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The conductivity of a quasi-one-dimensional system in a Peierls-Frolich state is considered at relatively 
high temperatures, amounting to 50-300 K for real system. It is shown that the interaction of the 
Frolich mode with acoustic-branch phonons should determine the damping of the Frolich mode for the 
frequencies of the far-infrared band. In the microwave region, the frequency-independent damping is 
produced by umklapp and by interaction between chains with participation of thermal phonons. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION points of three-dimensional phase transitions. The con- 

One of the pressing topics of physics of quasi-one-di- dition T>>To determines also whether a classical de- 

mensional systems has been in recent years the inves- scription of the CDW is admissible. This must be borne 

tigation of effects connected with the existence of charge- in mind in particular when comparing the experimental 

density waves (CDW). A detailed investigation of these data with theoretical results on the pinning of one-di- 

effects was carried out in KCP (Ref. 1) and in TTF- mensional CDW, obtained within the framework of clas- 

TCNQ.' The existence of CDW having a period incom- sical physics. 

mensurate with the period of the main structure mani- This paper deals with effects due to the interaction of 
fests itself, besides in the structural data, also in an CDW with thermal phonons in quasi-one-dimensional 
unusually high static permittivity and in a specific fre- structures. Account will also be taken of the interac- 
quency dependence of the optical conductivity in the far  tions of incommensurate CDW with the main structure 
infrared (the so-called FrGhlich conductivitys). The and of the interaction between the chains. 
totality of these effects is due to the existence of an op- 
tically active phase mode of the CDW and to the approxi- 2. INTERACTION OF OPTICALLY ACTIVE CDW 
mate translational invariance of the ~ y s t e m . ~  MODE WITH THERMAL PHONONS 

The final low-frequency limit of the permittivity is 
determined by the pinning of the CDW phase by distur- 
bances of the translational invariance of the host struc- 
ture-by interactionwiththe impurities and by umklapp 
p r o c e s ~ e s . ~  This limit is reached for the investigated - 
substances in the microwave band. At higher frequencies 
the permittivity should be determined by the interaction 
between the phase mode of the CDW and various excita- 
tions of the system. Its damping due to interactions with 
the excitations of the CDW proper (phase and amplitude) 
and with the thermaFy activated electrons was consider- 
ed by Dzyaloshinskii and the author.= The interaction 
with the electrons turns out to be insignificant in the en- 
tire region of existence of the CDW. The anharmonici- 
ties of the CDW proper are significant in the low-temper- 
ature region at finite frequencies, The corresponding 
damping decreases more rapidly than the frequency it- 
self, and thus cannot be responsible for the finite value 
of the static conductivity. 

At higher temperatures (the scale is a temperature To 
of the order of the amplitude oscillations of the CDW) 
the proper anharmonicities should give way to interac- 
tion with excitations of higher frequency-the normal 
phonons. The temperatures To for the investigated sub- 
stances lie somewhat lower than the Debye temperatures - 
w and amount to S 100 K, which coincides with the tem- 
peratures at which three-dimensional effects manifest 
themselves. Therefore an investigation of the region 
T >  To in quasi-one-dimensional systems is of greatest 
importance in the analysis of the regions of the specifi- 
cally one-dimensional behavior in the vicinities of the 

1. The anomalous electric properties in a system with 
CDW in the absence of pinning are  connected with the 
existence of an optically active low-frequency mode.4 
The main effect of its interaction with the thermal phon- 
ons stems from the triple anharmonicities that are de- 
termined mainly by the interaction of the phonons via 
the electron subsystem. The result of the interaction 
is determined by the polarization insets shown in the 
diagram of Fig. 1 for the permittivity. The solid lines 
in this figure correspond to electrons of the ground 
state, dashed ones to thermal'phonons, and the dash-dot 
line is the line of the optically active mode and carries 
the low frequency of the external electric field. 

A physically realistic picture of the phonomena must 
account for the interaction of the CDW and of the phonons 
with the main structure of the chain, and for the interac- 
tions between the chains. It will be more convenient for 
this purpose to consider the system in terms of a two- 
fluid picture: the optically active mode corresponds to 
slow changes of the CDW phase ~ ( x ,  t )  (Ref. 4); the 
shorter-wavelength thermal modes contain an explicit 
local dependence on x(X, t) in the expressions for their 
normal coordinates in terms of the atomic displacements 
d(X, t); this dependence leads to nonlinear effects that 
are exactly equivalent to the anharmonicities of Fig. 1. 

