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Bohr-Sommerfeld quantization of n-dimensional neutral and 
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The Klein-Gordon equation with logarithmic nonlinearity is used as an example to show that a scalar field 
can fonn n dimensional oscillating field bunches held together by self-action forces and having apparently 
a Lyapunov stability. The Bohr-Sommerfeld quantization condition is used to obtain within the framework 
of this model the mass spectra of n-dimensional pulsons (localized oscillating extended solutions) that are 
either neutral or have an elementary charge Q = 1. 

PACS numbers: 03.70. + k 

Ideas of constructing a quantum-field theory of ele- 
mentary particles treated a s  excited s ta tes  of a system 
of fundamental fields have been advanced numerous 
times. An example of such a theory is quantum chromo- 
dynamics, which is actively being developed a t  present  
and is called upon to explain hadron physics. It is known 
that i t s  Lagrangian determines the interaction of spinor 
fields and nonlinear Yang-Mills fields. Next, one of the 
possible methods of representing the so-called "strut- 
tureless" part icles of nonzero mass  is to assume that 
they are extended field "bunches" of finite dimensions 
(nonlinear-field quanta) held together by self-action 
forces. In the classical approach such modes a r e  de- 
scribed by relativistically invariant (RIN) field equa- 
tions, and the particle-like solutions of these equations 
can be regarded as classical proto-types of elementary 
particles. The development of methods of quantizing 

fields described by RIN equations i s  one of the pressing 
problems of the theoretical high-energy physics. At 
the present  time, RIN models are quantized as a rule 
by quasiclassical methods (see, e.g., Refs. 1-3), which 
yield direct ly the energy spectrum of particle-like ex- 
citations if classically localized solutions (LS) of the 
RIN equations a r e  known. 

The  most  investigated LS of nonlinear wave equations 
a r e  solitons (see the reviews4v5). These will be defined 
here  as LS of the type R(x) exp(- i d ) ,  having a finite 
energy, charge, etc; Rk) can in general be a scalar ,  
a vector, o r  a spinor. It i s  c lear  that there can exist 
LS of nonlinear equations, and in  particular RIN equa- 
tions, of more  general type, e.g., periodic in time, 
u(x , t + T) = u(x , t), and even more general ones, which 
determine time-periodic distributions of physical quan- 
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tities (charge, energy density), H(x, t +T)=H(x, t), 
q(x, t +T)  =q(x, t). For brevity we shall call these peri- 
odic solutions "pulsons."6 The topological charge of the 
solitons and pulsons considered in the present paper is 
zero. 

An example of a pulson in the case of one spatial co- 
ordinate (n = 1) is an oscillating bound state of two 
solitons [the "bion" of the sine-Gordon (sG) equation]. 
Spherically symmetrical (n = 3) scalar pulsons (weakly 
radiating and therefore only approximately periodic) 
were observed" and tested for stability in Ref. 6. The 
importance of studying classical time-dependent LS of 
FUN equations when it  comes to developing a nonlinear 
quantum field theory is demonstrated by the analogy 
indicated in Ref. 2b: "The Bohr radii of the hydrogen 
atom a r e  not stationary ... but periodic (in time) ... so- 
lutions of the classical equations of motion." The pulson 
oscillations can be regarded a s  the "motion" corre- 
sponding to its internal degree of freedom; quantization 
of this motion results in the mass spectrum of extended 
particles. 

Experience with the quasiclassical quantization (in 
the case n = 1) of the fully integrable sG equation by the 
method of functional integration shows that the quasi- 
classical answer can ~ o i n c i d e ' ' ~  with the exact quantum 
results7 even at large values of the interaction constant. 
Bohr-Sommerfeld quantization (BSQ) of the bions of the 
sG equation leads to a mass spectrum that coincides 
with the one obtained by the method of functional in- 
tegration.lv2 One can therefore hope that the BSQ can 
give a reasonable mass spectrum even in those cases 
when it i s  impossible to quantize by the functional-in- 
tegration method. The BSQ becomes particularly valu- 
able in the realistic case of three spatial coordinates, 
inasmuch a s  so  fa r  we know of not a single FUN equa- 
tion that is fully integrable a t  n = 3 and has extended LS 
with finite energy, charge, etc. 

