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Theory of stimulated coherent emission from atoms in 
spatially separate optical fields 

E. V. Baklanov, B. Ya. Dubetskii, and V. M. Semibalamut 
Institute of Heat Physics, Siberian Bmnch of the Academy of Sciences of the USSR. Novosibirsk 
(Submitted 12 April 1978) 
Zh. Eksp. Teor. Fiz. 76, 482-504 (February 1979) 

The problem of the interaction of a gas of atoms with spatially separate waves is considered. It is shown 
that the action of the field of two separate standing waves in a gas generates coherent radiation at 
distances which are multiples of the separation between the fields. The profile of the coherent emission 
line has a narrow resonance whose width is equal to the reciprocal of the transit times of the atoms 
between the field. An analysis is made of the influence of the quantization of the atomic motion (recoil 
effect) on the line profile. It is shown that in a wide range of the parameters the interaction of atoms with 
a standing wave can be regarded as a sudden perturbation. This makes it possible to solve the problem 
without iteration in respect of the field intensity. The coherent emission line profile is considered in the 
presence of high-power heterodyne laser radiation in the reception region. It is shown that it is identical 
with the prdle of an absorption lime of a weak plane probe wave localized in the region of formation of 
coherent radiation. The recoil effect splits the profile into a generally infinite series of components and 
under certain conditions the component at the line center is retained. This distinguishes fundamentally the 
resonance considered here from other nonlinear optical resonances. The results are given of numerical 
calculations of the line profile in the case when the spatially separate fields have Gaussian profiles. The 
optimal (in respect of the field intensity and pressure) conditions for the observation of the coherent 
emission effect are found. An estimate is obtained of this effect for a transition in CH, giving rise to 
emission at A = 3.39p, for which the effect has been observed experimentally. 

PACS numbers: 42.55.Bi, 42.50. + q, 42.55.Q 

91. INTRODUCTION 

If the lifetime of an atomic oscillator is sufficiently 
long, the dipole moment induced by an external field 
can be transported over long distances. In principle, 
this makes it possible to observe the emission from an 
atom in a region outside the range of action of the ex- 
citing field. 

In the case of an ensemble of atoms with velocities 
exhibiting a scatter we can find the macroscopic 
polarization by averaging the dipole moment of an atom 

over the velocities. At considerable distances from an 
exciting optical field the phase of the dipole moment, 
considered as a function of velocity, changes (in the 
optical frequency range) by a very large value and, 
consequently, the macroscopic polarization vanishes. 

However, in the case of a nonlinear interaction be- 
tween atoms and optical radiation the polarization may 
be transported in a system with spatially separate 
optical fields.' This results in generation of coherent 
radiation in a region where there is no exciting field.' 
The present paper deals with the theory of such co- 
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herent emission in separate fields (CESF). 

The CESF effect was recently observed experimental- 
ly. Coherent radiation due to the A =3.39 g transition 
in methane was generated in spatially separate fields.= 
The temporal analog of this effect (coherent emission 
under the action of standing-wave pulses separated in 
time) was observed4 a s  a result of the A = 10.6 p tran- 
sition in SF,. New characteristics of the CESF effect 
a r e  of interest in applications but this requires a more 
detailed theoretical analysis. 

We shall consider the case when coherent radiation 
is formed by two separate standing waves. In this case 
the power of stimulated coherent radiation (CESF 
power), considered as a function of frequency detuning, 
has a narrow resonance of width of the order of the 
reciprocal transit time of an atom between the two 
fields. The polarization transport is known to give 
r ise  to narrow resonances in a system of three separate 
standing-wave  beam^.''''^ These resonances a r e  
analogous to the Ramsey resonance in the rf range.7 
Such a resonance has been observed in a system with 
three separate fields a t  the A = 0.5882 p wavelength 
of neon." 

In the theory of resonances in separate fields5" the 
internal degrees of freedom of an atom a r e  considered 
quantum-mechanically and the motion of an atom as a 
whole is  analyzed classically. In the present paper the 
resonance of the CESF line profile will be considered 
allowing for the quantization of the motion of an atom 
along the direction of propagation of the wave." It is 
pointed out in Ref. 1 that the width of resonances in 
separate fields may reach 100 Hz. The quantization 
of the atomic motion (recoil effect) distorts a resonance 
in a frequency range 103-lo5 Hz. It follows that al- 
lowance for this quantization is essential. 

We shall consider the CESF effect in spatially sep- 
arate fields. In 8 2 we shall discuss the physical 
mechanism of CESF and in 8 3 we shall estimate the 
magnitude of the effect. A qualitative analysis of the 
influence of the recoil effect on the resonance line 
profile in separate fields is given in 8 4. Evolution 
of the density matrix of a gas of atoms interacting 
with separate fields is considered in 8 5 allowing for 
the recoil effect. The relationships obtained a r e  suf- 
ficient to analyze any resonance in separate fields. 
The theory of the CESF effect is presented in 88  6 
and 7. The results of a numerical analysis and a com- 
parison with the experimental data a r e  given in 8 9. 
The authors hope to consider later the CESF effect 
for pulses separated in time and to generalize the 
results of Refs. 5 and 6 by allowing for the quantiza- 
tion of the atomic motion. 