2. We consider now a one-dimensional Peierls dielec- 

FIG. 1. 
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tric at temperatures comparable with the Debye ener- 
gy, but small compared with the gap 2A in the electron 
spectrum. The displacements of the unit cells of the 
lattice relative to the main structure can be represented 
in two forms: 

d ( x ,  t )  = R e { &  exp (i2ppx) [ e x p  { i x ( z ,  t ) ) + Q  ( x ,  t )  I}, ( la) 

d ( x ,  t )  =Re{do exp { i [ 2 p F x f  X ( X ,  t )  I} [l+cp(x,  t )  I}. (lb) 

Here do is the equilibrium deformation in a Peierls di- 
electric, the phase ~ ( x ,  t) characterizes the large-scale 
distortions of the super-structure (or the CDW) with 
wave vectors I q 1  <<t;l=~/v,,  and the fields or cp de- 
scribe excitations with 1q1 >>[;I. We shall henceforth 
make throughout a natural distinction between these two 
scales, so  that the redundance of the description in the 
form (la) and (lb) will not be significant. 

The characteristic scale of the quantities cp and 8 as a 
result of the thermal and quantum fluctuations can be 
estimated a t  

where ~ , = g ~ / r v ,  is  the dimensionless constant of the in- 
teraction of the electrons with the Debye phonons, and - 
w =w(2p,). In TCNQ the values A o s  0.1 is much less than 
the total interaction constant A = [h(&,/A)]-'; in KCP we 
have A, = A  = 0.4. 

It follows from (2) that at A <<&, the fluctuations of the 
lattice displacements can exceed the equilibrium dis- 
placement do. The electrons, however are acted upon 
only by phonons with momenta k in the region lk* 2p,I 
s to1. The gap in the electron spectrum is  therefore 
well defined: 

The Lagrange function of the system in the representa- 
tion (la) is Y=4P, + ql, where 

with u the phase velocity of the CDW, v = 2m2/v 
=2rv,m/m*, e the electron charge, W the external 
electric field, m/m * = ( A ~ / ~ X ~ G / A ) ~ ,  

where 5 ( k )  is  the nonrenormalized spectrum of the pho- 
nons, m is the optical mass of the electrons, and m* is  
the so-called CDW mass.4 

The quantities A, are the amplitudes of the phonon 
umklapps on the wave vector 4p, because of their inter- 
action with the superstructure. They split the spectrum 
of the Kohn anomaly (4), and in the ordered phase, when 
(eZiX) # 0, they ensure second Bragg reflections. 

We change now to the representation (lb) and write 

~ ( x ,  t )  =a(x ,  t )  +ib ( x ,  t )  , 

1 
Fr1 {a,  b; X I =  zz [ l ~ v - ~ b . l z + 1 6 q + ~ = ~ l z  

P 

The quantity i-2: *2Sq(w,/~)~, where S = aw,,/aq is the 
renormalized speed of sound a t  q= 0, reflects the asym- 
metry of the Kohn anomaly. 

Since S +  0, the terms w:,(q) cross and it is necessary 
to transform to the variables a, and &: 

The Hamiltonian (5) is  diagonalized 

The total picture of the spectrum is shown in Fig. 2 
for the doubled Brillouin zone of the superstructure. 
We obtain 

where 

The last two terms in (6) characterize the Coriolis and 
the centrifugal forces acting on the rotator (a,/3) in a 
state coherent relative to the CDW. The Coriolis forces 
should be small compared with the noncentral forces 
-(wz - w:)  that cause the rotator to rotate. To this end 
we must have 

which corresponds to an upper bound V, < s(A/&,)*~ On 
the electron drift velocity in the CDW. This condition 
is satisfied at any real current density. 

Allowance for the term splitting is meaningful only in 
those cases when the splitting exceeds thecorresponding 
phonon line widths r,. This is  indeed the case. The 
ternary and quaternary anharmonicities in the region 
of the Kohn anomaly yield for the relaxation frequen- 
cies I$'), e4 

It is obvious that T(,S), fi4 <<A,; < wJq) - wB(q). Such a 
definite conclusion concerning the behavior of the relaxa- 

where a and b are real functions, FIG. 2. 
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tion frequencies is possible only because in the region 
of the Kohn anomaly the phonon interactions via the 
electron subsystem exceed their interactions via the lat- 
tice anharmonicities. 