It appears that the first  example of an RIN equation 
that has a t  arbitrary n (including n = 3) an exact analytic 
soliton solution was indicated in Ref. 8: 

The present paper is devoted to the BSQ of the LS of 
this equation. In Sec. 1 a re  discussed the properties of 
the quasiclassical LS of Eq. (I), which were obtained in 
Refs. 8 and 9 and in the present paper, and an "im- 
proved" modification of the model (1). The BSQ of these 
LS has yielded the mass spectra of neutral "particles" 
(Sec. 2) and of "particles" having an elementary charge 
Q = 1 (Sec. 3). 

1. SOLITONS AND PULSONS OF AN EQUATION 
WITH LOGARITHMIC NONLINEARITY 

We introduce the dimensionless variables t,x, and cp: 

t=rl-', x=il-'( u=,!('-nlJ2G 9. 

Ga= (la-') n-' exp [n+ ( l m )  ' I .  (2 

Equation (1) reduces to the invariant form 

We put U(p) = (1 -n)cp2 - (p21ncp2. The initial equation 
(1) is obtained by varying the action with the Lagrangian 
density 

in the case of a charged complex field and 

in the case of a real uncharged field. 

The invariants of Eq. (1) a re  written in the following 
form: the energy E, of the complex field is 

the energy E, of the real field is  

and the charge is 

The soliton solutions of (3) a r e  given by8 

q ( x ,  t )  =exp ( - 0 2 i 2 )  exp ( - i o t )  exp ( - x 2 / 2 ) .  (9) 

The potential U(cp) of the considered models is  not 
analytic a t  cp = 0: d2U/dcp2 I = 2mt,, = *. This is why 
the frequency o in the solution (9) has no upper bound. 
Thus, this model provides an example wherein a finite 
mass exists a t  me,,= *. 

It is  noted in Ref. 9 that one can seek a solution of Eq. 
(1) o r  (3) in the factorized form: 

p ( x ,  t )  = z ( t )  exp ( - x 2 / 2 ) ,  ~ ( t )  = ~ ( t )  exp [ - i lp( t )  I ,  (1 0) 

where y (t) and $(t) a re  real functions. It is easy to 
calculate for such solutions the charge 

the energy of the complex field 

E ~ - ~ ~ I Z G ~ - ~  [ ytZ+y'gt'+ y2(1-In y2) I ,  y2$l'=yzy-2, (12) 

and the energy of the real field (y = 0) 

Formulas (12) and (13) state the energy conservation 
law for the motion of a material point (MP) in a po- 
tential relief (see Fig. l): 

~ , ( y )  =a / r [ yay - z+y2 ( l - ln  y') I .  (14) 

The function y (t) describes the change of the modulus 
of the radius vector of the MP when the latter moves 
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FIG. 1. Potential-relief curves U Y ( y ) .  The arrow indicates the 
direction of increasing y ;  the crosses mark the curves that join 
the points (Uy (Y,,.('Y)). Y .,,, (7)) at different Y ;  the dash-dot curve 
is a plot of ( uy ( Y  ,, (Y)), Y ,,,,, (Y I), and the dashed curve a plot 
of (Uy (YS (Y)), Ys ($). 

in an orbit, and the orbital angular momentum conser- 
vation law y 'JI, = = const determines in this case the 
angular displacement $(t) of the MP. 

The solitons (9) correspond to the point of minimum 
U,(y) at fixed y o r ,  equivalently, at a fixed charge Q. 
The condition d ~ , / d y  = 0,d2~, /dy2> 0 determines the 
region of stability of the solitons: w> w,, = I/&, cor- 
respondingly, the maximum amplitude of the stable soli- 
tons is 3:- = em(-  w,, '/2 = It is natural to associ- 
ate the soliton solution (9) with motion on a circular 
orbit y =y,= const, #,= w = const. 

Corresponding to more general solutionsQ--complex 
pulsons- a re  radial oscillations of the MP relative to 
the soliton equilibrium position ys in the potential relief 
U,(y ) between the turning points y ,  and y ,. Their ampli- 
tude is limited by the requirement y <y,,,(y), where 
du,/dy = 0,d2~,/dy 0 at = y ,,,, i.e., the M P  must not 
jump out of the well of the potential relief U,(y). 