$2. QUALITATIVE ANALYSIS OF THE MECHANISM 
OF POLARIZATION TRANSPORT 

The appearance of macroscopic polarization in 
standing waves separated by large distances can be  
interpreted geometrically as follows (Fig. 1). For 
simplicity, we shall consider a beam of atoms emerg- 
ing from one point of the first  light beam at  right- 

FIG. 1. Appearance of CESF at a distance of 3L. 

angles to this beam. The interaction of atoms with the 
standing-wave field gives r ise  to a resonance whose 
width is of the order of the reciprocal of the transit 
time 7, = a h ,  where u is the velocity of the atoms in 
the atomic beam. This means that the scatter of 
atoms in respect of the projections of the velocity along 
the direction of the light propagation (z axis) is  v -X/T,, 
where h is the wavelength and the angular divergence 
of a beam of atoms with an induced dipole moment is 
P v / u  - A/a. Hence, it follows that in the x <O case 
the beam polarization is a smooth function of z with 
a characteristic size hL/a, where L is the distance 
between the light beams. After nonlinear interaction 
with the standing-wave field of the second light beam 
the polarization acquires spatial harmonics whose 
period is A,(O) = h/(2m), where m = l ,2 ,3 ,  . . . . During 
the subsequent motion of the atomic beam the harmonic 
period increases geometrically in a similar manner: 

am ( x )  =am (0) (x+L) lL. (1) 

The polarization frequency is equal to the frequency 
of the two separate light waves w and the wave vector 
k,(x) = 2a/~,(x) is  not generally equal to w/c. 

This means that the phase-matching condition is not 
satisfied and there is  no stimulated emission. A polar- 
ization wave with A&,) = A  is  localized only a t  the 
points x, = (3m - 1)L, and this gives r i se  to coherent 
emission. We shall estimate the transverse size of the 
region where the polarization is localized. It i s  
governed by the condition that the polarization wave- 
length should be close to A: (AA1(x) - A")E,(x) S 1, where 
I&) = (x + L)B is the s ize  of the region (along the z 
axis) occupied by the atomic beam at  a distance x. 
Hence, we obtain m e l ( x  -x,) SLZ. 

The transfer of the population difference between the 
fields gives r ise  to polarization harmonics of period 
A/(2m - 1) and these a r e  localized a t  distances x=2mL. 
Thus, coherent emission appears in the field of strong 
standing waves a t  al l  distances which a r e  multiples of 
L. 

$3. ESTIMATE OF THE CESF POWER 

Let us assume that in region I (Fig. 1) the induced 
polarization is of the order of P ,  "xE,, where E, is  
the field amplitude in region I, x is the susceptibility 
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of a gas of atoms which is  of the order of a h ,  and a 
is the absorption coefficient per unit length. The frac- 
tion of the total number of atoms polarized in region I 
which reach region 111 from region I is a/L because 
these atoms intersect light beam 11. We shall assume 
that the field in region I1 is strong so  that the polar- 
ization harmonics a r e  of the order of P,. Thus, 
polarization in region 111 is 

P- (aIL) P,- (a lL)  a@,. 

This polarization in region I11 gives r ise  to coherent 
emission of radiation whose field amplitude is 
E - (I/A)P, where 1 is the size of region I11 along the z 
axis. Since the transverse size of region 111 is of the 
order of a, the emitted radiation power W,-cE2a2 is 
described by 

where W0"cE2& is the field power in region I. 

Since this effect is nonlinear in relation to the field 
of the two standing waves, the characteristic power W ,  
is found from the condition of saturation of the transi- 
tion involved: 

(dz ,Eozolf t )2-d~, lW~/  (cfi'v,") -1, 

where d,, is the dipole matrix element of the transition 
between energy levels, r,=a/v, is the transit time of 
atoms across the field, and v ,  is the thermal velocity. 
If we assume that d,,-0.1D and v,-5 x lo4 cm/sec, we 
find that W,- 10'4-10'5 W. 

their results to CESF in methane a t  the A=3.39 p 
transition. 

$4. CHARACTERISTICS OF THE RECOIL EFFECT IN  
A SYSTEM OF SEPARATE FIELDS 

The recoil effect splits a nonlinear power resonance 
(Lamb dip) into two components (recoil doublet) which 
a r e  separated on the frequency scale by twice the re- 
coil frequency A =Ek2/2M (Ref. 9). The effect has been 
observed e~perimentally'~'" for the A =3.39 p transition 
in methane. The appearance of a recoil doublet can be 
interpreted a s  a consequence of the splitting of the 
emission and absorption line profiles because of the 
recoil (a change in the momentum) of an atom in an 
elementary event of interaction with an external field. 
When an atom interacts with fields separated by 
large distances, the resonance splitting is due to a 
different mechanism, which we shall now consider. 

A resonance whose width is the reciprocal of the 
transit time between separate fields appears as 
follows.' The dipole moment acquired by the atom 
in the first  field oscillates freely in the space between 
the fields a t  the frequency of an atomic transition w,, 
and during the transit time T = L/u i t  acquires a phase 
w,,T. During this time the field of the second wave 
acquires a phase oT, i.e., the "atom-separate fields" 
system is phase matched for SZ 5 T", where 52 = o - q, 
is the detuning of the field frequency relative to the 
atomic transition freauencv; this gives r ise  to an ad- -, - 

For typical values of a- cm-', I - 10 cm, ditional absorption resonance associated with the 
a-1 cm, and L-10 cm, the radiation power W, is of transport of polarization between the fields. 
the order of 10'12-10'13 W. Direct recording of such 
weak signals is hardly possible but if in the region 
where signal reception takes place there i s  a field 
of a heterodyne laser of high power W' and this field 
is frequency detuned from the field W,, then the de- 
tected power exhibits beats of amplitude W- (W + w')*, 
which can be estimated from Eq. (2): 

For the same parameters a s  before the power of the 
beat signal is W- 10-7-10'8 W (for W'- 10" W), which 
is one or two orders of magnitude higher than the sen- 
sitivity limits of the existing detectors. 

