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Two exact solutions (metrics) of the gravitational equations are investigated. It is shown that one is 
axisymmetric and can be obtained from the Weyl metric, and that the other describes a strong 
gravitational wave of zero frequency in vacuum or around an infinitely long and thin naked singularity of 
Kasner type. This wave attracts a particle to the singularity or repels it from the singularity, depending 
on the sign of one of the terms of its metric. The motion of particles in the fields of the two metrics is 
investigated. 

PACS numbers: 04.20.Me 

There  exist three  exact vacuum solutions of the grav- the already investigated metric (1) with (p,,p,,p3) 
itational equations that depend on a single spatial coor- = (0,0,1)  o r  ($, $, -5). The f i r s t  case  corresponds to 
dinate x (Ref. 1, p. 492): flat space-time expressed in cylindrical coordinates. In 

d s ~ = - d x ~ x ~ ~ ~ d t ~ ~ x 2 ~ ~ d y ~ ~ x 2 ~ P d Z 2  

(1) 
this  ca se  

p,+p2+p3=p:+pzZ+p.z= 1; t+z  t - z  
x=p .  x ,  =-, x ,  = y=+. 

1 2  1'2 

~ S ' = - ~ X ~ + X ' ~ ' [  ( d ~ ~ ' - d x , ' )  cos q-2dx ,dx2  sin q ]  - x 2 ~ ' d y z ,  
(2) In the second case ,  we have a field around a l inear  sing- 

q=2pV ln ( x l n ) ,  2p'+p,=2p'Z-2pN2+p,2=1; ularity, and 

. . 
( p i ,  pa)  =(O, 1) or ( 2 / , ,  - 'I3) .  T h e  singularity with these Kasner exponents has an in- 

The  f i r s t  of them i s  analogous to  the Kasner  metric; terest ing property: Mass less  part icles moving in the 
the second and the third, which do not have analogs plane perpendicular t o  the axis  of the singularity can ro- 
among the time-dependent metrics,  a r e  obtained when tate at  any distance from the singularity with the same 
the Kasner exponents become complex, p,,, =pl*ip", in angular momentum, since in this  ca se  the gravitational 
the case  of the metric (2) o r  equal, p, =p,, in the ca se  and centrifugal forces balance exactly. 

The metric (1) was investigated in Ref. 2, in which i t  
was shown that this  metric describes the field around a 
massive l inear naked singularity. In  the present  paper, 
we investigate the motion of part icles in the fields (2) 
and (3) and the physical meaning of these metrics.  

The  determinants of (2) and (3), which a r e  both equal 
to g =  -x2 ,  vanish for  x = 0. Since the curvature invari- 
ants of the metr ics  (2) [except the ca se  (p',pP,p3) 
= (0,0, I ) ]  and (3) for  (p,,p,) = ($, -3) become infinite, 
these a r e  t rue  singularities, i.e., they cannot be elimin- 
ated. Fo r  (p,,p3) = (0, I),  the metric (3) has  vanishing 
invariants and is of Petrov type N, i.e., i t  describes a 
strong gravitational wave of z e r o  frequency. Of course,  
there is some licence in calling such a field a wave, just 
a s  there is in saying that an  electromagnetic field with 
E .H=O and IEI= IH(=cons t  is a p l a n e  wave of ze ro  fre-  
quency. 

We show that the metric (3) for  (3, -$) also descr ibes  
a wave of this kind, but one around a massive l inear  
singularity. F o r  this, we note that the metric 

d s 2 = - d i +  2xZP~dx,dxt+F ( x ? )  In ( . z . / a ) ~ ' * ~ d x ~ ~ - x ~ ~ ~ d ~ ~ ,  
( p , ,  pa) = (0, 1)  or (2/8,  -'/a) 

(4) 

is a lso  an exact vacuum solution. The  curvature invari- 
ants  of (4) do not depend on F and a r e  exactly the s ame  
a s  for  F = O .  In th is  las t  case, the metric (4) reduces t o  

Let  u s  consider the metr ic  (4) with F #O. In the region 
where ~ l n ( x / a )  << 1, we can assume that the third te rm 
in it i s  a smal l  correction which does not change the na- 
t u r e  of the coordinates. F o r  (p,, p,) = (0, I) ,  i t  describes 
a weak gravitational wave propagating along the axis  of 
the cylindrical coordinate system, and for  (3, - f )  a wave 
"rotating" around the singularity. In the general case,  
when ~ l n ( x / a )  is not necessari ly small ,  both gravita- 
tional waves become strong. F o r  the ca se  ( 0 , l )  th is  can 
be clearly seen, since the metric (4) reduces after i t  
has been transformed to  a Cartesian coordinate system 
to a special ca se  of the P e r e s  metric (Ref. 1, p. 446). 
Returning to  the ca se  F (%)  =const  and using a coordinate 
transformation to  make the wave amplitude F equal to 
k1, we obtain the metric (3). Thus, it describes a 
strong gravitational wave of ze ro  frequency "propagat- 
ing" along the axis  of the coordinate system ( 0 , l )  o r  
"rotating" round the singularity (9 ,  -5); i n  both cases,  
i t s  amplitude depends only on the distance to the axis. 

