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The defect-induced anomalies of a number of characteristics of matter near second-order phase transition 
points in various substances are investigated theoretically. The temperature dependences of the 
thermodynamic quantities, of the light-scattering intensity, of the sound-absorption coefficient, and of the 
soft-mode damping constant are considered. The anomalies near the transition point (T,) are attributed to 
the evolution with temperature of the defect-induced static distortions of the matrix, which correspond to 
an order parameter q. The independent-defect approximation is used, wherein the correlation radius of 
the order parameter is smaller than the average distance between defects. The structure distortions caused 
by the defects are described in a continual approximation on the basis of a phenomenological theory of 
phase transitions. For intrinsic ferroelectrics and ferroelastics, account is taken, in this case, of the long- 
range forces due to the macroscopic and electric and elastic fields. The value qo of the structure distortion 
in the core of the defect is determined in self-consistent manner and likewise turns out to be temperature 
dependent. At an appreciable value of qo, the anomalies of the properties of the substance in the 
investigated temperature region are qualitatively similar to the known fluctuation anomalies, although 
their temperature dependences differ in character. Estimates show that the anomalies connected with 
defects can exceed the fluctuation anomalies even at ordinary defect concentrations (-10" cm-'). The 
temperature dependence of qo can lead, in particular, to a local phase transition with change of structure 
of the defect (the appearance of defect distortions corresponding to 7). This phenomenon, which has 
already been discussed in the literature, is also considered within the framework of the employed 
approach. 
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INTRODUCTION 

The influence of defects on the properties of sub- 
stances near the phase transition points has been the 
subject of a large number of theoretical studies. In the 
development of the theory, principal attention has been 
paid so  far to renormalization of the critical exponents 
and to the "smearing" of the critical singularities (see, 
e.g., Refs. 1-4), which take place in the temperature 
region where the correlation radius r, of the order 
parameter q exceeds the average distance r, between 
defects. In addition, the perturbations introduced by 
the defects were a s  a rule assumed to be small. At the 
same time, not enough attention has been paid to the 
simpler case, when r, < r, and the defects can be re- 
garded a s  weakly interacting, yet i t  is precisely this 
case which in our opinion is of interest when i t  comes 
to the interpretation of most experimental data. 

The influence of defects on the properties of matter 
is particularly great near the second-order phase tran- 
sition temperature T,. The structure of matter near T, 
becomes "soft" to distortions corresponding to q. In 
particular, the characteristic length Y, over which the 
parameter q specified a t  a certain point is varied, be- 
comes infinite a t  T = ( T  - T,)/T,=O. Consequently, the 
dimension of the region perturbed by the defects also 
increases if the distortions caused by the defects in- 
clude some that correspond to the parameter q. These 
arguments, which have been developed in a number of 
 paper^,^-^ were advanced also in a somewhat different 
form (in the language of lattice dynamics) by other 
 worker^.^^^ Strong temperature changes of the proper- 
ties of matter near the phase-transition point can lead 
also to a jumplike defect-structure realignment having 

the character of a unique 'Llocal phase transition." Ex- 
amples of such a restructuring can be the following: 
spontaneous appearance of a magnetic moment a t  a 
paramagnetic impurity,lO." the onset of an ordered 
region near a dislocation in a solid solution,12 a jump- 
like increase of the magnetic moment near a vacancy 
when solid 'He is magnetized,13 spontaneous appearance 
of a current of a magnetic flux in a Josephson junction 
with paramagnetic impurities,14 etc. Other papers 
dealing with the structure of defects and with their in- 
fluence on the properties of matter in the vicinity of the 
phase transition can also be cited.lS2O 

In this paper we investigate, within the framework of 
the phenomenological theory, the changes of the struc- 
ture of defects near phase-transition points in various 
substances. The results a r e  used to consider the de- 
fect-induced anomalies of certain properties of matter. 

The qualitative character of these anomalies can fre- 
quently be understood from elementary considerations. 
Thus the increase of the dimensions of the region of 
the medium distorted by the defect leads apparently to 
an increase of the cross section for the scattering of 
light by a single defect, and consequently to an increase 
of the intensity of the scattering due to fluctuations of 
the defect c~ncentra t ion.~ Changes of the defect struc- 
ture should lead also to a temperature dependence of 
the defect contribution to the thermodynamic quantities 
and to the kinetic coefficients. Since the defects can be 
regarded a s  something like "frozenw fluctuations of q, 
one should expect the anomalies due to defects to be 
similar to known fluctuation a n o m a l i e ~ . ~ ~  The presence 
of defects should, in particular, increase the sound 
absorption by the symmetrical phase a s  T- 0. In fact, 
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for pure matter the anomaly of sound absorption in the 
asymmetrical phase is connected both with relaxation 
of the order parameter and with i ts  thermal fluctua- 
tions, while in the symmetrical phase i t  is connected 
only with the thermal fluctuations of q. The presence 
of defects, which can be regarded a s  nucleation centers 
of an asymmetrical phase, gives r ise  to formation of 
regions of relaxation absorption a t  7 > 0, and the size 
of this region increases a s  7- 0, thus leading to an 
additional increase of the absorption of the sound. 
Similar arguments can be advanced also with respect to 
the damping of the oscillations of the order parameter- 
the "soft mode." In the asymmetrical phase of pure 
matter, in contrast to  the symmetrical phase, these 
oscillations a re  accompanied by temperature oscilla- 
tions. In the vicinity of the defect, the temperature 
oscillations can occur also in a symmetrical phase, 
and i t  is this which causes the additional damping of 
the oscillations of q a s  a result of thermal conductivity. 

In the present paper, the substance is described in a 
continual approximation, and the presence of defects 
is taken into account in the boundary conditions of the 
equations of the continuous medium. These conditions 
are  specified on the boundary of the "core" of the de- 
fect, i.e.. in a spatial region with characteristic di- 
mension d, inside of which the continuous-medium ap- 
proximation is not valid. We emphasize that in the 
continual theory the distortions introduced by the de- 
fects a re  usually taken to be the elastic (acoustic) 
 deformation^,^^ since the changes of the other internal 
parameters (such a s  "opticalo deformations of the 
crystal) fall off a s  a rule approximately within inter- 
atomic distances. However, a s  already noted, near the 
phase-transition point the characteristic state of the 
falloff of the distortions that correspond to the order 
parameter q increases substantially, s o  that these 
distortions can also be described in the continuous- 
medium approximation. These a re  precisely the dis- 
tortions of interest to us here. In addition, since we 
a re  considering the case r e <  r,, the defects a r e  as- 
sumed to be noninteracting, and their contribution to 
the various physical quantities a re  assumed to be addi- 
tive. A similar approach was used to treat  defects such 
a s  the sample surface and extraneous particles in liquid 
helium.2315 

Section 1 deals with the possible types of boundary 
conditions on the core of the defect and with a deter- 
mination of the corresponding distributions of q(r) near 
the defect, a s  well a s  with the change of the free ener- 
gy due to one defect. In Sec. 2 is considered the con- 
tribution of the defects to the anomalies of the thermo- 
dynamic quantities near second-order phase transition 
points under the assumption that the value of q(r)  on the 
boundary of the core of the defect does not depend on 
the temperature. In Secs. 3 and 4, under the same 
assumption, we calculate the contribution of the defects 
to anomalies of light scattering and of sound absorp- 
tion, a s  well a s  to damping of the soft mode. In Sec. 5 
is formulated a more general approach to the problem, 
wherein the boundary conditions a t  the core of the de- 
fect a r e  no longer regarded a s  fixed, and a r e  deter- 
mined in a self-consistent manner. This procedure 

makes i t  possible not only to justify and refine the 
results of the preceding sections, but also to consider 
the question of possible changes produced in the state 
of the defect core by strong temperature variations of 
the properties of the matrix. Examples of model cal- 
culations of the phenomenological constants used in the 
theory and characterizing the core of the defects a r e  
discussed in the Appendix. 