It should also be  pointed out that since the quantity 
in Eq. (3) is linear in the response of the system to 
the separate fields, we can analyze more fully the 
effect in the cases encountered experimentally. The 
profile of the beat signal is identical with the profile 
of a resonance line exhibited by the absorption of a 
weak probe wave in the region where the CESF signal 
is formed. 

We shall confine our attention to the case of two-level 
atoms and we shall ignore the magnetic degeneracy 
of the sublevels. In the case of linearly polarized 
waves, which a r e  in resonance with transitions between 
degenerate levels, the problem reduces to the inter- 
action between the field and an ensemble of un- 
coupled two-level systems. Thus, the results obtained 
can be used to calculate the CESF effect for any 
specified transition. The authors hope to apply later 

The need to allow for the recoil effect occurs when A 
becomes comparable with the resonance width: A" T-'. 
When the fundamental condition of the theory a/L << 1 
is satisfied, the recoil frequency is A<< 7;'. Since 
7,' governs the transit width of the profile of a line due 
to a single atom, the splitting of the absorption and 
emission lines can be ignored." However, an elementa- 
ry event of interaction between an atom and the field 
alters the longitudinal velocity of the atom v by an 
amount *tEk/M, which gives r ise  to an additional Dop- 
pler-induced change in the phase of the dipole moment 
of an atom by an amount *AT, i.e., allowance for the 
recoil has the effect that there is no phase mismatch 
in the system for SZW*A. These values of detuning cor- 
respond to resonance maxima in separate fields and 
they can b e  resolved if A 2 T". 

We shall not use perturbation theory and we shall 
solve the problem for fields of arbitrary intensity. 
We shall consider briefly the solution method. It has 
been pointed out5 that if a/L<< 1, then we can assume 
that the frequency detuning is SZ = 0 in the space oc- 
cupied by the field and we can ignore the relaxation of 
atomic levels in this region. It is known (see, for 
example, Ref. 12) that under these conditions the 
problem of the interaction of an atom with a standing 
wave reduces to the problem of the motion of a quasi- 
particle in a potential U ( z )  a cos(kz), where z is the 
direction of propagation of the wave. In a system in 
which an atom is a t  res t  the problem of the interaction 
with separate standing waves reduces to a se t  of per- 

246 Sov. Phys. JETP 49(2), Feb. 1979 Baklanovet a/. 246 



turbations of the motion of quasiparticles of given 
momentum p and these perturbations can be  described 
by U(z, t )  =q( t )  coskz, their duration [size cp(t)] being 
7,. If the above conditions a r e  satisfied, such per- 
turbations can be regarded as sudden. The usual 
condition is  then urn?,<< 1, where m and n a r e  
quantum numbers whose values in the absence of per- 
turbation a r e  such that U, differs from zero. In our 
case the corresponding inequality kv ?,<< 1 (v =p/M) is 
insufficient because the characteristic velocities of the 
particles interacting nonlinearly with a wave (the size 
of a Bennett dip) a r e  -(k?,)". However, we shall 
show (see the Appendix) that when a perturbation mixes 
states p and p' with similar momenta ( p  -pl)  "Ek <<p 
"M/(k?,), a much weaker condition is sufficient to 
simplify the problem: (a2&,/ap2)(p -p')2~,/E<< 1 
(cp =p2/2M is the energy of the state p )  or  AT,<< 1. 
We have to satisfy the equality U, =U(m -n), which 
applies to the Hamiltonian describing the perturbation 
of the motion of f ree  particles. 

We shall assume the following relationship between 
the relevant parameters: 

A-T-'-I'<s.-'<kuO,, (4 ) 

where is  the homogeneous width of an atomic emis- 
sion line and 8, is the characteristic angle of elastic 
collisions between atoms [the last inequality in Eq. (4) 
is  discussed in Footnote 51. 

$5. PRINCIPAL RELATIONSHIPS 

We shall consider a gas of atoms in the field of a 
standing wave: 

E ( r ,  t )  =err"'E(r) f c . ~ . ,  1 (5) 
E ( I )  =ZEq(x-L,  y )  cos ( k z + a j ,  

where w, E, k, and o! are-respectively-the fre- 
quency, amplitude, wave vector, and phase of the 
wave; the z axis is  directed along the direction of 
propagation of the wave; the function cp(x, y) describes 
the dependence of the wave amplitude on the trans- 
verse coordinate; the vector (L, 0,O) gives the co- 
ordinates of the wave center, The Hamiltonian of a 
two-level atom experiencing the field (5) is3' 

