  because in the former case 
the resonances a re  governed by the form of the poten- 
tial, whereas we a r e  considering resonances of the 
Feshbach type, associated with the multichannel nature 
of the problem. 

$3. DEMKOV MODEL WITH DECAY 

The Demkov model7 corresponds to two parallel terms 
The energy spectrum W(w) of electrons o r  photons is 

with the interaction between them depending exponen- 
found by summing over all  the decay channels: tially on time, so  that Eq. (2.3) becomes 

If we can ignore the time dependence of s:), we can (3.1) 

represent the quantity W(w) in a particularly clear 
form: The parameter a represents the time during which the 
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adiabatic basis becomes modified from the molecular 
( t -  -03) to the atomic ( t -  +-) states,' and it governed by 
the exchange interaction (5 1). In contrast to the usual 
Demkov model, the system (3.1) includes also the inter- 
action of discrete states with a continuum, which is as- 
sumed approximately to be independent of time (r,,, 
=const). In the limit t- 03, i.e., when the atoms fly 
apart, the adiabatic terms reduce to atomic levels with 
complex energies. 

Allowance for the interaction via a continuum in the 
exactly soluble Demkov model (and also in the Nikitin 
model) is possible only if it i s  proportional to exp(-at). 
It follows from Eq. (2.11) that the same dependence has 
to be assumed for S,,(t), which is difficult to justify 
physically. Therefore, we shall not introduce this in- 
teraction in the treatment below although allowance for 
it is basically simple. The results  obtained a r e  then 
known to be applicable to the frequently considered case 
of small widths (for example, in the case of optical 
spectra), when the last term can be neglected com- 
pletely in the effective Hamiltonian (2.4) and the interac- 
tion with a continuum is allowed for only in the calcula- 
tion of the amplitude (2.15). In general, a calculation of 
this kind reproduces all  the qualitative features of the 
spectra (for example, the positions and profiles of the 
atomic lines,interference structure,  etc.). 

Assuming initially (for t- - m )  that the upper adiabatic 
term i s  populated, i.e., that the combination of states 
(IK1) + 1b2))/fi is occupied, we shall write down the 
solutions of the system (3.1): 

al,,=exp [-iet-'/r(I',+I'r) t ] c t , z ( t ) ,  

The spectrum of the decay products is governed by the 
higher amplitudes, which a r e  exact in the Demkov mo- 
del with decay: 

We shall next consider the case of practical interest 
when the characteristic decay time of the states ( - l / r )  
is much greater than the characteristic time of the non- 
adiabatic interaction of the terms (-l/a), i.e., 

r /ua I .  (3.6) 

In this approximation we can separate (in this energy 
spectrum) the atomic lines near which the probability 
density has a Lorentzian maximum: 

Thus, the positions and widths of the lines correspond 
to f ree  atoms and their relative intensity is governed by 
the probability P =[1 +exp(na-'A&)]-' of a nonadiabatic 
transition in the Demkov Hence, i t  follows 
that in the case  of sufficiently small  widths when the 
integrals of the densities lb,(w) 1' over all the energies 
a r e  governed primarily by the regions where Eqs. (3.7) 
and (3.8) a r e  valid, we have the relationship 

which extends in a natural manner the concept of the 
transition probability to the case  under consideration. 
We note that, in general, introduction of the transition 
probability concept is not a tr ivial  matter because of the 
need to  separate it from the effects of decay of the adia- 
batic terms.3 This has  encouraged some  author^'^.'^ to 
consider only the populations of quasistationary terms, 
but this makes it difficult to interpret the results  and to 
use them in the adiabatic approximation calculations. 