1. CONTRIBUTION OF THE DEFECTS TO THE FREE 
ENERGY OF A SUBSTANCE 

We consider f i rs t  a point defect and assume the 
boundary of i t s  core to be spherical. In this case, for 
a single-component order parameter, the boundary 
conditions on the core reduce to specifying the function 
q(9, cp; d) on a sphere of radius d. Expanding q(9, cp; d) 
in spherical functions, we can formulate the simplest 
types of boundary conditions, assuming one of the terms 
of this ser ies  to be different from zero. For  our pur- 
poses i t  suffices to consider the f i rs t  two terms of the 
expansion; this is equivalent to specifying on the bound- 
ary  of the core the order parameter q = q, (defect in 
state S) or  i ts  derivative (aq/az),=q,/d (defect in state 
P). Of course, q, and q, can differ from zero simul- 
taneously (defect in state SP). Possible types of bound- 
a ry  conditions on the core of the defect a r e  illustrated 
in Fig. 1 with a ferroelectric transition of the displac- 
ive type a s  an example. The boundary conditions for 
linear (one-dimensional) defects such a s  dislocations, 
a s  well as for planar (two-dimensional) defects such a s  
twin boundaries, a r e  similarly formulated. In the for- 
mer  case one specifies the function q(cp, d) on a cylin- 
drical surface of radius d, and in the latter the values 
of 1, and q, on the planes that bound the core of the 
defect. Linear defects in the states S and P correspond 
respectively to the f i rs t  (m = 0) and second (m = 1) 
terms of the expansion of the function g(cp, d) in powers 
of cosmcp. A planar defect in state S corresponds to 
the boundary condition q, =q2 =q,, and in the state P to 
the condition q, = -qz. 1t is obvious that a planar de- 
fect can be only in states S, P, or  SP. 

We assume f i rs t  that the defect is in the state S. We 
represent the free energy of the substance with such a 
defect in the form 

where the first  term is the free energy of the matrix 
and the second is the free energy of the core of the de- 

FIG. 1. Schematic representation of the distortions of the 
structure of a crystal in the vicinity of point defects of various 
types: a) unit cell of symmetrical phase, b) unit cell of 
asymmetrical phase, c) defect in the state Sfv0 > 01, d) 
defect in the state S(rl, < O), e) defect in the state P. 
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fect with volume Vo; h is the generalized field conjugate 
to the order parameter. The microscopic meaning of 
the function f(qo) for different models of the defect is 
discussed in the Appendix. 

By varying expression (1.1) with respect to q(r) a t  a 
given q,, we obtain an equation that describes the dis- 
tribution q(r) 

DVzq=cp'(q)-h, (1.2) 

with boundary conditions 

q (r=d) =qo, q ('+a) =q-, (1.3) 

where the quantity q, is determined from the equality 

T'(v,) =h. (1.41 

The function q(q), a s  usual, is expressed in the form 
of a series 

A B C  
cp(q)=cpo+2-q2+-q4+-q'+ ... . 

4 6 

In the Landau theory of second-order p b s e  transi- 
tions, the only ones considered here, we have A =Ao7, 
B, C = const > 0. Expression (1.5) with altered tem- 
perature dependences of the coefficients can actually be 
used also in the scaling region, where the Landau the- 
ory is not appli~able. '~ It will be convenient hereafter 
to expand the function q(q) in powers of (q - 1,). Sub- 
stituting this series in expression (1.1) and (1.2), we 
get 

Integrating in (1.6) by parts the term containing 
V(q - q,) and using (1.1), we obtain for the integral in 
(1.6) 

1 
@.=- J [- , " m  - + , c p l v ( q . . )  1 (q-qmIb+. . . 

v-v. IdV 

Equation (1.7) cannot be solved exactly in three- and 
two-dimensional cases. In the linear approximation 
b r  point defects in the S state, the q(r) distribution is 
described by the well known Ornstein-Zernike function 

where the correlation radius r, is given by 

For a, we obtain in the same approximation 

The q(r) distribution near the point defect in the state 
P can be obtained, by differentiating (1.9) with respect 
to z and satisfying the boundary condition q(8, r = d )  
=q1cos8, in the form 

In this case 

By iteration we can calculate the corrections to a:), 
which arise when account is taken of the nonlinear 
terms in (1.7). For  a defect in the same S, calculation 
of the first  correction to ,910) 

makes i t  possible to obtain a criterion for the applica- 
bility of the linear approximation: 

Analysis shows that when the condition (1.15) is satis- 
fied, the corrections a re  small not only for @,, but 
also for the derivatives of @, with respect to T and h. 
We note that in the region of applicability of the Landau 
theory the quantity q*= (D/Bd2)lf2 has the meaning of 
the atomic bax imum possible) value of the order pa- 
rameter, corresponding to total ordering, to displace- 
ment of the sublattices by an atomic distance, etc., 
i.e., the linear approximation can be used here even 
for relatively "strong" defects. In the scaling region, 
the dependence of q* on T is given by q* -1 71 "-'. USU- 
ally v - 0  = @  = i,21,26 and consequently the condition 
(1.15) is practically always satisfied in the scaling 
region. 

For a linear defect in the state S, the distribution q(r) 
and the value of @,, both calculated in first-order ap- 
proximation, a r e  given by the expressions ( p  is the dis- 
tance to the axis of the defect) 

where L is the length of the effect, while Ko(z) and K,(z) 
= -dK,/dz a re  cylindrical functions of imaginary argu- 
ment. It is known that a s  z - we have 

and a s  2-0 

The criterion for the applicability of the linear ap- 
proximation is much more stringent here: 

Thus, this approximation is valid only for sufficiently 
"weakm linear defects. 

In the case of planar defects, the linear approxima- 
tion is likewise valid only a t  (q0/q,)lf2 < 1. However, 
the distribution q ( x )  and the quantity a, can in this case 
be calculated exactly, since Eq. (1.7) has a s  i ts  f i rs t  
integral 
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(1.20) 

From this and from (1.18) we get 

In a nonsymmetrical phase these formulas a re  valid 
only a t  q,> -q,. In the opposite case (for weak fields, 
h- 0), Eq. (1.20) has no solution that satisfies the 
boundary condition q(x  - 00) = q,. This means that a t  
q, 6 -9, the approximation of non-interacting defects 
is incorrect. 

In intrinsic ferroelectrics and ferroelastics, and 
also in ferromagnets, a change of q(r)  is accompanied 
by the appearance of long-range forces-electric, elas- 
tic, or magnetic, respectively. For  ferromagnets this 
circumstance can be disregarded down to very small 
values of 1 r ) ,  but for uniaxial ferroelectrics and ferro- 
elastics i t  influences the results strongly. In the case 
of an extremely anisotropic ferroelectric with one spon- 
taneous-polarization axis z(q =PC)  the P,(r) distribution 
for a point defect in the state S was obtained previously 
in the linear appr~ximat ion.~ Using this result we get 

1 

(2n)  cp" (P, , )  +Dkz+4nn.' 
D cp"(P.-) 

- 1  - I  

23Dd (PZo-P,,) ' I + - { [ I - ]  (1.23) 

where n,= k,/k, and the integration is over the wave 
vectors lk(< k,,. Introduction of km,=n/2d is analo- 
gous to the introduction of the defect core radius d. 