Calculations on the basis d the Hamiltonian (6) in the 
approximation linear in correspond exactly to the 
diagram of Fig. 1. The equations of motion for X, a, 
and l3 take the form 

uq+o.'aq=~,[~pq+2&], (7b) 
~ + 0 p ' ~ ~ = - ~ ~ [ ~ a ~ + 2 ~ i ~ ] .  ( 7 4  

The f i rs t  sum in (7a) determines the increase of the 
CDW mass due to the phonon dragging. According to the 
estimate (2), it may be not small. The second term in 
(7a) leads to resonant absorption d phase oscillations 
with frequency w = w,(q) - w O(q) 3 6. The quantity 6 can 
be roughly estimated a t  10-20 cm-l, corresponding to 
the lowest frequencies a t  which the relaxation of the low- 
frequency optical mode has been investigated.lv2 

For the permittivity we get 

Here w, is the plasma frequency, and q, is the maxi- 
mum wave vector of the phonons dragged by the CDW 
and is determined by the transverse dispersion w of 
their spectrum on account of the interaction between the 
chains (see Sec. IV below). In the case of strong aniso- 
tropy we have w << 6 and q, =p,, and a t  A <<&, there 
exists for (8) a region d linear temperature dependence, 
m * ( T ) - T , T > ~ .  

The damping ypk is calculated from the formula 

a) At w >> 6 we have w ,(q) - w ,(q) = 24, and 

where ij = w, ,(+) with such that A;; = w. We always have 
y<<w, so  that the optical conductivity a t  T>S is 

b) At w - 6 we have w,(q) - w ,(q) = 6 + 6 ~ ( / q l  - qJ2/qo, 
where qo=(wf&~(~1/2-(;1(pp~O)1'S-pF(pF~~-2'S, i.e., 
(;l<<qo<<p,,. The points iq, a r e  shown in Fig. 2 by 
dashed vertical lines. If the spectrum of the Kohn 
anomaly is described approximately by the logarithmic 
law of the weak-coupling model w:= W'% ln(q2C;a, then 
~ , , = z / 3 ~ ' ~ .  The damping is given by 

At T >  z, assuming that m *(T) >>m*(O), we get 

FIG. 3. 

The divergences in (10) and (10a) a r e  connected with the 
approximation of the one-dimensional dispersion law. 
They a r e  cut off a t  o - 6 =w. It follows from (10a) that 
in the region of the edge of the interphonon absorption 
we have w < o - 6 < 6 and y,,(w, T) > w, i.e., a transition 
is possible into a dissipative regime with a decrease 
of the optical conductivity: 

c) At w.; 6 expression (10) contributes to Rec(w). At 
w < 6 the coherent phonons do not influence any more the 
relaxation of the CDW motions. In this region i t  is nec- 
essary to take into account the interactions of the phon- 
ons with the main structure and the transitions between 
the chains. 

The general frequency dependences u'(w) = Rea(w) and 
&'(w) = Rec(w) is shown in Fig. 3 with account taken of 
the smoothing action of the transverse dispersion. It is 
assumed that 62< w$z/m *(T). 

In concluding this part  we emphasize once more that 
only region a )  takes place a t  w > 6. The rea l  values of 
these parameters a r e  most likely to be comparable. 

3. INTERACTION OF INCOMMENSURATE CDW WITH 
THE MAIN STRUCTURE OF THE STRING VIA 
THERMAL PHONONS 

1. The interaction of the superstructure and of the 
phonons with the main periodic structure of the string is 
expressed in terms of umklapp processes a t  the com- 
mensurate points ~ l / n ,  where Q is the period of the re-  
ciprocal lattice of the main structure, and I and n are 
integers. A measure of the incommensurability of the 
structure is the wave number qn =n2p, - IQ. It is pro- 
posed that the points 2p,* qn/2 lie within the limits of 
the Kohn anomaly, but the qn a r e  too large to allow stat- 
ic pinning of the CDW in the absence of phonons. This 
means7 that I q n I  > CA/'/(~, where n > 2, 

g ,  andg, a r e  the constants d electron-phonon interac- 
tion with and without conservation of the quasimomen- 
tum, and a t n = 3  and 4 we have z,=&(3pp) -c(P,). 

Under these conditions the interaction of the CDW 
with the main structure occurs with participation of 
two-phonon processes. They correspond to the Hamil- 
tonian 
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Here S,(k, w) is the correlation function (structure fac- 
tor) corresponding to the Green's function (12). 