Equations (3.4) and (3.5) easily yield also approximate 
expressions for the line wings: subject to the condition 
(3.6) and if I & ,  ,, - w I>> r,,,, we have 

It follows from Eqs. (3.4) and (3.5) that both ampli- 
tudes b,,, have the same phase in the region of far  wings 
of the lines I & ,  ,, - w 1 >> a. Therefore, even in the case 
of decay to the same channel there a r e  not interference 
effects in this part  of the spectrum. The reduced dis- 
tributions of the spectral intensities Ib,, I2/r,,, a r e  also 
the same in the far wings of the lines: 

which is obtained quite simply from Eqs. (3.10) and 
(3.11). These features of the spectra a r e  due to the 
fact that the far wings of the lines a r e  due to decay a t  
t <  0, when both atomic states a r e  strongly coupled and 
the initial condition is such that they decay a s  a single 
quasimolecular state. Naturally, the part  of the spec- 
trum formed in this way should be identical with the 
spectrum a s  a result of decay of a single exponential 
term1': 

where the parameters have the values a =  a and C = V. 

The behavior of the terms is described approximately 
by the exponential function (3.13) also in the other case 
corresponding to t >  0 ,  when the profile is formed in 
the direct vicinity of atomic lines. In this case, we 
have a = 20, C = V / ~ A & ,  and the characteristic depen- 
dence on o in the form of the gamma function, corres- 
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The energies of the adiabatic terms a r e  

1 f * - { [ A E + A E  cos ee-*'- -(l",-I',) 1' + AE sin' 8 e Y 1  )'". (4.3) 
2 2 

FIG. 1. Dependences of the quasimolecular background in the 
Demkov model [Eqs. (3.10) and (3.11)l for various values of 
the parameter 5 = r A &/4a. The continuous curves represent 
1 bz(w) 1 and the dashed curves correspond to Ibl(w)l '; 1) 5 
= 1.5; 2) 5 = 2; 3) 5 = 3. The centers of the Lorentzian parts of 
the spectra for I b i, are located at 2 (& - w)/A& = +I. A 
change in 5 by unity reduces the transition probability P by 
two orders of magnitude. 

ponding to Eq. (3.14), is separated in a natural manner 
also in the exact amplitude (3.4) for I&,  - w I << A &. 

The graphs of 4 ~ ~ ~ ~ b , , ) 2 / r r , , ~  based on Eqs. (3.10) and 
(3.11) a re  plotted in Fig. 1 for various values of the 
nonadiabaticity parameter 5 = n~&/4o!.  An increase in 
the nonadiabaticity reduces the intensity of the Lorentz- 
ian part  in the spectrum Ib2I2 in the same way a s  the 
transition probability, but there is no significant change 
in the quasimolecular background. It should be noted 
that in the case o f  detuning A& # 0  the spectrum of Ib2 l 2  
should have a sharp maximum in the Lorentzian part a t  
w = E, a s  well a s  a broad maximum (satellite) a t  w = &,, 
the latter being associated with the quasimolecular na- 
ture  of the wings of the spectral line (see Fig. 1). A 
satellite is observed most conveniently for the decay of 
states to various continua or for the decay of states to 
a single continuum but subject to the condition r,<< r2. 

$4. SPECTRA IN THE NlKlTlN MODEL 

The Nikitin model involves the following approximation 
for the matrix elements of the effective Hamiltonian: 

(He, , )  ,1,2z=Hll.22=E1.2* '12Ae cos ee-.', 
( H e , + )  , 9 = - ' / z A ~  sin Be-"', 

E , , ~ = E , , ~ - ~ / ~ ~ ~ ~ , ~  I (4.1) 
= ~ * ' / ~ b e - ' / ~ i r , , ~ ,  O b e G z .  

The parameters A&, r,,, and o! a re  the same a s  in the 
Demkov model; following B 3, we shall simplify the 
treatment by ignoring the interaction of terms via a 
continuous spectrum. The meaning of the additional 
parameter becomes clear if we write down the expres- 
sions for the adiabatic states I*,.,,) in the limits t-i-: 

For 0 = n/2 the problem reduces to the Demkov model, 
whereas for 8 = 0  or  n we obtain two noninteracting 
terms dependent exponentially on time: for  0 =O they 
a r e  repulsive, whereas for 0 = n they cross.  