For triaxial ferroelectrics, using the result of Ref. 
27, we have 

The direction of the polarization P,, a t  the defect coin- 
cides here with the direction of the z axis. 

In an intrinsic ferroelectric, the order parameter is 
one of the components of the strain tensor (q~u,,) .  Us- 
ing the results of Ref. 28, we get 

Here A and p are  Lam6 coefficients, and cp" denotes 
the elastic modulus corresponding to u,,, i t  being as- 
sumed that the expression for the energy corresponding 
to the remaining components of the elastic strain tensor 
is the same a s  in the isotropic case. 

A detailed analysis has shown that the criterion (1.15) 
of the applicability of the employed approximation re-  
mains physically in force also for  point defects of S 
type in systems with long-range action. 

2. CONTRIBUTION OF DEFECTS TO THE ANOMALIES 
OF THE THERMODYNAMIC QUANTITIES 

It will be shown later (see Sec. 5) that to obtain ap- 
proximate results and estimates, we can assume the 
order parameter q, a t  the core of the defect to be fixed 
near the phase transition point a t  a value qo = q0(r= 0) 
' 7)00. 

It is then possible to leave out of (1.6) the tempera- 
ture-independent term f(q,)V,. In addition, in the f i rs t  
term of this expression we can neglect the quantity Vo 
compared with V (omitting V,, we neglect the obvious 
change produced in the anomalies by the decrease in the 
fraction of the volume participating in the phase transi- 
tion when defects a re  introduced into the medium). For 
the contribution of a point defect in a state S to the free 
energy of the system we then obtain 

@d-@,=2nDd(l+d/rc)  (qo-q, ) ' .  (2.1) 

Differentiating (2.1) with respect to h and r (with ac- 
count taken of the implicit dependence of r, and q, on h 
and r )  we obtain (at a field h = 0) the contribution of the 
defects to the order parameter q averaged over the 
volume, to the generalized susceptibility x correspond- 
ing to  the order parameter, and to the specific heat c 

4xDd $"'(q-) q z d  p"" 3 cp"' 
~ - ~ = - t i { ( n . - n - ~ - + x  [7-y (-7 )]+i} (2.3) 

9 ( q - )  

The lower index T in (2.4) means that the differentiation 
is with respect to r. 

The results for other types of defects, and also for  
defects in systems with long-range forces, will not be 
presented completely. They can be obtained by differ- 
entiating the corresponding expressions for +,. For  
comparison we shall later on mention only briefly some 
of these results. 

It is obvious that q0 can be of either sign. Let u s  dis- 
cuss the contribution of the defects to the anomalies of 
the thermodynamic quantities in three very simple 
cases: a )  frozen-in random defects, when the value of 
q0 a t  each defect is fixed, and the concentrations of 
defects with opposite signs of 0, a r e  equal; b) frozen-in 
"polarized" defects, when the sign of q, is the same for 
all  defects; c) "polarization reversing" defects, when 
the defect can undergo transitions between states with 
*lqO1. The f i rs t  case can be realized, for example, in 
a crystal grown a t  T > T,, the second in a single-domain 
crystal that remains for a long enough time at  T <  T,. 

a)  The contribution of the frozen-in random defects to 
the thermodynamic quantities can be obtained from for- 
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mulas (2.1)-(2.4), in which we leave out the terms 
linear in q,, and by multiplying by the number of de- 
fects. Assume f i rs t  that the Landau theory is valid in 
the entire region of applicability of our approach (i.e., 
a t  Nr: < 1, where N is the defect concentration). For  a 
second-order phase transition far  from the tricritical 
point, the temperature dependence of ij, x, and c can be 
represented in the form 

Here Ac=Ai/2BTc is the jump of the specific heat a t  
the phase transition point, a s  given by the Landau theo- 
ry, and 5 ~ 1 . 5 .  

Figure 2 shows the temperature dependence of ij2. In 
a region not too close to the phase-transition point, 
when 

this dependence is linear, just a s  in a pure substance. 
Extrapolating this straight line to the intercept with the 
abscissa axis, we obtain the renormalization of the 
transition temperature: 

A similar renormalization of T, follows from formulas 
(2.6) (Fig. 2b). At N = 1018 emm3, d - 10-' cm and 
(D/AO)'l2 cm (values estimated, for example, for 
SrTiO,, Ref. 29), AT amounts to -lo1, and agrees in 
order of magnitude with e ~ p e r i m e n t . ~ ~ * ~ l  At 

($)=$ Zsi 

the deviation from the linear temperature dependence of 

FIG. 2. Temperature dependence of the square of the order 
parameter (a) and of the reciprocal generalized rmscepti- 
bility corresponding to the order parameter (b) in the region 
of applicability of the Landau theory: l-in the absence of 
defects; 2-in systems with frozen-in random defects; 3-in 
systems with frozen-in ''polarized" defects, when the signs 
of qo and 9.. coincide; 4-in systems with frozen-in "polarized" 
defects when qo and q, have different signs. 

ij2 and x-' become noticeable, a s  i s  clear from Fig. 2 
(curves 2). However, the values of these deviations, 
even a t  the limit of validity of the theory ( N Y ~  = 1), can 
be appreciable only for strong defects with (qo/q*)2 
= ( ~ d , ) l / ~ ,  i.e., a t  N = 1018 cmm3 and (qo/q*)2 = lo3 - 10-I. 

The character of the temperature dependence of the 
specific heat c is also determined essentially by the 
value of the parameter go. The contribution of strong 
defects (q9 -q* >> 39,) to the specific heat, a s  follows 
from (2.7), increases when the phase-transition point 
is approached from either the symmetrical o r  the 
asymmetrical phase, in accordance with the law cfcd 

1 T I  - , I2. At the boundary of the region of applicability 
of the employed approximation (Nr: = I), cfcd reaches a 
value of the order of the jump of the specific heat Ac in 
the pure substance (Fig. 3, curve 3). A dependence of 
this type is frequently observed in experiments, but is 
usually attributed to thermal fluctuations of the order 
parameter. The contribution of the lat ter  a t  T > T, is 
given in f i rs t  approximation by the formula3" 

From (2.3) and (2.9) we obtain for cfcd/cf a t  Nr  = 1 

where T* = D2/Bdk, is of the order of the atomic tem- 
perature (-1O4-lo5 K). F o r  N= 1018 cm-,, d = 10" cm, 
q9/q* = lo-', T, = 10" K the ratio i s  cfcd/cf = 1-10, i.e., 
i t  is quite probable that in many cases the observed 
anomalies of the thermodynamic quantities, which a r e  
usually attributed to thermal fluctuations, a re  actually 
due to defects. For sufficiently weak defects 
(3 s f l I 3 D / ~ ) ,  a s  follows from (2.7), the heat capacity 
decreases monotonically with increasing temperature 
(curve 2 of Fig. 3), i.e., the presence of defects leads 
in this case only to a smearing of the jump of the speci- 
fic heat. In the intermediate case the function cfe,(T) 
(curve 4 in Fig. 3) has a minimum. The last term in 
(2.7b) determines the specific-heat-discontinuity re- 
normalization due to the defects. We note that part of 
this renormalization is connected with the term iCq6 
in (1.5), which is usually not taken into account in the 
analysis of second-order phase transitions that a r e  far 
from the tricritical point.') On the other hand, the 
other part  ar ises  when the f i rs t  correction (1.14) to +, 
is differentiated. We emphasize that a l l  defects con- 