We must use the coherent representation (lb) if the 
influence of BEu is small  compared with the term split- 
ting o,(q) - w,(q), is., 

C , . A g / u p ~ A y ~ / u ,  

whence 

~ ' E o ' W  (gN/gu)  ( e r /A)  *-'. 

This inequality is always satisfied a t  n >  4. In the case 
n =  4 this inequality is violated a t  I q /  -p, ,  i.e., outside 
the limits of the Kohn anomaly, a factor of no impor- 
tance to us. In the case n = 3 there exists a limiting 
vector q, - (p,/{dl/ ', i.e., {ol<<qm<< p p .  For phonons 
with > q, i t  i s  necessary to use the representation 
(la) and regard their interaction with the superstruc- 
ture, -A,, as a perturbation. This question will be par- 
ticularly important in Sec. 4. The case n= 2 is s i n g ~ -  
lar. The umklapp processes must be taken into account 
here from the very outset together with the normal 
ones.7 At lqnl < to1 the CDW is always commensurate 
and the Frzhlich effect vanishes. 

The total Hamiltonian (5) o r  ( l l ) ,  just as (3), can be 
diagonalized in the phonon modes a t  constant X. Now, 
however, the parameters of the diagonal Hamiltonian 
will depend explicitly on X, and not only on i ,  a s  in (5). 
Expanding in the small  deviations x = ,yo + xl, which in- 
deed ensure a finite damping of the oscillations of the 
phase X ,  a t  low frequencies. It is simpler, however, to 
regard (11) a s  a perturbation. 

2. The calculation of the homogeneous damping y ( w )  
of the CDW phase oscillations is carried out in accord 
with diagram 4a, where the wavy line denotes the 
Green's function 

K.(x, t )  =<exp { inx(x,  t ) )  Iexp ( - i n ~ ( 0 ,  0 ) ) ) .  (12) 
We leave out diagrams with overlaps, such as Figs. 4b 
and 4c. This corresponds to the condition w ~ , > > l  o r  
y7, >>I, where 7, is the relaxation time in (12), For non- 
interacting chains we have 7;' = ?rn2(u/v,,)T. 

The diagram-technique rulesa yield directly 

The calculation result does not depend on the form of 
S,(k,w) if 07,>>1, 

Formulas (13) and (14) a r e  valid if 5;' <<qn/2 < q,. The 
cases q,<<{;l and qn/2> q, a r e  considered in the Appen- 
dix. At 

(A/eP)'=G/A- (m/m')'h-lO-l, n=3, 4 

and T =3 we obtain from (14) y, = 1-10 cm-I. At T > o 
in a realistic situation we have 37, <<I. Consequently, 
the energy conservation law becomes immaterial in for- 
mula (13) and the integration with respect to q is over 
the entire band. The principal role is now plaid by the 
non-dragged phonons (la)  with I q l  > q ,. Their effect is 
considered in the second section of the Appendix. 

4. CDW DAMPING BY INTERACTIONS BETWEEN 
NEIGHBORING STRINGS 

1. As indicated in the Introduction, in the considered 
region BI different strings can be naturally regarded as 
uncorrelated. Therefore, in the coherent-mode repre- 
sentation (la) ,  the phonon-exchange Hamiltonian con- 
tains an explicity dependence on the phases of the chian 
chains: 

In view of the anisotropy of the phonon spectrum at  
w <<w we have 

At not too large values of q <  q, the condition w / Z  
<A, ,  q < qm.may be satisfied. If w /G < (A/E,)'(A~A), then 
this condition is satisfied for  all  q. In these cases a, 
and pa a r e  a s  before normal modes, and the Hamilton- 
ian (15b) can be regarded a s  a perturbation. 

~n analogy with the calculations of Sec. 3 we must 
take into account the diagonal element of the self-energy 
part z,, (k, w ) ,  shown in Fig. 5a. The vertical zigzig 
lines represent the interaction w;, between the chains. 
The off-diagonal elements Eft (k, W) which a r e  produced 
when the external lines in the inset of Fig. 5 a re  added 

FIG. 5. 
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on different levels, vanish in the absence of correlation 
between the chains. 

As a result we get 

dq dk, dk, 
r e * ( o ) = + ~ i i ( o ,  ~ ) = - Z W ' -  - 1 (2.y 

(z is the number of nearest neighbors). 