The solution of the system (2.3) corresponding to the 
initial population of the upper adiabatic term (state 
I* )) is of the form2' 

0 
[ j ( H I 1 + H , ) d t f + i - - x  a ,  ( t )  = cos - W.,,,(z) exp - - 

2 2 
to 

iAe  cos I3 
z=--e-"I, x - i -  ( A & +  y ) ,  

a 2a 

1 i p = - - + -  i  
( A & + y ) ,  7 = -  - ( r , - r z ) ,  

2 2a 2 

where W,,, is the Whittaker function.lg In the Nikitin 
model the amplitudes of a transition to a continuous 
spectrum a r e  expressed in terms of the hypergeometric 
and gamma functions: 

Reduction to the Demkov model in the spectra is given 
in Sec. 1 of the Appendix. In the limiting case of 0 =O 
we can easily show on the basis of Eq. (A.2) that the 
amplitudes b,(w) a re  proportional to the amplitude of the 
exponential term (3.14) and then b, =O; in the other 
limiting case of 0 = n we have conversely b, = 0 and b, 
reduces to  Eq. (3.14) by means of Eq. (A.3). 

As in the Demkov model, atomic lines appear in the 
spectrum because of decay after a long time t. The ex- 
pressions (3.7) and (3.8) a r e  obtained, subject to the 
condition (3.6), by means of Eq. (A.5) in the Appendix 
and the approximation r ( p  + s  +$)= o ! / i ( ~ ,  - w), assum- 
ing that P is now the probability of a nonadiabatic tran- 
sition in the Nikitin model without the decay: 

We shall now consider the spectrum in the region of 
the line wings, which implies (for the b, amplitude) 
those energies of the emitted particles which satisfy the 
conditions I & ,  - w l/o! > 1, (E,  - w (>A&;  the condition (3.6) 
is also assumed to be fulfilled. In Sec. 2 of the Appendix 
it is shown that in this case the spectrum can be des- 
cribed by the amplitude (A.7): 
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The form of the spectrum simplifies further in the re- 
gion which is separated from the line center by more 
than A& (A&<< I & , -  01): 

and, finally, in the f a r  wings of the lines I &  - w I/a >> 1, 
we have 

For b,, the wings of the spectrum I&, - w I/cu > 1, 
1% - w (> A &  can be described by Eqs. (A.9), (4. l l ) ,  and 
(4.12) replacing r1cos2(8/2) with r,sin2(O/2) and el,, 
with E,,,. 

We note that Eq. (4.11) and the analogous expression 
for Ib, 1' a r e  independent of 0, with the exception of the 
factors cos2(0/2) and sin2(0/2), which we shall not con- 
sider here. Thus, in the energy ranges in question the 
spectra of both components have the same form, which 
is identical with the form of the spectrum for a single 
exponential term (8 = 0); this can checked by direct ana- 
lysis of the limit of the expression (4.6). The reason is 
that in the case of sufficiently large values of It I for 
t <  0 the term (4.3) behaves exponentially and is inde- 
pendent of 8: E, = & + $A& exp(-cut). The factor cos2(8/2) 
is simply the square of the coefficient in the expansion 
of the corresponding adiabatic wave function in terms of 
the basis of diabatic states; for the same reason the 
amplitude b, acquires the factor sin2(O/2). The regions 
&< w and &> w in Eq. (4.12) correspond to the classically 
allowed and forbidden populations of the states in the 
continuum, a s  discussed in detail in Ref. 4. We shall 
s t ress  once again that these regions a r e  the same for 
Ibl 1' and (b, 1'. 