FIG. 3. Temperature dependence of the specific heat in the 
region of applicability of the Landau theory: l-in the ab- 
sence of defects; in systems with frozen-in random defects: 
2-for weak defects, 3-for strong defects, 4-for the inter- 
mediate case. 
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tribute to the renormalization of the discontinuity, in- 
cluding defects in the state P, since the magnitude of 
the renormalization does not depend on q,. At AoC/B2 
- 10, a s  is the case for triglycin sulfate3' and a t  NdD/Ao 

the renormalization of the specific heat is of the 
order of Ac. The experimental datas4 show that the 
jump of the specific heat in triglycin sulfate is several 
time larger than the value given by the Landau-Ginz- 
burg-Devonshire theory. It is not excluded that this 
discrepancy is connected with the presence of defects. 
The same temperature dependence a s  cf,, is obviously 
possessed also by contributions of the defects to such 
thermodynamic quantities a s  the compressibility and 
the coefficient of thermal expansion. To obtain the 
corresponding expressions i t  is necessary to multiply 
the expression for cf,, in the f i rs t  case by TP(dT,/dP)2 
and in the second by TildT,/dP. In other words, the 
Pippard relations remain valid for these q u a n t i t i e ~ . ~ ~  

Formulas (2.2)-(2.4) make i t  possible to analyze 
the behavior of the thermodynamic quantities in the 
similarity region, where the Landau theory is not ap- 
plicable. In this case 

where v =  (y + 2/3)/3 and usually /3 3 i, y = +.2'*28 The 
contribution of the defects to the quantity ij2 varies now 
like ij:,, - 72, - 1  rl Z 1 S ( 7 ' 6 ) .  The influence of the defects 
on the temperature dependence of the reciprocal sus- 
ceptibility X-' in this region reduces in practice to a 
shift of the corresponding curves along the ordinate 
axis, either upward (at r > 0) o r  downward (at r <  O), by 
an amount that does not depend on the temperature and 
i s  proportional to the defect concentration. This change 
of x-'(T) can be interpreted also a s  some lowering of 
the transition temperature. We note that the correction 
terms to formulas (2.2) and (2.3), which contain qg, do 
not change this result in fact, inasmuch a s  they a re  
practically independent of the temperature in the criti- 
cal region. The contribution of the defects to the speci- 
fic heat has a stronger temperature dependence in the 
critical region (cfCd - 1 7)  "" a t  qo P 0 and c,,, - 1 71 28'2 a t  
qo = O), than in the region where the Landau theory is 
valid, and i t s  sign is positive also a t  r < 0, regardless 
of the value of q,. 

The thermodynamic anomalies due to the presence of 
other types of defects have a number of singularities 
compared with those considered above. For  linear de- 
fects (it is possible to analyze here only the case of 
weak defects with qo - q, cq,) in the nonsymmetrical 
phase we have cfCdm 1 7(2'25 1 n l (  T 1 ,  i.e., the presence 
of these defects leads to a maximum on the temperature 
dependence of the specific heat. On the contrary, in 
the case of planar defects in the region where the Lan- 
dau theory is valid, only a smearing of the discontinuity 
of the specific heat takes place. Point defects in the P 
state also lead to a smearing of the specific-heat dis- 
continuity, and the corresponding contribution to the 
specific heat (just a s  the contribution of the planar 
defects) is proportional to (71-'I2, i.e., i t  has above T, 
has the same temperature dependence a s  the contribu- 
tion of the fluctuations. The ratio c,cd/cf in the case of 

defects of P type is equal to 

At q, =q *, Nd ' 3 and T*/T, = 10' this ratio is of the 
order of unity. As to the contribution of P defects to 
ij2 and X-', i t  reduces to a renormalization of the tran- 
sition temperature, similar to (2.8), without deviations 
from the linear relations. For  intrinsic uniaxial ferro- 
electrics and intrinsic ferroelastics, the contribution 
of S-type defects to the specific heat (at q,PO) changes 
like I r 1 -' and ( r 1 "I2, respectively. These tempera- 
ture dependences a r e  stronger than the fluctuation de- 
pendences (cf -In1 ll-' and cf - c, - ~ , r " ~ ,  Refs. 36, 37, 
28). 

b) For  a system with frozen-in polarized defects we 
obtain from (2.2142.4) 

The second terms in (2.11) and (2.12) can be interpreted 
a s  the changes of i j  and X" under the influence of the 
effective "field" = InNDdq,, produced by the defects. 
For  ferroelectric phase transitions a t  N = 10" cm" 
this would correspond to an e lectric field E 3 lo4 - lo5 
V/cm. We note that the appearance of an additional 
term in expression (2.13a) for cfM a t  T <  0 cannot be 
attributed to the presence of such a field, since c de- 
pends on h only in quadratic fashion. 

The dependence of Tf, on the temperature is shown 
schematically in Fig. 2 for the cases when q, and q, 
a r e  of equal (curve 3) and of opposite sign (curve 4). 
The sign of q,, a s  seen from (1.4), is determined by 
the field h, which can be easily realized in experiment 
in the case of intrinsic ferroelectric, magnetic, and 
ferroelastic transitions. The field h can be specified 
also in all other cases, when the transition parameter 
is a tensor, i.e., the phase transition is not accompan- 
ied by a change in the translational symmetry of the 
substance. Thus, for example, for the a == 0 structure 
transition in quartz, the role of the field h can be 
played by the gradients of the elastic-stress compo- 
nents, which have the same transformation properties 
a s  q. 

It follows from (2.13) that the character of the tem- 
perature dependence of the specific heat a t  T <  0 also 
depends substantially on the ratio of the signs of the 
parameters qo and q ,. When the signs agree, the curve 
for the specific heat is similar to curve 3 of Fig. 3, and 
if the signs a r e  opposite, i t  is similar to curve 2 of the 
same figure. 

We note that the condition for applicability of the ap- 
proximation of the indepent defects in our case is some- 
what more stringent than for random defects. In fact, 
a s  follows from (2.11), this condition take the form 
2 S 1 2 a ~ r  &,/q* < 1, whereas for random defects the 
factor qo/q* is raised to the second power in the corre- 
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sponding inequality. 

c) Proceeding now to consider polarization-reversing 
defects, we denote by N+ = i(N + AN) and N_ =$(N - AN) 
the concentrations of the defects in states with different 
signs of qo. The value of AN in the state of thermody- 
namic equilibrium must be determined from the condi- 
tion that the free energy be a minimum. The expres- 
sion for the density of the free energy of the system a t  
hN/N << 1 can be written in the form 

where the plus and minus signs correspond to different 
signs of q, in (1.11). The last term in (2.14) takes into 
account the entropy of a system of N+ and N_ independ- 
ent defects. 

Minimizing (2.14) with respect to AN, we obtain for 
the equilibrium value of IW, 

Substitution of (2.15) in (2.14) yields 

This expression differs from the corresponding expres- 
sion in the case of frozen-in random defects in that the 
square brackets contain a second term. The expres- 
sions for ij2 and X-' a r e  obtained in this case by replac- 
ing unity in the round brackets of (2.5) and (2.6) by 
(1 - QnDdqVGT), and then the temperature depend- 
ences of q2 and X" a re  similar to those shown in Fig. 
2, but with a different effective "shift" of the transition 
temperature 

the sign of ArS, is negative, i.e., the temperature of 
the transition shifts upwards relative to the temperature 
of transition in the pure substance. For  Ns 10'' ~ m ' ~ ,  
d = (D/A,,)'~~ J lom7 cm, T,/T* = lo1, qo/q* = 10" i t  fol- 
lows from (2.17) that Ar30.1. 