Bearing s, <<u in mind, we get 

where 

Ultimately 

n W ' m  
~ . = ( o ) = ~ z  (,) 

We see  that for  uncorrelated strings, i.e., a t  T>>Tc, 
the damping depends little on the temperature. The 
presence of the factor 7 ,  in the intermediate part of 
formula (17) can attest to the increase of the damping 
in the vicinity of T,. In this region, however, a more 
detailed investigation is needed. 

2. At not too strong an anisotropy, when w /G 
> (X~A)(A/E , )~ ,  part of the phonons with I q l  > q,, satisfy 
the condition A, < w / i ~ .  In this case the normal modes 
must be chosen primarily with allowance for the transi- 
tions between the strings (15). This means that the non- 
coherent modes asaz (la) a r e  now the normal ones. The 
Lagrangian of the system is determined by formulas (3) 
and (15a). The terms proportional toA, in (3) must be 
regarded as perturbations. They contain an explicit 
dependence on ~ ( x ,  t) and therefore lead to a finite low- 
frequency damping. 

Calculations similar to those of Item 1 of this section 
yields a result corresponding to diagram 4a with func- 
tions A, in the vertices: 

v dkdq 
r ( o ) = ,  SJ -APq-koqoq-k(l + nq)nq-a 

I~l>'ln 
(2n)' 

i m 'h 
x S , ( k . o  + a ( ,  - k) - o ( q ) ) - - d ( T )  (;7) (A..)'uq.. (18) 

where the function d(T) - 1 is defined by 

d(T)qm(Aqm)'T2 = j z ~ ; r o : n ~ ( l  + nq) .  

Iql>q", 

Comparing the results (17) and (18) we see that both 
regions I q 1 <q, and 1 q 1 >q, make contributions of the 
same order to the damping y(w) . Therefore the uncer- 
tainty of the transition region I q  1 -9, is not essential. 

In the case of weak anisotropy of the spectrum and at 

a low coupling constant of the Debye phonons, when 
UI/G >)IO, all the normal modes correspond to the repre- 
sentation ( la) .  In this case the integral in (18) con- 
verges on q = to-' and we must put 9,- to-' and A,, - A,. 
We obtain, a s  seen from (18), the largest value of y 

= y,, that is possible for the given A,,: 

r--A: ( m  'm*)"-A. (19) 
This situation can correspond to TCNQ compounds. 
Putting, according to the estimates of Rice et ~ l . , ~  
AO2 = m/m* = lo-', and A = lo3 cm-', we obtain y 

-- lo-' cm-'. 

We note that i t  follows from the quasi-onedimension- 
ality condition T,<<A (T, is the temperature of the three- 
dimensional transition) that W/Z << X2/)I0, since the lower 
bound of T, is estimated a t  Tc > ~ ( m * / m ) ' / ~  and m*/m 
= (We took into account the elastic inter- 
action between the strings. Coupling via electron tun- 
neling can also be significant.) Therefore the case (19), 
which corresponds to extremely weak dragging of the 
phonons by the CDW motion, can occur only a t  X, <<A. 

3. The result  obtained in this part must be compared 
with the effect on the direct interaction of the CDW on 
various strings. The interaction energy is given by 

%. = C v., cos ( X I  - x,) . (2 0) 
..I 

where V,, =aT:/zv,, a is a number of the order of unity, 
T, is the temperature of the three-diagonal transition. 
In the region T >  T, the chains a r e  not correlated, and 
their interaction leads to a finite damping yc of the oscil- 
lations of the CDW phase. With exception of a narrow 
region near T,, a t  T > Tc the condition rlyc << 1 will be 
satisfied everywhere. Therefore. in analogy with the 
other cases considered above, i t  suffices to take into ac- 
count the diagram of Fig. 5b for the self-energy part. 

We obtain 

1 dkdo' 
z , (o)  = ZVZ- Js, (k ,  "')st (- k, - 0') ---T 9 

n ( o )  (2x1 (21) 
z ~ 2  = Zvi ;  = aT:/zuF2, a - 1. 

j 

Substituting a t  T >> To 

with ryl= IITU/V,, we get a t  wr,<<l 

It is seen from (21') that 

Consequently, the calculation procedure is correct. 