It is interesting that Eqs. (A.7), (A.8) and the analog- 
ous (in the case of b,) Eq. (A.9) can be regarded a s  con- 
venient approximate expressions for the spectrum with 
all values of w in the Nikitin model. It follows from Eq. 
(A.2) that these formulas a r e  valid in the region of the 
wings of the spectrum, a s  well a s  near the centers of 
atomic lines. In the latter case  the expressions (A.8) 
and (A.9) reduce, for r1,,/a << 1, to Eqs. (3.7) and (3.8), 
respectively, in which the transition probability is now 
given by Eq. (4.9). If the condition rA&/2a<< 1 is satis- 
fied, we can check that Eqs. (4.10), (A.8), and (A.9) 
describe correctly the spectrum for all values of w ex- 
cept in regions of width of the order of I?,,, near w =&,,, 

in the case of parallel diabatic terms [ ~ e m k o v  model, 
Eqs. (3.10) and (3.11)]. In the case of a weak interaction 
(8= O), Eq. (A.8) is also valid for all  w with the excep- 
tion I & ,  - w 1 s rl [see Eq. (A.2) in the ~ppendix].  It 
follows from Eq. (A.8) that the spectrum of the "strong" 
component associated with the decay of a state It,) is 
then 

FIG. 2. Dependences of the quasimolecular background Ib z ( w )  1 
In the Nikitin model [Eq. (AS)] for various values of cos 9 and 
5 = n A E / 4 a = l :  i)cose=Q; 2) COSO=+; 3) cosg=+; 4) cosg=O; 
5) C O S ~ = - + ;  6) C O S ~ = - ~ ;  7) case=-$. 

In the opposite case of term crossing (8= r) ,  the spec- 
trum of the "strong" component is obtained from Eq. 
(A.9) and has the form (4.13) where and E, a r e  re- 
placed with r, and %. 

The energy dependence of the reduced spectral inten- 
sity, obtained from Eq. (A.8), is plotted in Fig. 2 and 
can be used to study the nature of the influence of the 
parameter 8 on the form of the spectrum. On increase 
of 8 the intensity I b, l2  r i s e s  because of an increase in 
the probability of a nonadiabatic transition but the sat- 
ellite is mcre  pronounced in the case of the strongest 
coupling between diabatic states 8 = r/2. 

$5. CONCLUSIONS 

The usefulness of the models considered in 5 %  3 and 4 
is greater than suggested by the formal conditions of 
their validity, because they can be used to study various 
asymptotic parts of the spectra (atomic lines and their 
broadening, satellites, far  wings in the spectra) and to 
determine how the spectra a r e  formed as  a result of 
decay of quasistationary states. 

In the case of close approach of the atoms the interac- 
tion gives r i se  to a vacancy whose evolution in time can 
be described by an adiabatic wave function. The decay 
of this wave function in the region of a strong interac- 
tion of diabatic states ( t<  0 in the models considered 
above) produces the line wings; in this case, the part  
of the spectrum formed by the classically forbidden 
transitions (4.12a) is proportional to the exchange inter- 
action parameter a ,  and the part  corresponding to clas- 
sically allowed transitions is governed by the difference 
between the energies of vacancy transitions in coupled 
and separated atoms. In the range of classically allowed 
transitions, as pointed out in $ 5  3 and 4, a satellite may 
form and it should be experimentally observable in the 
case of those states whose interaction can be described 
by the Demkov model and which satisfy r,<< r,. The 
strongest features of these spectra a r e  the broadened 
atomic lines on a background of a quasimolecular con- 
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tinuum, which disappear in this continuum away from 
the line center. 

It is worth considering separately the range of strong 
interaction between adiabatic terms. In the Demkov mo- 
del there a re  no significant features associated with this 
interaction because adiabatic terms depend fairly s m  
smoothly on time. This is the considerable difference 
from the Landau-Zener case o r  from the Nikitin model 
in the r/2 G O G r case, when adiabatic terms in the 
pseudocrossing region have a sharp inflection. The 
most easily interpreted feature appears on crossing of 
an initially populated diabatic term characterized by a 
small width and a rapidly decaying diabatic term; here, 
the decay is included effectively in the region of term 
pseudocrossing and it terminates almost immediately 
because of the considerable width of the second term. 
This gives r ise  to a group of monoenergetic electrons 
of new type in the spectrum (see a figure in Ref. 4; the 
captions to figures in Ref. 4 should be interchanged) and 
this group is retained also when summation is carried 
out over the impact parameters of the colliding atomic 
particles. Observation of a corresponding maximum in 
the spectrum makes it possible to determine experi- 
mentally the energy of the terms a t  the point of their 
pseudocrossing. 