The rise of the transition temperature when the crys- 
tal has polarization-reversing impurities was consid- 
ered previously17 on the basis of microscopic models 
and for an opposite limiting case (Nr: >> 1). The physi- 
cal cause of the shift of the transition point in these two 
cases is the same, but the results, naturally, can differ 
quantitatively. 

3. ANOMALIES OF LIGHT SCATTERING BY DEFECTS 

Light scattering is due, a s  is well known, to disturb- 
ance of the optical homogeneity of the medium. The di- 
electric tensor c t j  in the optical band is in this case 
different a t  different points of the medium, i.e., i t  

undergoes spatially inhomogeneous fluctuations. When 
light is scattered by defects, the inhomogeneities of Ei, 
are  due to fluctuations of the defect concentration. In 
the temperature interval of interest to us, there i s  
practically no diffusion of the defects and the fluctua- 
tions of N can be regarded a s  independent of the tem- 
perature. At the same time, the fluctuations of E i j  in- 
crease a s  ?-- 0, owing to the temperature dependence 
of the contribution made to by individual d e f e c k 5  
We shall assume dependence of E,, on 9 to be quadratic 
(a linear dependence of some components of E,, on q ob- 
tains in the case of structural transitions only for in- 
trinsic ferroelastics, which will be considered sepa- 
rately). Leaving out the tensor indices, we have 

e=eo+aq2. (3.1) 

The contribution of interest to us, that of the defect to 
the permittivity of the crystal, is given by 

1 
a j qz  (r) dr. 

Using the corresponding formulas for the distribution 
q(r) in the case of point defects in the state S (Refs. 7, 
27, 28), we get 

Ae ( r )  =eaN ( r )  , (3.2) 

where 

ed=2nad2 ( q , - q , ) 2 r ,  (3.3) 
I q"(P 

ed= - n ( n ~ ) " d ~ ( ~ . . - - ~ , . ) ' l  2 in: 16n 1 . (3.4) 

ed=na# ( P , ~ - P , = )  %, (3.5) 
ed=a(~.y0-~.y,)z(C,-C2rc-~),  c,, c ? = c o ~ s ~ ,  (3.6) 

respectively, for systems in the absence of long-range 
forces, uniaxial ferroelectrics, triaxial ferroelectrics, 
and ferroelastics. 

It is known that the intensity of the scattered light is 

I-V2( 1 AE ( q )  lz), (3.7) 

where V is the volume of the system, q is the differ- 
ence between the wave vectors of the incident and scat- 
tered light, the symbol (. . .) denotes statistical averag- 
ing, and &(q) is the spatial Fourier component of the 
function AE(r) =&(r)  - (E). Taking (3.2) into account we 
obtain 

For  frozen-in randomly displaced defectsz1 we have 

and 

I-edZVN. 

As seen from (3.10), the temperature dependence of I 
is determined by the function E,(T). Consequently, for 
point defects in all  the crystals, with the exception of 
uniaxial ferroelectrics and intrinsic ferroelastics, we 
have 

I-r."- I Z I - ~ " .  (3.11) 

For  uniaxial ferroelectrics 
I- lns(rc /d)  -In2 1 T 1 ,  (3.12) 

and for intrinsic ferroelastics 
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We can obtain similarly formulas for linear and pla- 
nar defects. We recall that a l l  the presented formulas 
a re  valid a t  N r :  << 1. It is natural to expect that, start- 
ing with N r : =  1, the growth of the intensity will become 
weaker. In the case of intrinsic ferroelastics, the con- 
tribution of the defects to the intensity of the light scat- 
tering due to fluctuations of those E,, components which 
depend linearly on q, is given a s  before by formula 
(3. lo), where E, i s  given by 

Calculating if for this case, we find that 

The intensity of the scattering of x rays and neutrons 
by defects can be calculated in analogy with the inten- 
sity of the scattering of the light waves, assuming that 
A& - Aq. The corresponding expressions for the scat- 
tering intensity can be easily obtained by using formu- 
las (3.10), (3.14), and the expressions for T.') 

The scattering intensity of spectral distribution given 
by formulas (3.11)-(3.13) takes the form of a central 
peak whose width is determined by the reciprocal time 
of diffusion of the considered defects. For  most phase 
transitions in solids, the diffusion time can be regarded 
a s  practically infinite, therefore the width of the central 
peak in these cases is essentially zero. It has been 
shown" that because of thermal jumps of polarization- 
reversing defects between states with opposite signs of 
q0 the spectrum of the scattered light acquires a central 
peak with a width determined by the characteristic time 
of the thermal jumps. We note that the total intensity 
of this scattering does not exceed the total intensity of 
the scattering by thermal fluctuations of q, which is 
proportional to T2 a t  7 > 0 (Ref. 38), and is consequent- 
ly quite small for low-temperature phase transitions. 
At the same time, the intensity of the scattering of light 
by defects, given by formulas (3.11)-(3.13), is deter- 
mined not by the temperature of the transition but only 
by the concentration of the defects and by the proximity 
of the system to the phase-transition point. 

It follows from (3.2)-(3.6) that the contribution of the 
defects to the refractive index of the crystal increases 
when the phase-transition point is approached from 
either phase. However, owing to the temperature de- 
pendence of the refractive index of the matrix, the total 
refractive index of the crystal remains a monotonic 
function of the temperature. A reduction of the results 
of several  experiment^^^*^^ has shown that the tempera- 
ture dependence of the refractive index of the crystal 
can be represented a s  a sum of two curves, one corre- 
sponding to ~(q,) ,  and the other having a maximum a t  
the phase-transition point. This maximum can in 
principle be connected with either the thermal fluctua- 
tions of q or  with the presence of defects. In the latter 
case, using the corresponding experimental data and 
formulas (3.11)-(3.13), we can determine directly the 
intensities of the light scattering by the defects. 

The maximum intensity of the scattering by defects 
I,,,, can be estimated by putting N r z =  1 in formula 
(3.10). We then obtain for the ratio of the intensity of 
the scattering by defects to the intensity I, of the non- 
critical scattering by thermal fluctuations of the density 
p (Ref. 6) 

where X is the modulus of elasticity. If we assume 

aqo2/p(delap)=10-', d40-'-10-'cm, N=lO"cm-', 

?+IOU-10i2erg. ~ m . ~ ,  T= (10-103)K, 

then 
I ,JI , -~O-"IO~.  (3.17) 

Thus, the presence of defects in the crystal can in 
principle be the cause of the large increase of the scat- 
tering intensity of light near the phase-transition point. 
It is possible that this is precisely the reason for the 
scattering anomaly observed in SrTi03.41*31 

4. CONTRIBUTION OF DEFECTS TO THE ANOMALY 
OF THE KINETIC COEFFICIENTS 

In the calculation of the contribution of defects to the 
anomaly of the kinetic coefficients, the corresponding 
equations of motion must take into account the spatial 
inhomogeneity introduced by the defects in q(r). We 
do so using a s  example the analysis of the anomaly of 
sound absorption and of the friction coefficient, which 
enters in the equation of motion for q (we shall arbi- 
trarily speak henceforth of the attentuation constant of 
the soft mode). 