At T = Tc we have 

but a t  T>>Tc the value of yc decreases rapidly in propor- 
tion to T-'. This dependence is characteristic of tem- 
perature-induced destruction of pinning of any type [cf. 
(A4)]. Therefore a t  room temperature the Frohlich con- 
ductivity is limited only by processes in which thermal 
phonons take part. 
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5. CONCLUSION 

1. We have considered the damping of an optically 
active Friihlich mode because of its interactions with 
thermal excitations. The mechanisms considered se t  
in, depending on the frequency, in the temperature in- 
terval To< T < ;; and become fully effective a t  T > ;. 
We recall that usually w s 100 K, and the experimentally 
investigated region is T < 300 K, which is the minimum 
splitting of the phonon terms in the presence of a super- 
structure. Actually we should have 6 - 10 -'20 cm-', 
which likewise corresponds to discrimination between 
the data obtained in the fa r  infrared1*' and the micro- 
waves bands. At w > 6 the decisive processes a r e  the 
energy transfer from the Friihlich mode to the subsys- 
tem of the high-frequency phonons dragged by the CDW 
motion (Sec. 2). In this case the damping y,, and the 
optical conductivity a r e  determined by formulas (9) 
and (9a). In the vicinity w = 6 at strong anisotropy of the 
phonon spectrum w< 6 a transition of the FrGhlich mode 
into the dissipative regime is possible, accompanied 
by a decrease of the values of o(w) and &(w) (Fig. 3). 
At w< 6 the damping of the Friihlich mode in an isolated 
chain is determined by the interaction with the main 
structure. In the commensurate case it sufficies to take 
into account the superstructure itself [y,-formula 
(A.4)]. In the case of substantial incommensurability, 
the structure and the superstructure interact with phon- 
on emission or  absorption to coplpensate for the differ- 
ence between wave vectors [Sec. 3, (13), (14), and 
(A. 7)l. 

In the region T >  Tc an important role i s  played by 
damping due to the interaction of the neighboring chains 
(Sec. IV). The damping is determined either by ex- 
change of the phonons dragged by the CDW motion [ye,, 
formula (17)], or  by the direct coupling of the CDW with 
the neighboring strings [yc, formula (211)]. 

In all cases an important role was played by the di- 
vision of the thermal excitations into two subsystems: 
phonons (lb) in the region of the Kohn anomaly with Iql 
< q, and the other phonons (la) with Iql > q,. l%e quan- 
tity q,(q,>>(;') should a s  a rule be determined by the 
transverse width w of the phonon spectrum. If the per- 
iod of the superstructure is close to twofold or three- 
fold commensurability, then the interaction with the 
main structure can also determine q,. The phonons 
(la) interact with the CDW via umklapp processes on the 
superstructure. Their contribution to the damping (18) 
coincides, apart from a factor, with the contribution 
(17) of the phonons (lb). At a specially small interac- 
tion parameter Xo of the electrons with the phonons of 
the acoustic branch, a situation is possible wherein all 
the phonons a re  of type (la). The damping is then given 
by (20). 

It is important to note that a t  T >  Tc the phonons (lb) 
a re  not directly observable in inelastic-scattering ex- 
periments. Their spectrum is smeared out to the width 
y,= 7;' of the structure factor S,(k, w). At T>>Tc we 
have y, = nTu/v,. Simple calculation shows that a t  T 
>> Tc this smearing leads to a Lorentz line profile. This re- 
sult agrees qualitatively with the temperature dependence 
of the line profile of the amplitude oscillations in KCP. lo 

I note in conclusion that discussions of the consjdered 
questions with L. P. Gor'kov, I. E. Dzyaloshinskii, and 
E. I. Rashba were most influentfal in the development of 
this research. 

APPENDIX 

1. The damping of the CDW phase oscillations were 
investigated in Sec. 3 for an interval where the incom- 
mensurability parameter q, lies in the region 5;'<<lqnl/ 
2 < q,, where q, is the dividing line between states of 
type (la) and (lb). 

At lqnl <<to the f i r s t  terms (a) in the curly brackets of 
(13) and (14) remain in force if a is regarded as a mode 
of the amplitude oscillations: 

( q )  = (u/vF) [ 8 A a + z / ~ ~ ~ 2 q t ] ' ,  I q  1 CEO-'. 

It is more natural to express the coefficient C, in (11) in 
terms of the pinning frequency w,: 

o,'=2nZC,vAYvF. 

From (14) we obtain directly 

[when account is taken of the coupling between the 
strings, we have I q n 1  > Tc/vp in @.I)]. 