The  only circumstance that does not agree with this 
interpretation is that this  axisymmetric solution cannot 
be obtained from the Weyl metric. However, the reason 
fo r  this is that the Weyl metric i s  from the s t a r t  sought 
in diagonal form (Ref. 1, p. 389), to which (3) cannot be 
transformed without violating i t s  static nature. This  in- 
dicates that axisymmetric fields cannot be completely 
described by means of the Weyl metric. The  above in- 
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terpretation makes i t  possible to explain why such 
waves a r e  formed ei ther  in vacuum o r  a r o u d  the singu- 
larity (1) with (pl, p,, p,) = (9, $, -$). In  al l  remaining 
cases,  mass less  part icles (including gravitons) feel 
forces of attraction o r  repulsion when they move along 
o r  around the singularity. F o r  (p,, p,) = (0, I) ,  these 
forces a r e  absent because there is no singularity, and 
fo r  (pl,p3) = (9, -6) they a r e  absent because of the prop- 
e r ty  mentioned above of such a central singularity. 

In the presence of the wave, we cannot use the same 
coordinates t and z a s  in its absence, since there  is a 
region where t becomes a spacelike and z a timelike co- 
ordinate. The re  a r e  many ways in which one can intro- 
duce more appropriate coordinates that do not change 
their  nature; for  example 

i = [ x ,  (*In (x la )  + [ ln2 (x /n )  +4]'") -xz]  [ ln z (x /a )  + 4 ]  -"a, 

i = [ x , ( r l n  (x la )  + [ l n Z ( x / a ) + 4 ]  -) +x2]  [ l n Z ( x / a )  t 4 ] - ' h ,  
(5) 

in  which the metric takes the form 

We recall  that for  (p,,p,) = ( 0 , l )  and (p,, p,) = (3, -+) the 
y and z coordinates, respectively, a r e  angular coordin- 
ates. 

In  the metric (2), the coordinates x, and x, a r e  altern- 
ately timelike and spacelike. Using the transformation 

f=x ,  sin (912) -xz cos (9121, f=x ,  cos ( ~ 1 2 )  + X I  sin (cp/2), (7) 
we can reduce this  metric to the form 

I t  can then be clearly seen that (8) and (6) a r e  naked 
singularities, i.e., do not have an event horizon, since 
they admit the existence of particles a t  r e s t  arbi trari ly 
close t o  themselves. 

The physical meaning of the singularity (2) is not 
clear. The  relations between i t s  exponents have a solu- 
tion only if p, <-6 o r  p, > 1. With regard to  the coordin- 
a t e s  in which it is expressed, we note that for  p" = 0 the 
metrics (3) and (8) go over into the metric (1) with 
( p  ,, A, p,) = (0,0,1) o r  ($, $, -$) and can therefore be ex- 
pressed in a cylindrical coordinate system; we may 
therefore suppose that x and y a r e  cylindrical coordin- 
a tes  and x, and x, a r e  combinations of the remaining 
cylindrical coordinate and the time. In such a case,  the 
angular coordinate for  p, <-$ i s  z while f o r  p, > 1 i t  is y. 

T o  prove that the metric (2) is axisymmetric, we de- 
r ive i t  from the Weyl metric. In this  case,  when the 
field depends only on p, the distance to the axis, the 
Weyl metric can be reduced to  the form 

~ s Z ~ ~ d x Z + x Z c / ( L - ~ + ~ l d t 1 ~ x 2 ~ 1 - 1 ~ i ~ I - ~ + ~ ' ~ d Z ~ ~ x ? ( ~ - ~ ~ ~ / ( ~ - ~ + ~ ' ~ d  Y', 

where X = $ ' C + ~ ~ ,  and c =const  is the Lifshitz-Khalatni- 
kov parameter  u (Ref. 1, p. 495) taken with the opposite 
sign, a s  is shown in  Ref. 2. If c is a complex number 
such that 1 - c +I? is real, then after  the substitution x, 
= z +it,% = t + iz  we obtain the metric (2) with 

However, because of the change of sca le  the angular 
variable is then defined in  an interval 0 c cp <cp ,,, , 
where cp,,, need not be equal t o  27r. 