H=%,+V, 

0 exp ( - 8 1 )  U ) , v= ( 
exp( iQt)U 0 

where the upper state is 

whereas the lower state is 

d,, is the matrix element of the dipole moment of the 
2-1 transition in an atom.4' The equation for the den- 
sity matrix of the atomic gas is 

y, is the relaxation of the i-th level.'' The solution (6) 
is sought in the form p(t) =U(t)pU'(t), where U(t) 
= exp(-i(S2/2)u3 t )  and o3 is the Pauli matrix. We then 
obtain 

where 

In the absence of a field the density matrix is 

where p =pn,+q is  the momentum of an atom; q is the 
transverse component of the momentum; n, is a unit 
vector along the z axis; s =p/M is the velocity of the 
atom; Wy(s) = (?llhuO)-3 exp(-s2/vi) is the Maxwellian 
distribution function of the atomic velocities; V is the 
normalization volume. Going over to the Wigner rep- 
resentation in respect of the transverse coordinates 

we obtain the following expression ignoring the recoil 
in the direction transverse to the wave: 

where H, = -(1/2M)a2/8z2, and u =q/M is the transverse 
velocity of the atom. We shall now go over to a co- 
ordinate system in which the atom is a t  rest: r, =r,, 
+UT, where rlo is defined by the condition rlOou = 0. 
We shall seek the solution of Eq. (7) in the form 

PP 9 ,  (rL, U )  = ( 2 n / M V m A )  W M ( U )  Wrr (u )  < p  I e - " V ~ ( T )  eiHOrIp'), 

where 

u=plM, W ,  ( u )  = (n'"u,)-' exp (-u2/u,2),  
w M ( u ) = ( l / h )  W M ( u ) ?  

W.V (u)  = (2uIu,Z) exp ( -uz luO2) ,  

where u = 1111. Then, for atoms moving close to the x 
axis (the angle cp between u and the x axis is of the 
order of a/L << I), we obtain 

where 

C = 2 G q  ( z - T )  e"'~' cos (&+a) e-"'or, 

q ( z - T ) = c p ( x ( r ) - L ,  y ( z ) ) ,  G - - d d .  

In the absence of the wave field the solution of Eq. (8)- 
is 

p ( ~ ) = S ( z - z f ) p ( z ' ) S +  ( r - r ' ) ,  

s ( z )  =exp (- 'I2 ( r - iQo, )  T )  ; (9) 

here, ? > T I .  

We shall be interested in the relationship between the 
density matrix before the interaction with the field 
p(T - 0) and after this interaction p(T + 0). Allowing for where 
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the conditions y ,  T, << 1 and G?T, << 1, we obtain 
(T+O) =eiHoT&e-lHoTp (T -0 )  e'HoT,\,+e-"'oT (lo) 

where the "perturbation matrix" of the system is 

&=T exp [ - i ~ a ,  dr  U ( r )  1, 1 
-- 

U ( r )  =2cp ( T )  e'n~r cos (kz+a)  e-"V. J 
It is clear from Eq. (A.3) that the commutator 
[U(T), U(rl)] contains a small parameter of the problem 

 AT^<^. (12) 
Therefore, the T-ordering symbol in Eq. (11) can be 
omitted. We then find that A, is given by 

-- a& - - i o i  j d T u ( . ) i b .  
dG ..- 

(13) 

We shall seek the solution of Eq. (13) in the form 

Then, in the 5 representation 

&(&) = E&.einc 

subject to the condition (12), we finally obtain 

" d r  
(14) 

rp=2Gr.@ (kvr.) , @ (kvr.) = j - cos (kvr )  cp ( T ) ,  
-- 7. 

where v =p/M is the atomic velocity along the z axis.6' 

It should be noted that A(() considered as a function 
of v has a characteristic size of the same order a s  the 
size of a Bennett dip (kr,)" and, therefore, it changes 
little over a distance -k/M. Hence, it follows that the 
produce of the two operators of the Eq. (14) type 
A = A,A, considered in the 5 representation is 

!%. CALCULATION OF THE POLARIZATION OF THE 
MEDIUM 

We shall consider a gas of atoms in the field of two 
spatially separate standing waves: 

E (r ,  t )  =e-"'Eof ( r )  + C.C., 

where 

Coherent emission in separate fields appears be- 
cause of the transport of the macroscopic polarization 
to distances which a re  multiples of L. The polariza- 
tion induced by the field (16) is of the form P(r, t) 
=exp(-iwt)P(r)+c.c. We shall be interested in the 
first  Fourier harmonic of the polarization 

P+ (r,) = 7% e-ikzP ( r )  -N j 8 u  W ,  (u) P+ (r,, u) 
a 

If r>> r,, we find that the application of Eqs. (9) and 
(10) gives - 

dlr ' 
P+ (r,, u )  =- - j dv Wu ( v )  

2 -- 

~ e x ~ { -  (r-iS2) z- i (kv-A) r ) S p ( o - < P I & ~ - l l o + I p - k ) ) ,  

where 
i@-=exp (-iHoT) M- enp ( iH,T),  M - = S ( T ) A - , ~ ~ A - , + S ~  ( T ) ,  

A, is the "matrix of the perturbation" by the j-th field, 
described by Eq. (14). The operator M is given by 

where v =q/M. Hence, 

di, " P+ (rLr U )  = - - j dv Wsr ( v )  exp (- (r-i62) T-i(kv-A) r) 
2 .-* 

- (ni+n2-1)%J I S P ( ~ - & ( E I ) M -  (Ed&+ (E.3)).  (19) 
After the transition v - v - (2n, + n , ) ~ / k ,  we can 

ignore the changes in WY(v) and Aj in a distance " A / k .  
Then, the summation and integrations in Eq. (18) can 
be carried out in an elementary manner. The result 

x {e-"[cos (S2~)cos (29,  cos ( ~ 7 ) c o s  ( w a o ) )  

+ i sin (62T)cos (29,, sin (AT)  sin (&+ao) ) Isin (2$-, cos (E-kvT+a-,) ) 

1 
+*-[ (e-'zT+e-Tsr)sin(2$, cos (AT)cos (&+ao) ) 

2 
- f e - ~ ~ - e - ~ ~  )sin(290 ain(Ar)sin(E+q))  Icla (29- ,  cos(&-kvT+a-.) ) }. 