a )  Sound abso@tion coefficient. We consider the 
simplest case of a longitudinal sound wave in an elastic 
anisotropic medium. The equation that describes the 
propagation of such a wave, with allowance for the en- 
suing changes of q(r, t), is of the form 

where p =u, is the longitudinal deformation, q' is the 
change of the order parameter in the sound wave, q,(r) 
is i ts  equilibrium value (defined by the formulas of Sec. 
1 for an isolated defect), A is the elastic modulus that 
determines the velocity of the longitudinal wave, and r 
is the coefficient in the relation 

a,=Au,+rq2. (4.2) 

Changing over in (4.1) to the Fourier components u(k, w) 
and q' (k, w ), we have 

pa2u(q, a )  =A& (q,  a) + 2 r q Z E  q.(q-k) q' (k, a), (4.3) 
k 

where q and w a r e  the wave vector and frequency of the 
sound wave. In the region of low (acoustic) frequencies, 
the equation of motion for qr(r ,  t) can be written in the 
form 

Retaining, just a s  in the calculation of the thermody- 
namic quantities, only the terms of the lowest order in 
the ratio q0/77* and changing over to Fourier compo- 
nents, we get 
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where the second term takes into account only one 
Fourier component of the function u(r,  t). From (4.5) 
we get qf(k, w). Substituting (4.5) in (4.3), we obtain an 
expression for the contribution of the defects to the 
complex elastic modulus 

The imaginary part of Kd(q = 0, w), which determines the 
sound absorption coefficient, is equal to (V= 1) 

where SZ, = cpU(q,)/y is the relaxation frequency of the 
order parameter, and AA=r2/2B is the 9umpt9 of the 
modulus A in a phase transition in the pure substance. 

It is of interest to compare expression (4.7) with the 
formulas for the contribution of the thermal fluctuations 
to the quantity" ImA(q = 0, w) 

For  the ratio of these two contributions we have 

At the limit of applicability of our analysis (Nr; 1) a t  
Nd3= this ratio is (T*/T,)(qo/q*)2, i.e., for suffi- 
ciently strong defects their contribution to the anomaly 
of the sound absorption near the phase-transition point 
can become predominant. We note that all  the formulas 
written above a r e  suitable both in the region of applica- 
bility of the Landau theory and in the critical region. 
In the latter case ImAd(q = 0, w) - I r 1 2(r-1)-5Yw . Usually2l 
2(y - 1) - 5v=2,7. We can carry out a similar analysis 
for systems with long-range action. For  uniaxial fer- 
roelectrics we then get 

and for intrinsic ferroelastics we get 

b) Damping of soft mode. As already noted in the 
introduction, the presence of defects in the medium 
leads to the appearance of local inhomogeneities of the 
temperature, and consequently to dissipation even in 
the case of spatially homogeneous changes of q(t). We 
take this circumstance into account in the equations of 
motion for q and T. In the same approximation a s  in 
the preceding subsection, confining ourselves a s  well 
for simplicity to the region of applicability of the Lan- 
dau theory, we have 

m$+yi1+p'' ( q , )  ~' -DVzq'+AoT.- lq .  (r) Tf=O, (4.12) 
TS=C,T'-A,~. (r) i r = % v Z ~ ,  (4.13) 

where c,=-T(a2cp/aT2), is the specific heat a t  r >  0 far 
from the transition point, and x is the thermal-conduc- 
tivity coefficient. Changing over in the foregoing equa- 
tions to the Fourier components q r  and T' and consider- 
ing only one component ql(q, w), we get 

Expressing Tt(k, w )  of (4.15) in terms of ql(k, w )  and 
substituting in (4.14), we obtain for the renormalized 
coefficient 7 a t  w = 0 and q = 0 

For  the contribution of the defects to J we thus obtain 

We compare, a s  before, y, with the contribution of the 
thermal  fluctuation^.^^ Confining ourselves only to the 
f i rs t  term in formula (3) of Ref. 43, we get 

Ac A B '  q 'T' d - =16n'-e-.- 
T@ c,, AA idi (f ) TI_ Nr" 

where SZ* =A,T*/yT, and SZ, = x/d2c,. At typical values 
of the parameters, this ratio turns out to be approxi- 
mately the same a s  (4.9) in the preceding subsection. 
Thus, the increase of the damping constant of the soft 
mode a s  r - 0, observed in many  experiment^,^^ can be 
due both to thermal fluctuations and to defects. 

The considered mechanism of the damping of the soft 
mode is by far  not the only one possible. Thus, for 
example, oscillations of q lead to oscillations of the 
crystal deformations. The damping of the deformation 
oscillations cause in turn energy dissipation, i.e., they 
cause damping of the oscillations of q. The linear di- 
mensions of the region involved in the oscillations in- 
crease a s  the phase transiiion point is approached, and 
this leads to a corresponding increase of the damping 
coefficient of the soft mode. 

5. TEMPERATURE EVOLUTION OF THE STRUCTURE 
OF THE DEFECT CORE 

Everywhere above the value of qo-of the order pa- 
rameter a t  the defect-was assumed given. At the 
same time, this quantity itself can depend on the tem- 
perature. We now take this dependence into account. 
To this end we regard the free energy of a substance 
with defects, which is given by (1.1), a s  a function of q, 
and obtain the equilibrium value q,, from the condition 
that ~ ( q , )  be a minimum. We must f i rs t  specify the 
form of the function f(qo), which characterizes the ener- 
gy of the defect core. The form of this function is de- 
termined from symmetry considerations. 

We represent f(qo) in the form of a ser ies  in powers 
of go, i.e., in the form of an expansion about the point 
qo = 0, which usually corresponds to the most symmet- 
rical state of the defect (an example of such a most 
symmetrical state is shown in Fig. lc). The function 
f(qo) must be symmetrical with respect to the transfor- 
mations that enter in the symmetry group of the crystal 
with the defect (in the symmetrical phase). If this 
group contains transformations that alter the sign of q, 
then the expansion f(qo) contains only even powers of qo: 
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In the opposite case the expansion will contain such 
terms with odd powers of qo, and the sign of the coeffi- 
cients a t  these terms can differ for defects of different 
localization: 

We explain the following using a s  an example the struc- 
tural transition in a crystal whose symmetry elements 
that reverse the sign of q a r e  screw axes. Obviously, 
these symmetry elements cannot be conserved in the 
presence of any point defects in an arbitrary site of the 
crystal, i.e., the symmetry of the crystal+ defect sys- 
tem admits of the onset of a nonzero order parameter. 
In our language this means that qo#O. We now subject 
the crystal +defect system to a screw rotation that 
enters in the symmetry group of the defect-free crystal. 
The defect then turns out to be in a different site, and 
the sign of qO, and consequently the sign of the coeffi- 
cients of the odd powers of qO, is changed. In the case 
of a multicomponent order parameter there exists, of 
course, a great variety of types of the function f(qo). 

We consider f i rs t  the temperature dependence of qo 
in the case of defects corresponding to expression (5.2). 
Minimizing @(qo) and taking (1.11) and (5.2) into account 
we get 

where 5 za2d2/3D is a parameter that characterizes the 
"rigidity" of the defect core. For  very rigid defects 
(5 - a) the value of qoe is equal to rJ a!, 1 /a!, and is in- 
dependent of T.  Near T,, the expression for qOe can be 
written in the form 

where qo0=()al~/or2)5/(1 + 5 )  is the value of qoe a t  the 
phase-transition point. As follows from (5.4), in the 
symmetrical phase the absolute value of qoe increases 
a s  T-  0 in proportion to const - T". This dependence of 
qoe should, in particular, be observed in resonance ex- 
periments. In the nonsymmetrical phase, the tempera- 
ture dependence of qoe is determined mainly by the be- 
havior of the last term in formula (5.4) and i s  different 
for defects of different polarization. As to the calcu- 
lation of the contribution of the defect to the above- 
considered anomalies of the properties of the substance 
near T,, allowance for the temperature dependence of 
qoe does not change qualitatively the results and leads 
in some cases only to a numerical renormalization of 
the coefficients. 