It follows from § 2 that each solution of the problem 
of determination of the amplitudes b,(w) gives in fact a 
whole class of energy spectra, depending on the nature 
of the overlap of the continuum eigenstates and on in- 
terference. As in Ref. 4, we a r e  concerned here main- 
ly with the behavior of the quantities Ib, P, whose sum 
represents directly the spectrum when states decay to 
nonwerlapping continua. In the other limiting case of 
decay to one common continuum the addition of the am- 
plitudes produces a further interference structure in 
the range of energies between the atomic levels and 
rapid oscillations in the spectrum between the enve- 
lopes (Ib, 1 + Ib, 1)' and (Ibll - Ib, I)'. A situation of this 
kind is considered in Ref. 4. 

The authors a re  grateful to Yu. N. Demkov and N. P. 
Penkin for valuable discussions. 

APPENDIX 

1. In the case of parallel diabatic terms, we have 
8 = n/2, and, consequently, x =  0. The relationship be- 
tween the parameters of the hypergeometric functions 
in Eqs. (4.6) and (4.7) is then such that we can use one 
of the quadratic transformations of the hypergeometric 
function [see Ref. 19, 52.1.5, Eq. (25)]: 

CG.1) 
Substitution of Eq. (A.1) into Eq. (4.6) and application of 
the formula for doubling of the argument of the gamma 
function to r ( p  + s  +$) and r(-p +s+$) gives Eq. (3.4). 
We can similarly simplify Eq. (4.7). 

In the limiting case of noninteracting terms with 8 = 0  
and r, the formulas for the amplitudes (4.6) and (4.7) 
can be simplified greatly if we bear in mind that p - u 
+$ = O  fo r  O =O, s o  that 

andfor  8 = r w e  have C L + ~ + $ = ~ - x + l ,  so tha t  

2. We shall now find the values of the parameters of 
the hypergeometric function in Eq. (4.6) by means of 
Eqs. (4.5) and (4.8): 

where E l  = &  +$A& - i r , /2  = &,- ir1/2. If either of the 
condition I&, - w l/a << 1 (corresponding to the part of 
the spectrum near an atomic line) o r  8<< 1 (weak coup- 
ling between the states) is satisfied, an approximate 
expression for the amplitude can be obtained using the 
formula 

which follows from the definition of the hypergeometric 
series. In the regions of the wings of the lines I & ,  - w 1 / 
a >> 1 and I&, - w l/a > A&, the approximate expression 
for the amplitude can be obtained if we go over in Eq. 
(A.4) to the hypergeometric function of the argument 
z / ( z  - 1) [see Ref. 19, § 2.1.4, Eq. (22)]. We then ob- 
tain 

and the approximate expression for the amplitude in the 
region of the line wings becomes 

We should note specially that i t  follows from Eqs. (A.5) 
and (A.6) that when I?,,,/a<. 1 and when one of the con- 
ditions I&,-  wI/a<< 1 and e<< 1 or  I & , -  wI/a>> 1 and 
I&, - w I> A& is satisfied, the modulus of the f i rs t  term 
in the expression (A.4) in terms of the small parameter 
(E, - w)/a o r  0 or  CY/(E, - W) is the same and equal to 
unity. It therefore follows from Eq. (4.6) that in these 
cases 

AE "["-'(e-"-"2AEc0s9) mp[-l(E-o +Tcos9)]. (A.8) 
X- e-o-'I& cos 9 

Similarly, we can show that the modulus of the f i rs t  
term of the expansion ~ ( p  + s + $ ,  p -n+$, s-%+I,-1)  
in terms of one of the small  parameters (E, - w)/a, 
( r -  0), a / ( ~ ,  - w )  is 2-' and i t  then follows from Eq. 
(4.7) that the f i rs t  term of the expansion of lb,I2 in 
terms of one of these small parameters is 

sh[na-'(~-o-~/~Ae cos 0) 1 
X- e-a-'/.be cos 9 
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" This ampli lde was given by us earlier4 in specifying the in- 
itial condition at  a finite time to.  