(20) 
The integrand in Eq. (20) is a rapidly oscillating 

function of v if u/L<< 1. Averaging over fast oscilla- 
tions, we find that the polarization differs from zero 
only in the regions 

I Z - ~ L I  <a. (21) 

The odd values of m correspond to the f i rs t  term in the 
braces of Eq. (20) and the even terms correspond to the 
second term. Consequently, going over to the integra- 
tion variable kvr, in the region Ix - (2n - 1 ) ~ l s  a, we 
obtain the following expression for the polarization 
density: 

XJ1,-, (29-1)  (cos.(QT) J2, (2$, cos ( A T )  ) f i (-1)" s in (S2~)  I,, (290 sin ( A T )  )), 

(N is the density of atoms), where the polarization 
density in the u space is whereas in the region Ix- 2nLlsa,  this density is 
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where T = To/u; T o  = L/v0 is the transit time of an 
atom between the fields; T, =a/vo is the transit time 
across a light beam. Figure 3 shows a graph of the 
function s:(x)/s~(mL), calculated from Eq. (26a) for 
m = l ,  2, and 3 for 8 G ~ , = 1 ,  SZ=O, and y ,=y ,=r=O.  
The total radiation power is where J, (x)  is a Bessel  function of order m. 

$7. PROFILE OF A CESF LINE 
where for the same values of the parameters we have 
w 1  =3.58 x I O ' ~ ,  w2 =7.75 X lom5, and wS = 1.11 x lom5; 
Wo = 4a2S0 is the radiation power in the separate wave 
fields. 

Let us now assume that in the region of reception of 
the emitted radiation there is a heterodyne laser field 

The Maxwell equation for the field in a medium is 

Let us assume that the polarization induced in the 
medium is 

P (r, t )  = (P+  (r) elhz+ P- ( r )  e-'") e-"'+ C.C., E1(r, t )  =E' exp (ikz-io't) + C.C. 
(27) 

where 
Then, the power flux of the combined emitted and 
heterodyne fields can be  represented by S, =S+ +St +S, 
where S+ is the power of the radiation emitted by the 
gas a s  calculated above, S' = c(  E'I2/(2n) is  the power 
flux of the field (27), and S is the interference term 
which i s  of interest to us  and which describes beats 
between the field (27) and the CESF field. The last 
term is 

and 2 is  the length of the cell with the gas along the 
z axis. 

We shall seek the solution of Eq. (24) in the form 

E (r, t )  = (E+ (r) e"'+E- ( r )  e-"') e-'"'+ c.c., 

where ~ , ( r )  a r e  slowly varying functions. We then 
obtain7 

!% = * 2 n i k ~ ,  ( r ) .  
az 

(25) 

S(r,) = ~e E+ (r,) ~"e""'-"". 
n (28) 

Substituting in Eq. (28) the expression for  the field 
E+(r,) and carrying out elementary integrations' with 
respect to x and v, we find that the "average" power 
flux 

dr, " JS-- 
a2 

s(r,) 

The solution of Eq. (25) for z >  l gives the amplitude 
of the coherent radiation emitted in such a gas: 

E+ (r,) =2niklP+ (r,) . 
We shall now give the expression for the radiation en- 

ergy flux l ~ + ( r ~ ) 1 ~  in the case when the function qo(r,) 
is 

is given by 

S =  (s,s')'/' ( a l )  ( G T , ) - ' Q s n ' ( ~ ) c o s ( ( o ' - o ) t +  L @"(R)+~"' ) ,  (29) 
1, Ix l<a, Iv l<a, 

'(" = ( 0 ,  in other cases L - U f i  WM(u)e-znrr+(zn-~)ior s2"-I (8 )  exp (icpZ"-I (8)  ) = 7 J d 
uo 

[in this case we can ignore the contribution of the 
particles moving in the shades regions in Fig. 2; then, 
*#(v) =2  sin(lzv~,)/(lzv~,) is independent of cp] , and if 
we ignore the recoil effect, then 

aal 
S+rn (,J =so (%) strn(z) szm ( u )  7 

.="(Q) exp (iq2" (Q)  ) = LJ du 5 Wr ( u )  e-an"-i"v 
20 u. 

Ir-rnLJ/a 

FIG. 3. Distribution of the CESF power density in transverse 
directions. FIG. 2. Derivation of Eq. (26). 
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where T =mT; (Y = 4r'h~ld2,12/vo is the unsaturated ab- 
sorption coefficient of the gas; S ,=c1~,1~/2r  and 
S ' = c l ~ ' 1 ~ / 2 n  a re  the power densities of the field (16) 
and of the heterodyne laser field; ~ ~ = a / v ,  is the dura- 
tion of interaction between the original field and an 
atom moving a t  a thermal velocity. We have allowed 
here for the fact that the size of the domain of integra- 
tion with respect to cp is -a/L<<l. In the limit A-  0, 
Eq. (29) becomes - 

r ( Q )  exp(icp"(Q) ) = jdn ?'wv (u) ~-"'"-'Q'~F,,,(GT.) 
0 Uo 

ecrr cos QT, m=2n+i, 

- (e-'"+e-T"), m=2n, "(: (30) 

where 

If A 2 T-', Eq. (29) can be represented conveniently 
in the form 

* 

~ " ( 6 1 )  exp (icpm (Q)  ) = s,"' (Q-8,"') exp (icpVm ( 6 1 4 , " ' )  ) . (3 1) 
v e - m  

Here, 

mxp[-2nI'T+iQ(2n-I+ ( - I ) '+")  T]F,,-,,,(GT.), (32) 

where 

- 
s:n (Q)  exp (iv:n (Q) ) = j dU $ wM ( U ) F * = . ~  ( G T * )  

0 

e-ItT, v+n=2m, 
xexp[-2n(r- iQ)T1.  e-lg, v+ n=2m+i. 