Real pulsons (y = 0) correspond to motion in the po- 
tential relief Uo(y) between the points y,=yo and y ,  
= -yo. The maximum amplitude of these oscillations is 
y,= 1. There is no angular rotation in this case (A$ 
= 0). 

We now discuss the fundamentally important question 
of the Lyapunov stability of these pulson solutions. It 
is  known (see,  e.g., Ref. 10) that a scalar nonlinear field 
cannot produce stable stationary solitons cp,(x) at  n> 2 
(the Derrick theorem). This theorem, however, does 
not forbid the existence of time-dependent stable LS. 
The real pulsons of Eq. (1) at any n a re  nonradiating 
and apparently stable objects. There is no analytic 
proof of their Lyapunov stability, but factorization of 
the solution (10) and the effective reduction of the prob- 
lem to an investigation of the motion of a MP can ap- 
parently be regarded a s  an argument favoring the sta- 
bility. 

Numerical computer investigations point definitely to 
the stability of both real  and complex pulsons at all 
admissible amplitudes. Thus, in the author's own num- 
erical experiments at n = 1 and 3, the pulson solution 
~ ( x ,  t ) =  ~ ( t )  em(-x2 /2) was preserved with high accuracy 
throughout the calculation time (- lo3 pulson oscilla- 
tions were traced); in particular, the pulson energy 
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contained in the considered calculation region was con- 
served with accuracy - ( a  figure that characterizes 
the computation e r r o r  due to the nonconservative char- 
acter of the difference scheme; the true fractions of the 
radiated energy is even smaller). 

In another numerical experiment (n = 2) the width of 
the Gaussian "bell" was increased a t  the initial instant 
by 25%: q(x, 0) = y  (0) exp[-(0.8~)~/2], y(0) = 0.5. In this 
case almost-periodic (with a period T, equal approxi- 
mately to four pulson periods T) compression-expan- 
sion cycles of the oscillating field bunch in space about 
an average position described by a distribution exp(-x2/ 
2) were superimposed on the pulson-field oscillations. 
The energy radiated a t  infinity in one period T, of such 
a compression-expansion cycle turn out to be very 
small, so  that the computer time needed to follow the 
formation of the unperturbed pulson to the end is very 
large. It is perfectly obvious, however, that the be- 
havior of such a "broadened" pulson in the model (1) dif- 
fers  qualitatively from the behavior of the unstable 
"broadened" spherically symmetrical pulson in the mod- 
e l  of the real Klein-Gordon equation with cubic non- 
linearity6 (the latter spreads out "monotonically" in the 
course of time). 

The foregoing arguments, in the author's opinion, 
lead to the conclusion that Eq. (1) has a unique prop- 
erty-it has nonradiating stable real and complex pul- 
sons a t  all n, including n = 3 (spherically symmetrical). 
Thus, the self-action forces can hold together an os- 
cillating scalar  field, even if i t  is not charged, in stable 
particle-like bunches in real four-dimensional space 
time (cf. the results of Ref. 6). 

In concluding this section we note that the potential 
U , ( y ) = ~ ~ y - ~ + y ~ ( l  - lny2) is not positive-definite, 
U,(y)--m as y --. When the SchrGdinger equationwith 
such a potential is solved, there a r e  no stationary en- 
ergy levels (only quasistationary levels with f inite life- 
times a r e  possible instead, and they can be se t  in corre- 
spondence in quantum field theory2 'with unstable parti- 
cles). It is  possible to "improve"the modelby replacing 
ln (u  (2 in the Lagrangian and in the Hamiltonianby - ( lnl u (21. 
The Hamiltonian then becomes positive-definite and the 
quantum field-theoretical problem of the spectrum of the 
stationary levels is not a priori meaningless; the fac- 
torization of (10) and the corresponding classical so- 
lutions remain in force a t  I cp I < l. Equation (3) remains 
valid at 1 rp 1 < 1 and goes over a t  I cp I > 1 into 

~ , , - T X 2 r p t ( 2 - n ) ~ + ~  ln /rpI2=0 

[cf. (31. 