2J The solution of the Nikitin model problem with decay i s  con- 
sidered in detail in Ref. 17 for a different initial condition. 

'G. N. Ogurtsov, Trudy VI V K F ~ A S  (Proc. Sixth All-Union 
Conf. on Physics of Electronic and Atomic Collisions), Len- 
ingrad, 1976, p. 80. 
'w. E. Meyerhof and K. Taulbjerg, Ann. Rev. Nucl. Sci. 27, 

279 (1977). 
3 ~ .  Z. Devdariani, V. N. Ostrovskir, and Yu. N. Sebyakin, Zh. 
Eksp. Teor. Fiz. 71, 909 (1976) [Sov. Phys. JETP 44, 477 
(1976)l. 

4 ~ .  Z. Devdariani, V. N. Ostrovskir, and Yu. N. Sebyakin, 
Zh. Eksp. Teor. Fiz. 73, 412, 1984 (1977) [Sov. Phys. JETP 
46, 215 (1977)l. 

5 ~ .  N. ostrovskir, Zh. Eksp. Teor. Fiz. 72, 2079 (1977) [Sov. 
Phys. JETP 45, 1092 (1977)l. 

'A. Z. Devdariani, V. N. ostrovski:, and Yu. N. Sebyakin, 
P is'ma Zh. Tekh. Fiz. 3, 873 (1977) [Sov. Tech. Phys . Lett. 
3, 354 (1977)l. 

'YU. N. Demkov, Zh. Eksp. Teor. Fiz. 45, 195 (1963) [Sov. 
Phys. JETP 18. 138 (1964)l. 

'E. E. Nikitin, Opt. Spektrosk. 13, 761 (1962) [Opt. Spectrosc. 

(USSR) 13, 431 (1962)l. 
'E. E. Nikitin Disc. Faraday Soc. No. 33, 14 (1962). 
'OW. E. Meyerhof, Phys. Rev. Lett. 31, 1341 (1973). 
"w. R. Thorson and J. H. Choi, Phys. Rev. A 15, 550 (1977). 
1 2 ~ .  E. Nikitin and B. M. Smirnov, Usp. Fiz. Nauk 124, 201 

(1978) [Sov. Phys. Usp. 21, 95 (1978)l. 
1 3 ~ .  G. a v i n g ,  J. Phys. B 10, L63 0977). 
14W. E. Meyerhof, R. Anholt, J. Eichler, and A. Salop, Phys. 

Rev. A 17, 108 (1978). 
15F. I. Dalidchik, Yad. Fiz. 21, 51 (1975) [Sov. J. Nucl. Phys. 

21, 26 (1975)l. 
Z. Slonim and F. I. Dalidchik, Zh. Eksp. Teor. Fiz. 71, 

2057 (1976) [Sov. Phys. JETP 44, 1081 (1976)l. 
17v. A. Bazylev, N. K. Zhevago, and M. I. Chibisov, Zh. 

Eksp. Teor. Fiz. 71, 1285 (1976) [Sov. Phys. JETP 44, 671 
(1976)l. 

"R. T. Robiscoe, Phys. Rev. A 17, 247 (1978). 
l g ~ .  Erdslyi (ed.), Higher Transcendental Functions (Califor- 

nia Institute of Technology H. Bateman MS Project), Vol. 1, 
McGraw-Hill, New York, 1953 (Russ. Transl. Nauka, M. 
1973). 

Translated by A. Tybulewicz 

273 Sov. Phys. JETP 49(2). Feb. 1979 Devdariani et  a/. 273 