(33) 

Here, 

We have used above the identity 

db t t Jmv(e = j - ~ - ( t  cos i)etV'=J(.+.,2 ( T )  J ( ~ - V I , Z  ( T )  9 

2n 

which follows from the integral representation of the 
Bessel function. 

For a Gaussian profile 
cp(rL) =exp ( - r , S z )  (34) 

subject to the conditions Ix- ~ L I  s a  and cp<<l, we 
obtain 

(D,(O) =nk eexp [- ( ( 8 -  ( m - p ) h )  /u)'1 

and F,(x), F,,,(x) a r e  given by 

It should be noted that the quantity (29) appears also 
in the problem of calculation of a correction to the 
power absorbed by atoms from the field of a weak 
probe wave. Let us assume that a t  a distance x =mL 
there is a traveling plane wave 

which is postulated to be weak (gr0<< 1, where g =d,, g). 
The correction to the absorbed power 
f i  = Jd2rl( %'(I, t )P(r ,  t))#.  t ,  associated with the transport 
of polarization to the region Ix- r n ~ 1  sa, is  given by 
the following expression derived from Eq. (22): 

If a t  a distance x = mL there is a weak plane standing 
wave 

& (r, t )  =ge .,a, "f ( e " * " " ' + r - ' l . .  "" )+C.C.,  

then the quantity /3 is given by 

$8. DISCUSSION 

We shall consider only the case of separate standing 
waves. We shall note simply the qualitative features of 
the CESF effect in fields of other geometry. The ac- 
tion of two separate unidirectional traveling-wave fields 
produces coherent radiation only in the vicinity of the 
points x = L and -2L (Fig. 1) and it is essentially a 
spatial analog of the photon echo in a gas with a Dop- 
pler-broadening transition.14 In this case a resonance 
in the profile of the CESF line has the Doppler width 
wD =kv0. If one of the fields is a standing wave and the 
other a traveling wave?' coherent radiation is emitted 
along the z axis a t  x =  L and -2L and, against the back- 
ground of a Doppler-broadened resonance, there is  a 
Lamb dip of width which is the reciprocal of the inter- 
action time T, of an atom with the field. The radiation 
is emitted in the opposite direction only a t  x = L and, 
against the background of resonances of width of the 
order of wD and r;', there is a resonance of width which 
is the reciprocal of the transit time between the fields 
To= L/v0. I t  should be noted that Ti1 can be regarded a s  
the homogeneous width of a resonance in separate 
 field^.^ Thus, the change to a standing wave removes 
the inhomogeneous broadening of resonance in separate 
fields, in complete analogy with other optical reson- 
ances .I5 -I7 

It should be stressed that the theory of the CESF 
effect in the form presented here applies only to 
standing waves because the Hamiltonian of the inter- 
action between a two-level atom and a traveling spatial- 
ly confined wave cannot be diagonalized. The exception 
to this rule is only the case of a traveling wave with a 
constant distribution of the amplitude across a light 

250 Sov. Phys. JETP 49(2), Feb. 1979 



FIG, 4. Splitting of the CESF line profile in the vicinity of x 
=L due to the recoil effect. The continuous curves represent 
si(QTo) and the dashed curve is S " ~ ( Q T ~ - O . ~ ) .  

beam.'% 

The formulas (29) and (30) give the profile of a CESF 
line a s  a whole. The formulas (31)-(33) describe the 
splitting of the profile (because of the recoil effect) into 
a number of components separated f rom one another by 
a frequency interval of -A. We shall  note the following 
qualitative features of the splitting of the CESF line. 

1. The resonance in the CESF line profile in the 
vicinity of a point x = (2n - l ) L  is, a s  a whole, sym- 
metric relative to the change in the sign of 52. This  is 
due to the fact that the process of polarization trans-  
port between the waves i s  responsible for  the CESF 
effect over odd distances. Asymmetry of the r e s -  
onance appears in the next, in respect  of yira,  orders  
because of the difference between the relaxations of 
atomic levels during the t ime of interaction with the 
field. 

2. Among the components of the resonance of the 
radiation in the vicinity of a point x = (2n - l ) L  (for 
n +1) there i s  a component which differs f rom z e r o  
and is  located a t  the line center  (51 = 0). This  is a 
basic feature which distinguishes the resonance con- 
sidered here  from other nonlinear optical resonances. 

FIG. 5. Same as  Fig. 4 but for the CESF effect in the vicinity 
of r =ZL. The continuous curves represent s2(aTo),  the dashed 
curve is - I ) ,  and the chain curve is 1 0 s 2 ' 3 ( ~ ~ o  - 3 ) .  

FIG. 6 .  Same as  Fig. 4 but for the CESF effect in the vicinity 
of x = 3 L .  The continuous curves represent S ~ ( Q T ~ ) ,  the dashed 
curve is S ~ . O ( O T ~ ) ,  and the chain curve is s 3 . 3 ( Q ~ o -  0 .6) .  