2. BOHR-SOMMERFELD QUANTIZATION OF 
NEUTRAL n-Dl MENSIONAL PULSONS 

The condition for  the BSQ of real  pulsons that os- 
cillate with the period T of field systems with infinite 
number of degrees of freedom, will be written" in the 
form (r2 - T~ = T) 



(N is the number of the excited level, N = l ,2 ,3 , .  . . ). 
Taking (5) and (10) into account, we get 

Changing from integration over one-quarter of a period, 
substituting j exp(-x2/2)dR n = f f  ", and expressing y :  
with the aid of the relation 

we obtain finally the BSQ conditions for real pulsons: 
ne 

N=2G'nn1'-LI(yo)~ I(y,)= j {2[Uo(y,)-U,(y) I}'" dy. (18) 
0 

The integral Z(yo) was calculated with a computer, 
using Simpson's rule, a t  0 <yo < 1. The maximum pos- 
sible N is directly proportional to G2. By determining 
from the condition (18) the discrete values of 
Y,(G) (N = l , 2 ,3 , .  . . , N,, we get [see (1311 the energy- 
level spectrum E,(G): 

From (18) and (19) we have 

The universal function Uo(Z) obtained with the aid of 
the numerical calculations, i.e., E ~ - ~ l i " ' ~  o r  
iV~'~n''"/~/2 (N is treated here as a continuous variable) 
is shown in Fig. 2. A remarkable fact is that even 
though the potential is not analytic (UR(O)=-) we have 
E = const .Nat small N. It is seen from Fig. 2 that 
d2E/u!N2< 0 at al l  N E (0, N,,), i.e., with increasing N 
the energy levels come closer together. The inequality 
d 2 ~ / f 1 2  < 0 means, for example, that the N-th state can- 
not decay into the @ - 1)-st and 1-st  state. 

We note that quasiclassical quantization of the bions 
of the sG equation also leads to a spectrum for  which 
d2E/dN2 < 0 (EN = 2Mo sin(mN/2M0), N ~rM,/rn).'*~ A 
similar condensation of the levels is observed in the 
BSA of the motion of a M P  in the following potential 
reliefs: 

In these models d2~/dlZ < 0, where 
n 

I(Yo)- ~ { ~ [ u ( Y o ) - ~ ( Y )  1l"dy. 
e 

For U, and U, this fact can be easily verified analyt- 
ically. In the case of U, and U, this fact is obtained by 
numerical integration. 

3."DOUBLEW QUANTIZATION OF CHARGED PULSONS 

For complex pulsons, the condition (16) is modified 
to 

FIG. 2. The universal function Uo(I)  for Bohr-Sommerfeld 
quantization of real pulsons of Eq. (3). 

Changing to integration over a half-period of the motion 
in the potential relief (14) we get the BSQ condition: 

h 

N,2GZn"/2-I I (Y~'+Y'Y-') yt-l d ~ 9  

n (22) 

YI={~[U,(Y~)-~,(Y) I}". 

We impose additionally the "charge quantization'' condi- 
tion, i.e., we require that the pulsons in question have 
an elementary charge, Q = 1 ("double" quantization). 
Depending on the value of G, which is determined by the 
constants m, I ,  and a of the initial equation, this condi- 
tion singles out the quantity y = ( ~ K " / ~ G ~ ) - '  and the cor- 
responding U7(y) curve. 

Selecting with the aid of (22) the points y , ( N ,  y), for 
whichN=l ,2 ,3  ,..., and theEN=E(N,y)  
= n " / 2 ~ z l - ' ~ 7  (y,(N, y) corresponding to them, we obtain 
the energy spectrum of the n-dimensional pulsons having 
a charge Q =l. In order not to confine ourselves to fixed 
values of m, 1, and a we shall assume that the condition 
Q =1 is satisfied on each U7(y) curve, and select G in 
accord with formula ( l la) ,  knowing y. Then the condi- 
tion (22) can be rewritten in the form 

1 q' Y:+,~~Y-~ 1 1 2Ul(y.)-yz(l-la y2) ~=-j-dt-- dy. (23) 
YZ ", Y( rn #, {2[U1(yr)--U,(~) 1)': 

In the case of small deviations y , - y ,, the U,( y ) curve 
can be approximated by the parabola U7(y) = U,(y,) 
+ 1/2 U;' b,)(-y - y,)'; it can be easily found that U: 01,) 

FIG 3. U y ( N )  curves for "double" quantization of charged 
pulsons at different values of a =y8@)/ysrnax . 
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FIG. 4. Plots of G ~ ( C U )  a t  
n = 3 and the function y(or). 