For  the defect to which expression (5.1) corresponds, 
the values of qoe is determined from the equation 

where ha! = 3D/d2. At a! +Aa > 0 (we assume the coeffi- 
cient to be always positive) the equilibrium value of qo 
is zero in the symmetrical phase, while in the nonsym- 
metrical phase 

where, a s  before, .$ =a!/Aa! = a!d2/3D is the parameter 
of the "rigidity" of the defect. Such defects contribute 
to the anomaly only a t  T < T,. For  thermodynamic 
quantities the character of these anomalies can be de- 
termined from formulas (2.2)-(2.4) by putting in them 
qo = 0. At a! + Aa! < 0 the value of qoe is finite a t  the 
phase-transition point and is equal to 

The temperature dependence of qw near T, is given a s  
before by formulas (5.4) with 5 =(a! + 3j3q&)d2/30. 

As seen from (5.5), a t  the temperature T = T,, de- 
termined from the condition 

there occurs a unique 'phase transitionw in the defect, 
accompanied by the appearance, around the defect, of 
distortions corresponding to the order parameter. The 
"phase transition" in the defect was considered in a 
number of  paper^'^-'^*'^ using a s  concrete examples 
various systems, and was observed also experimental- 
1y.45946 Within the framework of our analysis, this 
transition is of second order, i.e., qoe is a continuous 
function of the temperature, q, - (T,,- T)"~. Of 
course, a phase transition of f i rs t  order is also possi- 
ble in the defect, when the onset of q, takes place 
jumpwise. The coefficient fl in formula (5.1) is then 
negative, and terms of sixth order must be taken into 
account in the expansion of the function f(qo). 

Although the quantity T,, can differ substantially from 
T,, the "phase transition9' in the defect is connected 
with the phase transition in the matrix, namely, the 
temperature dependence of the coefficient preceding the 
f i rs t  power of q in (5.5) is determined by the tempera- 
ture dependence of the coefficient A. Naturally, the 
"phase transition" in the defect could in principle be 
connected with the temperature dependences of the co- 
efficients a! and p irrespective of the temperature de- 
pendence of the parameters of the matrix. 

We emphasize that the term "phase transition" can be 
used to describe the restructuring of the defects only 
figuratively. Actually, this transition affects only a 
limited number of atoms, and i t  is well known that in 
a bounded system the anomalies connected with the 
phase transition become smoothed out. This smooth- 
ing can be taken into account in analogy with the pro- 
cedure used, for example, in Refs. 47 and 48. In the 
calculation of the contribution of the defects to the free 
energy of the system we now use, instead of minimiza- 
tion with respect to qo, the exact formula 

For  the temperature width of the smoothing region we 
then obtain 

It follows from this expression that the quantity AT/T,, 
can be less than unity actually only in the case when the 
radius d, of the defect core, greatly exceeds the inter- 
atomic distance. Thus, i t  is hardly possible to discern 
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the restructuring of the core of the defect by means of 
the thermodynamic anomalies that accompany this re- 
structuring. We note that for defects in a uniaxial 
ferroelectric o r  in an intrinsic ferroelastic, the tem- 
perature interval over which the smoothing takes place 
may turn out to be much smaller, since the coefficient 
of q, in (5.5) has, far  from T,, a stronger temperature 
dependence of the type C, + Cz7. 

In the nonsymmetrical phase, a s  seen from (1.11), 
states of the defect with different signs of q, differ in 
energy. F a r  enough from the phase-transition point, 
a t  

one of the minima of @(q,) vanishes and all the defects 
acquire the same sign of q,. Naturally, the decrease 
of the number of defects in the metastable state can 
occur also, without reaching the point where stability 
of this state is lost, on account of thermal and quantum- 
mechanical fluctuations. Lowering the temperature 
below the point of stability loss of the metastable state 
can serve a s  a method for obtaining a system of fully 
polarized defects. 

CONCLUDING REMARKS 

The theory developed above is phenomenological and 
in many respects simplified. Its purpose is to describe 
a s  many experiments a s  possible on the basis of ex- 
pressions that contain only several  microscopic" 
constants that characterize the core of the defect-its 
dimension d, its "strength" q,, and in some cases the 
rigidity 5 .  To compare the theory with experiment it 
is desirable to carry out a comprehensive se t  of vari- 
ous measuremets on samples with controlled concen- 
trations of defects of a definite type, and to establish 
correlations, for example, between the temperature 
dependence of the specific heat c and the intensity of 
the scattering of light in these samples. To our knowl- 
edge, no such comprehensive investigations have been 
made so far. It is therefore impossible for the time 
being to determine the constants of the theory, and to 
compare i t  quantitatively with experiment. At the same 
time, a s  already illustrated above with a number of 
examples, the qualitative character of the anomalies 
introduced by small defect concentrations is apparently 
correctly described by the theory. Of course, in a de- 
tailed comparison with experiment i t  may be necessary 
to refine the theory further, for example, by taking into 
account the anisotropy of the substance, the fact that the 
order parameter has many components, etc., aside 
from the interaction of the defects. 

In conclusion, we take the opportunity to thank 
J. Fousek and P. V. Pisarev for acquainting us with 
their experimental data, S. A. Minyukov for checking 
individual results, and V. L. Ginzburg and D. E. 
~hmel 'nitskii  for useful discussions. 

APPENDIX 

MODELS OF DEFECTS 

We explain, using several examples, the physical 
meaning of the expressions (5.1) and (5.2) for the ener- 

gy of the core. Consider a substitutional impurity 
whose interaction with the matrix is due to one exter- 
nal electron. The total free energy of the system, in 
the adiabatic approximation, is 

where fi is the operator of the interaction of the exter- 
nal electron with the lattice, I? is the Hamiltonian of 
the isolated ion, and F(q) 5 q(q) - hq + D ( ~ q ) ~ / 2 .  The 
usual procedure of determining the state of the defect 
consists in solving the system of equations for +(r) and 
q(r), which a re  obtained by varying expression (A.l) 
with respect to these functions." However, for a deep 
impurity center, for which the dimension of the elec- 
tron cloud is much smaller than r,, a different approach 
is preferable, close to the theory of the crystal field. 
The operator 6' describes in this case the interaction of 
the defect only with the matrix atoms that a r e  closest 
to it, and thus depends on the quantity q,: 

17 (r) =@o(r)+qoW,(r)+qo'~~(r) + . . . . (A.2) 

The operators $"(r) transform in accordance with 
the irreducible representations of the symmetry group 
of the defect; this group consists of crystal symmetry 
elements that do not contain translations. Determining 
by perturbation theory the contribution made to rh by the 
first  two terms in (A.l), we get 

where 

in which $,(r) a r e  the wave functions of the states of 
the "unperturbed" defect. The coefficient go differs 
from zero in the case when qO, and consequently also 
W,(r), transforms in accordance with the unitary repre- 
sentation of the symmetry group of the defect. Ex- 
pression (A.2) contains in this case arbitrary powers of 
q, and corresponds to formula'(5.2). This situation is 
realized, for example, in a crystal having a s  i t  sym- 
metry elements only screw axes. When q, transforms 
in accordance with a nonunitary representation of the 
symmetry group of the defect, expression (A.2) con- 
tains only even powers of q, and corresponds to formu- 
la (5.2). We emphasize that the coefficient of qt in 
(A.3) can have both signs, inasmuch a s  g, > 0 always. 
We can analogously take into account the dependence of 
$(r) in (A.l) on (aq/az),, etc. 