It is  associated with the difference between the mech- 
anisms of resonance splitting in separate fields and of 
the Lamb dip, mentioned in S 4. It i s  difficult to de- 
scr ibe  directly the process of a resonance a t  the line 
center  because i t  is predicted only in the seventh order  
of perturbation theory for  CESF in the vicinity of 
x=3L .  

Further analysis can be  made and the results  of cal- 
culations will be  quoted for  the CESF line profile with 
m = 1, 2, and 3. If AT,>> 1, the radiation in the vicinity 
of a point x = m L  depends resonantly on the detuning 
in the intervals 

and then from Eqs. (3 1)-(33) we obtain 

where Sm"(52) i s  the beat  signal in the radiation in the 
vicinity of x = m L  or  detuning in the interval 151 - vA ( 
s T-I, 

FIG. 7. Field dependences of the beat signal amplitude in the 
vicinity of x =L: a )  without allowance for the recoil effect at 
the line center; b) the component at Q = A .  
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FIG. 8. Same as  Fig. 7, but for the CESF effect in the vicinity 
of x = Z .  

sl,"+' (Q) exp (icp1,"+'(9) ) = S ~ ' + S ~ + ~  (a) exp ( Q )  1, (3 6a) 

~~~~~+*(~)exp(icp'~~'+~(~)) =s21+, (Q)exp(icpz,+,(P)), (3 6b) 
s".'" ( 9 )  exp (icp'.'" (Q) ) =s,,,'(9) esp (icp,,' (9 )  1, 

st.l(Zn+l) (9 )  exp (icpa,.S(Zn+I) 
(3 6c) 

(Q)) 

-s:.+, (Q)ex~(icp:~+~ ( a ) )  +sz,2.+l, ( ~ ) e x ~ ( i c p ~ ( z ~ + ~ )  (52)). (36d) 

8 9. RESULTS OF THE CALCULATIONS. 
COMPARISON WITH THE EXPERIMENTAL DATA 

We carried out numerical calculations for the CESF 
effect in a field of a Gaussian profile (34) using the 
formulas (29)-(33), (35), and (36). 

Figures 4-6 show the CESF line profile (29) for the 
radiation emitted in the vicinity of the points x = L, 2L, 
and 3L, respectively in the case when G T ~  = (47rL'2)-1,~1 
= y, = 0 and the parameter AT, has various values. The 
same figures include, for comparison, graphs of the 
components (36) into which these resonances a r e  split. 
It should be noted that the resonance components shown 
in the figures a r e  sufficient to deduce the overall 
CESF line profile to within s 1 6  for any value of the 
parameter AT,. 

In an analysis of the field dependence of resonances 
we shall consider only the following two limiting cases: 
a )  A = 0, b) A>> T i 1  and-for simplicity-we shall 
assume that y ,  = y, =I?.  In case b) we shall discuss only 
the strongest components of a resonance. 

Figures 7-9 give graphs of the dependences of 

FIG. 9. Field dependences of the beat signal amplitude in the 
vicinity of x = 3L a t  the line center. 

FIG. 10. Dependences of the beat signal amplitude and phase 
in the vicinity of x =L on the detuning Q for the optimal value of 
the parameter G T ~ :  a) si(ll), (~'(11); b) sivi(9), rpi*i(ll). 

~ ' " ( 0 )  on the parameter G T ~  for the values m = 1, 2, 
and 3, respectively. We can see  that in a certain 
optimal field the beat signal amplitude is maximal. 
An analysis of the dependences of the beat signal 
amplitude and phase on 51 was made for the optimal 
field intensity. Figure 10a shows the dependences 
s1(51) and '(51) for various values of the parameter r T o .  
Figure 10b gives the corresponding graphs of s1.'(51) 
and cpl"(G). Figures 11 and 12 give the dependences 
~"'(51) for various values of the parameter r T ,  in the 
two cases of m = 2 and 3, respectively.lO' 

Figure 13 shows the dependences of the resonance 
width, deduced from the equation s"'(r,) 
= (s"'(O)+s"'(m))/2, and of ~ " ' ( 0 )  on the parameter 
r T o .  Figure 14 shows the dependences of CODtr0 On 
r T o .  

FIG. 11. Dependences of the beat signal amplitude in the 
vicinity of x =Z on the detuning 11 for the optimal value of the 
parameter GT,,. The continuous curves correspond to v = 1 and 
the dashed curves to v = 3. 
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FIG. 12. Same a s  in Fig. 11, but in the vicinity of x = 3L . The 
continuous curves correspond to v = 0 and the dashed curves to 
v=3 .  

Since the unsaturated absorption coefficient a! and 
the homogeneous line width r a r e  linear functions of 
pressure (we shall ignore the radiative widths of the 
energy levels), the beat signal amplitude is maximal 
a t  some specific pressure. The values of the parame- 
ters  rT0, rRT0, s"'(O), corresponding to this 
pressure a r e  listed in Tables I and 11. 

In the absence of recoil under conditions optimal in 
respect of the pressure and field the beat signal power 
in the vicinity of x = L at  the line center (52 =0) is (see 
Tables I and 11) 

where Wo = (n/2)Soa2 is the power of a standing wave 
with a Gaussian profile. 

In case b) the radiation power depends resonantly on 
the frequency a t  the line center only a t  the point x=3L. 
The beat signal power (Table 11) is  then 

We shall now estimate the CESF effect for methane 
applying Eqs. (37a) and (37b) approximately under the 
conditions realized in the experiments described in 
Ref. 3: aa/ap =0.2 cm". Torr'l, a r /ap = 15 MHz/Torr, 
A = l  kHz, a=0.5 cm, L=3.5 cm, 1=115 cm, T=300"K, 