We can find the mass  of unit length of such a singular- 
ity from the formulas (Ref. 1, p. 425) 

which hold because the metr ic  does not depend on x, o r  
x,. From these expressions we obtain 

R,:=R,::='/~P'~ (x ' )  . (10) 

And since for  any x we can  assume that one of the coor- 
dinates xl o r  x, is timelike and the other spacelike [if 
coscp =0, we can use the symmetry (17)], we can assume 
that the mass  of unit length of the singularity in the given 
coordinate system is 

p=p1a/2, a=(~,..!2n. (11) 

Let  u s  consider the motion of tes t  part icles in the field 
with the metric (2). We use the Hamilton-Jacobi equa- 
tion, which takes the form 

and can be readily integrated: 

S=Az,+Bx,+Cy+ SF'" dx, 

F = ~ - ' P ' [  (AZ-B2)~os  (p-2AB sin c p ]  -Czx-2P'-mz. (13) 

Hence 
Z , = j  x - z ~ ' ~ - "  ( A  cos cp-B sin c p )  dx, 

x2= j z-'P'F-" ( A  sin c p + ~  cos cp) dx, (15) 

Here, the generalized momenta A, B, and C a r e  inte- 
gra ls  of the  motion. We obtain expressions for  z' and f 

FIG. 1. Dependence of the 'Lpotentfal energy" U on x.  The 
particle can be in one of the infinite number of potential 
wells, which accumulate at the singularity. In the hatched 
regions, no kinds of particle can be present; their boundaries 
are at x=a exp [(I + 2k)r/4 -tan-' (B/A)] .  The raising of the 
bottoms of the wells as the singularity is approached occurs 
as shown in the figure when p3 > 1; when p, < -1/3, the height 
of the bottom increases with increasing x. 
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from (71, (14), and (15). Using the fact the metric (2) 
is invariant under the transformation 

xI'=xI cos a+xx sin a ,  xt'=xz cos a -x ,  sin a, (pf=(p-2a, (17) 

which carries A and B into 
A'-A cos a+B sin a ,  Bf=B cos a - A  sin a ,  

we shall in what follows assume that this  transformation 
has been made, and moreover in such a way that B' = 0, 
and we shall drop the pr imes  on A' and cp'. 

A particle can move in the region where 
F=Azx-zP' cos ~ - C ' X - ~ P ~ - ~ ~ Z O .  (19) 

It is c l ea r  that the sections where coscp < 0 do not belong 
to this region. F o r  coscp >0, we have the condition A2 
- UZ a 0, where 

~z=(C~x2 '~ ' - '> '+mzx?~' )  

can be regarded a s  a kind of potential. I t  consists  of an 
infinite number of wells that accumulate a t  the singular- 
ity and a r e  separated by a potential ba r r i e r  of infinite 
height and finite width (Fig. 1). Therefore,  no particle 
can go over  into a neighboring well even by tunneling. It 
oscillates around the minimum at  

As x - * ~  - 0 o r  for  C = 0, we have 

cp,,.-(2k+l)n-arctg(p'/pM), ~ ~ , . = m ~ x ~ ~ ' [ l + ( ~ ' l ~ " ) ~ ] ' " .  (21) 

A s  x - ~ ~  -m o r  for  nz = 0, 
cpmi,,=(2k+l)n-aretg [ (p'-pJ)lp"l,  

A:,,,=&?(P'-P,) [ ~ + ( P f - P , ) ~ / p r ~ f ] ~ .  (22) 

F o r  m = C = 0, the particle moves freely in the regions 
coscp >0, being reflected from the  walls a t  cp = r /2 + kn. 
A s  p"-0, the width of the well containing the point x = a  
increases unboundedly, and this well is transformed 
into the potential of the metric (1). 

In the case  of motion in the field of the metric that 
generalizes (2) when A and B can vary, transitions from 
well to well when there is a change in sign of f i r s t  one 

FIG. 2 .  The region in which a particle can move is  shown for 
the metric (3) with (plr &) = (0,1), the upper sign, and B 
=const 7 0. In the upper quadrant for m # 0, C * 0 the region 
lies within the curve KRL; for C = 0, m # 0 within KORL; for 
m = 0, C * 0, B < Bd, there are two regions: K R L  and MSM, 
which for m = 0, C # 0, B > Bmi, merge into a "tail" with the 
particle moving within KTMQL; if m = C = 0 ,  it moves within 
KOMDL. In the lower quadrant for C # 0 the particle moves 
within N P ,  and for C = 0 within NOP. 

of these quantities and then the other a r e  not ruled out. 

We consider the motion of test part icles in the field 
with the metr ic  (3), in which the Hamilton-Jacobi equa- 
tion can a lso  be readily integrated: 

S=Ax,+Bz,+Cy+ SF" dz, 
F = T X - ~ ~ ,  In ( z l a )  A '+?x- '~~A B - X - ' P P C ~ - ~ ~ .  