We took into account above only the distortion of the 
electron cloud of the impurity. It is natural to expect, 
however, that a more important role is played by the 
displacement of the impurity ion. In this case, the core 
should be taken to be the impurity ion with i t s  nearest 
surrounding-the impurity  quasim molecule.^ The latter 
is conveniently described by a se t  of normal coordinates 
q, reckoned from that imagined configuration of the 
quasimolecule in which the quasimolecule in the sym- 
metrical phase does not introduce any distortions cor- 
responding to q. The free energy of the crystal with 
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the defect tu rns  out h e r e  to depend on q, qo, and q( r )  
(Ref. 6). In intr insic  fe r roe lec t r ics ,  where  q = P i ,  the 
quantity q can be  identified with the dipole moment  of 
the quasimolecule.7 F o r  fe r roe lec t r ic  s t r u c t u r a l  phase 
transitions, q ,  can have the meaning of l inear  combina- 
tions of displacements  of definite ions of the  quasimole- 
cules. In the genera l  case, the physical meaning of 
the  quantities q,, which charac te r ize  the state of the 
c o r e  of the defect, can vary  greatly. Thus, f o r  f e r r o -  
magnets, where  7 E M ,  the quantity q can be  identified 
with the magnetic dipole moment  of the c o r e  defect.  In 
superconductors, the role of q is played by the magnet- 
i c  moment of the impurity atom,14 etc. 

One can indicate also c a s e s  when the c o r e  of the 
defect has  a macroscopic meaning. If the density in the 
vicinity of the impurity is different than at la rge  d i s -  
tances f r o m  the impurity atom, then the coefficients A 
and B of (1.5) a l s o  have different values near  the i m -  
purity. When the dimension of the region with the 
smal les t  density is smal l ,  the quantity q hardly changes 
inside this region, and th i s  region can b e  regarded as 
the core of the defect. The  change of the  density can  
occur ,  in part icular ,  because of e lectrostr ic t ion n e a r  
the charged defect. 

For a number of defects,  the dis tor t ions correspond- 
ing t o  q are quite extended also f a r  f r o m  the phase- 
t ransi t ion point. Naturally, the influence of such  de-  
fects  cannot be  taken into account in the boundary con- 
ditions and, s t r i c t ly  speaking, a m o r e  detailed analy- 
sis is necessary .12 .49s50  

"his circumstance became clear to us  in the course of a 
discussion with S. A. Minyukov. 

2,011 the basis of the expression obtained for systems without 
long-range forces, the experimental data were discussed8 
for an intrinsic ferroelastic transition. For the latter, 
however. it i s  necessary to use formula (3.15). 
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Mechanism of electron scattering in molybdenum 
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The rf size effect was used to study the temperature dependence of the collision frequency C(T) of 
electrons and holes in the central sections of various sheets of the Fermi surface of molybdenum. It was 
found that C(T) = ap at T S 9 K  and the value of a was independent of the orbit positions on the 
octahedral parts of the electron and hole surfaces, and also independent of the purity and thickness of the 
samples. In the case of small groups (ellipsoids) the range of the quadratic dependence was shifted toward 
lower temperatures (T S5K). Throughout the investigated temperature range (1.2-8°K) the 
dependence ?(T) for the ellipsoids was well described by a sum of two terms F(T) = ap + p p .  The 
current concepts were used to calculate the frequency of normal electronelectron collisions in various 
electron groups, which fitted well the experimental results. An analysis of the data obtained led to the 
conclusion that the quadratic term in C(T) of molybdenum was due to the electronelectron scattering. 

PACS numbers: 72.15.Qm 

Investigations of the temperature dependence of the surface impedance of molybdenum samples in the fre- 
collision frequency of certain groups of carriers S(T) quency range 3-8 MHz at temperatures 1.2-10°K. The 
on different sheets of the Fermi surface of molybdenum methods used were described in Refs. 1 and 5. 
and tungsten have been carried out using the rf size ef- 
fect method and they have shown that 5 rises quadrati- 
cally with temperature in the liquid helium range.' This 
quadratic law i s  obtained also in studies of the tempera- 
ture dependences of the electrical resistivity p and 
thermal resistivity wT of these metals (for a biblio- 
graphy see Refs. 2 and 3) and it i s  attributed to the 
electron-electron scattering. The only argument in 
support of the electron-electron collisions i s  the quad- 
ratic rise of 0 and wT with temperature. Usually the 
bulk of electron-electron collisions in transition metals 
i s  attributed to the scattering of fast s by heavy d con- 
duction e l e~ t rons .~  However, an analysis of the electron 
structure of molybdenum and tungsten shows that, be- 
cause of hybridization of the wave functions, the carrier 
velocities on different sheets of the Fermi surface of 
these metals differ only ~lightly' .~ and, therefore, there 
i s  no justification for the use of the s -d scattering the- 
ory. This is  the main reason why the interpretation of 
the quadratic law exhibited by molybdenum and tungsten 
as  manifestation of the electron-electron interaction i s  
questioned in Ref. 1. A further study of the tempera- 
ture dependence of P(T) for molybdenum was carried 
out in order to obtain more information on this quad- 
ratic dependence. The results, as shown below, pro- 
vided an experimental proof that the electron-electron 
collisions are responsible for the quadratic rise of 5(T). 

EXPERIMENTS 

The rf size effect lines were deduced from the mag- 
netic-field dependences of the first (a~/aH)  and second 
(a2R/aH2) derivatives of the resistive component of the 

Plane-parallel single-crystal samples of molybdenum 
were disks =6 mm in diameter and with thicknesses d in 
the range from 0.5 to 2 mm; they were cut by spark 
machining from ingots whose resistivity ratios were 
p(293"K)/o(O"K)=2x104, 5x104, and 10x104. Next a 
layer about 100 p thick, which was cold-worked in the 
process of cutting, was removed by grinding with sili- 
con carbide powder of the M-7 grade and subsequent 
etching in a chemical polishing mixture .' The direction 
of the normal n to the surface of the samples was found 
by x-ray diffraction to within *0.5" and it coincided with 
the (100) and (110) axes. 

The temperature-dependent part of the collision fre- 
quency S(T) was reduced from the temperature depen- 
dence of the amplitude of rf size effect linesA(T), which 
was described in the S>bl range by the fairly simple ex- 
pressionAoc exp(-aS/D) (Ref. 5); here, D is the cyclo- 
tron frequency and 5=I,+Se,(~)+S,,(T) i s  the sum of the 
collision frequencies with impurities and defects 5, 
with electrons ii,,(~), and with phonons J,,(T) averaged 
over a number of points on a selected extremal section 
of the Fermi surface.' 

The Fermi surface of molybdenum i s  well known and 
consists of an electron "jack," a hole octahedron, six 
hole ellipsoids, and six electron lenses.'.' We investi- 
gated the temperature dependences of the electron col- 
lisions on various orbits passing along the hole octahed- 
ron, the octahedral "waist" of the jack, and ellipsoids. 
The size effect lines were identified and the experimen- 
tal results were analyzed as described in Refs. 1, 6, 
and 7. 
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