=8(w2 - 1/21. In this case the integral in (23) can be  
explicitly calculated, and by regarding N as a continuous 
variable we find that N - N , ( w )  = w(w2 - 1/2)-'~~/2 at 
y, -y,(w). The limiting value is thus N,+Q = 1, which 
contradicts the result of Ref. 12, where i t  is stated 
that the "charge quantization" Q =N and the BSQ a r e  
equivalent for  solitons of the type R(x)e-"'. The point 
is that for these solitons the classical densities of the 
physical quantities (of the Hamiltonian, charge, etc.) 
a r e  constant in time because of the invariance of the 
field equations to gauge transformations of the firstkind, 
and it is not clear how to choose a period T having a 
physical meaning. The period becomes definite only if 

arbitrarily small  pulson oscillations by ( t )  about the 
soliton equilibrium position y, a r e  considered. Since 
the orbits a r e  not closed in the central fields (except 
the potentials U, =Cly2 and U, = -C,y-', C,, C2> 0),13 the 
angle J, changes in the period T by an amount that dif- 
f e r s  from 2a when the solution (19) tends to the soliton 
solution, and consequently T *2n/w. Therefore N, 
# Q = 1 .  We haveN,-1/2asy,-0,N,-masY,-Y,m,, 
and N ,  = 1 at  y, =emLI3. 

For the general case the problem was solved numer- 
ically. The soliton amplitude was chosen 

and the correspondingvalue y = y : ( ~ ) ~ ,  was calculated, 
followed by the determination of the point y,,(y) cor- 
responding to the local maximum of the U7b) curve and 
hence to the maximum amplitude of the pulson oscil- 
lations a t  the given y. The point y,  was next chosen 
such that y, < y, < y,&), and the point y , corresponding to 
it was obtained from the condition U,(y,)= U,(y,). The 
integral (23) was calculated by Simpson's method, with 
the integration segment broken up into 2 M par ts  (M 
= 500). 

Figure 3 shows plots of u = ~ - " / ~ G - ~ z E  against the con- 
tinuous variable N for different U7(y) curves; we shall 
characterize these curves by the quantity 0 =y,/y, ,,, 
=y,e1'4 (Fig. 4). It is  seen that at small a there exist 
in the case of "double" quantization energy levels with 
large numbers N. With increasing 0, the value of 

N,, decreases gradually; a t  a >  ff, a 0.31 only one level 
with N = 1 remains. It is preserved, a s  indicated above, 
right up to 0 -e-'"e'" =e-1/12. 

2 - , at  a > a 2  we have N,>l .  
A level with N = 2 appears anew at  ff = 0.92, a level with 
N=3a t=0 .96 ,  andsoon ;  N,,,-mandN,,-mas 0-1. 
It is seen from Fig. 3 that a s  ff - 1 these levels have 
practically equal energies, UN - Urn, 1.1 23; U,, 
=U,(y,m,)at~=yl,m,w,,. W e n o t e t h a t a t a l l a ~ ( 0 , l )  
there exists at least one level (with integer N). For all  
the U7(N) curves, just as in the case of a real  field, 
the inequality d2U/aW2 < 0 is satisfied. 

At small  a, the "mass" ratio is  E,/E, 52,  and with 
increasing ff this ratio decreases (E2/ElZ 1.43 a t  a 
= 0.3). We have U, ,,- 1 and Ul - 0 a s  a! - 0, and there- 
fore E N  ,,/El -= as o! - 0. 

Thus, "double" quantization of complex pulsons of the 
considered model gives r ise  to a quasiclassical dis- 
crete mass spectrum of "particles" having like charge 
(Q = 1) and like spin (S = 0). 
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