Hence 

where A, B, and C a re ,  a s  before, generalized momen- 
ta along the axes x,, x2, y and a r e  integrals of the motion. 
A part icle can only move in the region F 2 0. We sketch 
th is  region for  B =const  >O. If we choose the upper sign 
in the  metric with (p,,p,) = (0, I) ,  then we obtain the r e -  
gion shown in Fig. 2. We s e e  that the part icle can reach 
x = 0 only for  C =0,  i.e., in the ca se  of radial  motion, 
which is natural. F o r  smal l  x, 

from which, using the variables introduced in (5), we 
obtain 

f -+fIm-2x In ( x / a )  , f -.f'0'+3x/ln ( d a )  . 

F o r  mass less  part icles when 

where e i s  the base of natural logarithms, the allowed 
region for  A > O  consists  of two disconnected parts. F o r  
B > B  ,,, , they merge  and form a "tail", which extends t o  
A = 0, x=m. Therefore,  for  smal l  A mass l e s s  particles 
can penetrate into the region of la rge  x for  x < x,,, . If 

C c B a  exp(2BA-') 

we obtain for  x,,, the expression 
x,,=a exp (2BA-') . 

No part icles can  reach infinity. 

We have a s imi lar  picture for  the metric (3) for  
(p l rp3)  =($, -*) and the upper sign (Fig. 3). All part icles 
can reach the singularity. At the s ame  t ime 

(0) ( 0 )  x ,+s ,  +3x5[-ln ( x / a )  ]'", x , -+x ,  +3x'"[- ln(x/a)  I-'$, 

I + ~ ( o ~ + 3 C z ' i ~ / 7 [ - l n ( x / a )  ]'", t+f'q+62h ln(x!n), 

FIG. 3. The metric (3) with (pl ,p3) = (2/3, -1/3), upper sign, 
and B = const > 0. For m # 0 or C i 0, the particle moves to 
the left of the line LON, and for m = C = 0 to the left of the line 
LMON. 
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FIG. 4. The metric (3) with (p1,p3) = (O,l), lower sign, and 
B = const > 0. For m z 0 o r  C * 0, the particle moves to the 
right of the line LNRP, and for m = C = 0 to the right of the 
line LORP. 

I n  this case,  there can be neither a second region nor a 
"tail", except for  the variant C = m = 0: when a tail ap- 
pears  and the particle can reach 

From the graph of the allowed region for  the metric 
(3) with (p,,p3) = ( 0 , l )  and the lower sign (Fig. 4), we 
see  that particles can reach infinity but not the singular- 
ity. Only when m = C  = 0 does there appear a tail,  which 
reaches the point A = x = 0. In this  case ,  the particle 
can be a t  

x>x,+.=a exp (-2BA-') . 

Par t ic les  in the field with the metric (3) for  (p,,p,) 
- - (z ,, -, L) and the lower sign can reach neither the singu- 

larity nor infinity (Fig. 5). Infinity i s  reached only by 
particles with m = C = 0. F o r  B < B,, , the allowed re-  
gion for  A >O consists of two disconnected parts ,  while 
for B >Bmi ,  they merge into a tail. The  particle can ap- 
proach not nearer  than the distance x,, t o  the singular- 
ity. When 

CKBa-' erp (2BA-') , m&Ba-''3 exp (4B/3A) 

we have 

z,,.=a exp(-BA-') . 

F o r  B =0, in Figs. 2-5, we should represent  not the 
upper half but the symmetrically reflected lower half; 
for  m = C = 0 the allowed region is x < a for  Figs. 2 and 3 

FTG. 5. The metric (3) with (pl,p3) = (2/3, -1/3), lower sign, 
and B = const > 0. In the upper quadrant for m * 0 or C * 0 
and B < Bd,  the particle may move within the regions OPO and 
LNK, which for B > Bmi, merge into the region LSOTNK. For 
m = C = 0, the region of motion is bounded by the curve 
LROFQ. In the lower quadrant for m z 0 or  C * 0 the particle 
moves within QD. 

and x > a  for  Figs. 4 and 5. F o r  B < 0, one must inter- 
change the upper and lower pa r t s  in  Figs. 215,  reflect- 
ing the graphs symmetrically about the x axis. 

Thus, we see  that when the upper sign i s  taken in the 
metric (3), this corresponds to additional attraction 
toward the center  due to the effect of the gravitational 
wave of ze ro  frequency. Moreover, i t  does not permi t  a 
particle to move away to infinity. But if we choose the 
lower sign in the  metric,  the wave, acting on the par-  
ticle, repels  i t  from the center ,  which the particle can- 
not reach. 
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