S' = W/cm2, and Wo = W. In these experiments 

FIG. 13. Dependences of the amplitude (continuous curves) and 
width (dashed curves) of resonance on the parameter rTo The 
numbers alongside the curves give the values of m in Fig. 13a 
and the values of m and v in Fig. 13b. 

' '0 

FIG. 14. Dependences of the optimal amplitude on the param- 
eter rTo .  The numbers alongside the curves give the values of 
m in Fig. 14a and the values of m and v in Fig. 14b. 

the recoil doublet was not resolved. The optimal pres- 
su re  for the observation of the effect was p = 1.03 
X T o r r  and the resonance width was I', =2.2 kHz. 
Assuming that the power of separate waves used in 
Ref. 3 correspond to the conditions optimal in respect 
of the field, we found that the CESF power given by 
Eq. (37a) was W' = 2.8 x 10'' W, which was of the same 
order of magnitude a s  the experimentally observed sig- 
nal. The splitting of resonances in methane by A> rR 
because of recoil corresponded to a distance between 
the standing waves L> 17 cm, s o  that the optimal pres- 
sure  was p s 1.1 X Torr.  Hence, for the same 
values of the parameters the component of the radiation 
a t  the line center obtained from Eq. (37b) was 
WSIO 5 0.85 x 10'11 W. In the above estimates we ignored 
the influence of the magnetic hyperfine structure of the 
h =3.39 CL transition and of the spatial degeneracy of the 
levels. The influence of these factors on the CESF ef- 
fect in methane will be allowed by us elsewhere. Here, 
we shall simply note that inclusion of these factors 
does not alter qualitatively the CESF line profile nor 
does it al ter significantly the signal amplitudes. 

The authors a r e  grateful to  V. P. Chebotaev for dis- 
cussions and valuable comments, and to S. N. Bagaev, 
L. S. Vasilenko, A. K. Dmitriev, A. S. Dychkov, 
N. M. Dyuba, and M. N. Skvortsov for discussions. 

APPENDIX 

The commutator of perturbations separated in time 
U ( r )  = ( P ( T )  exp ( i H ~ r )  Uexp ( - t H 0 r ) ,  (A.1) 

where H, is  the Hamiltonian in the absence of pertur- 
bation, is 

TABLE I. 
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TABLE 11. 

where In) and E,  are the eigenstate and eigenvalue Ho. 
In the case when the perturbation (A.1) mixes states of 
similar energies, we find-retaining only the terms 
linear in (i - k )  in the expansion ci = E* + (Btk/ak)(i - k )  
+ $(a2cr/ak2)(i - k)2-that instead of Eq. (A.2) we now 
have 

Hence, we can see that for Urn, = U(m - I) the expan- 
sion in Eq. (A.2) begins with the term 
"(a2cn/t%z2)(An)2(~t-  T)', where An i s  the s ize  of U(n).  
The exact value of (A.2) in the case of perturbation of 
the motion of a free particle i s  

where U, is  the Fourier transform of the potential U ( z ) ,  
x= ( P  - p t ) / 2 ,  B = ( p  +pt ) / (2M),  and R is  the normal- 
ization length. 

 he motion of an  atom a t  right-angles to a wave is  considered 
classically. This is permissible if the frequency t i / ~ a ~  (a is 
the transverse size of the wave and M is the mass of an atom) 
is much less than the characteristic frequency intervals of 
the resonances. The small parameter is now A/a, where A is 
the wavelength. Thus, we can speak of an atom with definite 
transverse coordinates and velocities. 

')we a re  effectively assuming that the Lamb dip in the absorp- 
tion of one beam does not resolve the recoil doublet. 

 ere and later, we shall assume that ti= 1. 
 he phases of the states 12) and 11) a r e  selected in such a way 

that U is  real. 
5)The form of Eq. (6) presupposes that the homogeneous line 

width is r = (yl +y2)/2. It is shown in Ref. 13 that this is just- 
ified in the case when the characteristic angle of elastic scat- 
tering Bo of an atom is much greater than the ratio of the 
width of a Bennett dip to the transverse atomic velocity or, in 
our case, that Bo>>A/a. Collisional line shift is assumed to 
be included in the definition of the transition frequency wzl. 

"we are  assuming here that q(r) is an even function and also 
that its characteristic size is  -7,. The index G of A in Eq. 
(14) will be omitted later. 

')1n Eq. (25) we are  ignoring diffraction, which is permissible 
for E <<a2/%. 

')1t should be noted that this is possible only in the case when 

EJ(r , t )  is a plane wave, 
9 ) ~ o  be specific, we shall assume that a traveling wave i s  

located a t x  =-L and it  propagates along the z axis. 
'')It should be noted that the profile of the line representing 

the phase of the beat signal q(Q) exhibits a dispersion reso- 
nance only a t  m = 1. In fact, if R.p. 500 B, coherent radiation 
is  analogous i% a photon echo (see $8) and, therefore, it a p  
pears only in the vicinty ofx =L, i.e., R.p. 500 C applies only 
when m =l. An analysis shows that the complex quantity R.p. 
500 D follows, on increase of Q, a helical path relative to the 
value srn(m). Hence, it follows that cpm(.o) vanishes for radia- 
tion in the vicinity of x =L and in other cases it r ises  without 
limit. 
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