The second term (B) in (13) or (13a) must be supple- 
mented with approximations of higher order in (uq,r,)-'. 
The result corresponds to direct interaction of the CDW 
with the main structure, an interaction described by the 
Hamilton ian 

We are  interested in the region of weak pinning T >>T, 
- w, v,/u, which was investigated previously7 for  the 
quantum region T<< To. At T >> To it  is merely necessary 
to modify the form of the structure factor Sn(k, w). 
According to Ref. 7, 

0 P Z  2, (k, 0,)  = - [K .  (q., 0) -Kn ( k f q . ,  a )  I.  
8n2vz 

where K(x,  t) is defined by formula (12). In the preced- 
ing paper7 the corresponding expression was derived 
as a correction to the Green's function of the phase, 
s o  that i t s  applicability was restricted to the region 
y << w. However, arguments similar to those advanced 
when the diagrams were selected in the present paper 
show that this correction can also be regarded a s  the 
self-energy part of (A.3). Consequently, the result that 
follows is valid also a t  y > w, provided that yr, << 1. 

Substituting (12) in (A.3) we get 

If uq,~, >> 1, then (A.4), just as (A.3), yields y - T, i.e., 
a - T-'. The relative value of ~,/y, can be different. 

2. If 1 qn1/2 > q,, then the resonant modes must be 
chosen in the representation (la). We must use in lieu 
of (11) 
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Accordingly, we must replace S,(k, 51) in (13) by 
Sn-,(k, a), and use w, in place of waSB(q). The w;spec- 
trum is not symmetrical about q=  0 (the point 2p,). In 
place of the resonance points *qn/2 we have the points 
-k, and q, - k,, so that 

0-,, -0, -&,. 

Outside the term repulsion region q =q, we can put 

I q 1  >>ti1, so that the transitions a re  between the a and 
B terms. In place of (14) we get at wr,-,>>l 

Formulas (14) and (A.6) give relations that agree qual- 
itatively. At a temperature T >  we must consider the - 
case WT,-,< 1, i-e., 

iiKn(n-2)'(u/uP) T. 

In accord with the discussion at the end of Sec. 3 we 
obtain in place of (A.6) 

where 

(A. 7) 

Q is the reciprocal-lattice vector. In (A.7) we must take 

into account all values of n, and the optimal is n = 3. 
We obtain the following estimate: 

yv210-'urQ~ (1-10) cm-' (A. 8) 

independently of the temperature. Activation of the in- 
tramolecular oscillations can result in an increase of 
(A.8) with increasing temperature. 
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Optical-orientation anisotropy produced in semiconductors by 
quadrupole splitting of the spin levels of the lattice nuclei 

M. I. D'yakonov, I. A. Merkulov, and V. I. Perel' 

A. E Ioffe Physicotechnical Institute, USSR Academy of Sciences 
(Submitted 14 July 1978) 
Zh. Eksp. Teor. Fiz. 76, 314-324 (January 1979) 

The onset of crystal anisotropy of the magnetic depolarization of recombination radiation under optical- 
orientation conditions is considered theoretically. The influence of the anisotropy of the nuclear field on 
the behavior of the average spin of the excited electrons is analyzed on the basis of general considerations. 
The concrete model chosen to describe this anisotropy is quadrupole splitting of the nuclear spin levels. 
Calculations for an external magnetic field much stronger than the local field produced at the nucleus by 
the neighboring nuclei agree with the experimental data in the corresponding region of magnetic-field 
values. 

PACS numbers: 71.70.Jp 

It was recently observed that the crystal anisotropy 
exerts a substantial influence on the optical orientation 
of electrons in semiconductors of the gallium-arsenide 
type.'- The shape of the plot of the magnetic depolari- 
zation of the recombination radiation (the Hanle curve) 
turned out to be strongly dependent on the orientation of 
the external magnetic field relative to the crystal axes. 
The crystal anisotropy manifests itself particularly 
strongly in the hysteresis observed by Novikov and 
~ l & s h e r ' . ~  when the exciting-light beam is directed 

along the [OOl] axis and the magnetic field is located in 
the (001) plane of the crystal. In this geometry, the 
hysteresis exists in a narrow region of angles near a 
field direction along the [110] axis. 

The anisotropy of the Hanle curve was interpreted as  
a manifestation of the quadrupole splitting of the spin 
levels of the lattice nuclei, which influences the dynam- 
ic  polarization of the nuclei by oriented electrons. It is 
known that dynamic polarization of the nuclei leads to 
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