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The quantum problem of a two-dimensional electron crystal in a magnetic f d d  is solved completely. The 
phase diagram of the system at T = 0 and at finite temperatures is cwstructed. It is found that the 
magnetic field reduces the amplitude of the zero-point vibrations of the lattice and thus increases the 
stability of the lattice. The maximal melting temperature of the lattice increases with increase of the 
magnetic field. 

PACS numben: 63.70. + h 

1. INTRODUCTION erroneous. 

Below we give a complete solution of the quantum Recently, two-dimensional electron systems (inver- 
problem of a TEL in a magnetic field. The phase dia- sion layers in semiconductor surfaces, size-quantized 
gram of the system is constructed for T =O and for finite semiconducting films, electrons on the surface of liquid 
temperatures. It is found that the magnetic field re-  helium) have been intensively studied.' In these systems 

the motion of the electrons is quantized in one direction duces the amplitude of the zero-point vibrations of the 

and free in the other two. It is especially interesting to lattice, and thus increases the stability of the TEL. The 

elucidate the properties of two-dimensional electron maximal melting temperature of the TEL increases with 
increase of the magnetic field. systems in a perpendicular magnetic field. As is well 

known,' a strong magnetic field quantizes the transverse 
motion of the electrons, so  that the energy spectrum of 
noninteracting electrons consists of discrete, infinitely 
degenerate Landau levels. The Coulomb electron-elec- 
tron interaction lifts this degeneracy and, a s  shown be- 
low, leads in the limit of a strong magnetic field to the 
formation of a two-dimensional electron lattice (TEL), 
analogous to a Wigner lattice. We emphasize that, un- 
like a Wigner lattice, which is realized a t  low surface 
electron densities n,, in a magnetic field a TEL ar ises  
for any initial electron density, a s  soon a s  the quantum 
Larmor radius A = ( c f i / e ~ ) ' ' ~  of an electron in the mag- 
netic field becomes appreciably smaller than the aver- 
age electron-electron spacing r,. 

A TEL in a magnetic field has been considered in a 
number of recent papers. The vibrational frequencies 
of a TEL in a magnetic field were first  determined by 
Chaplik3 from the classical equations of motion. A 
quantum approach to the problem was developed by 
Fukuyama,' who found that the excitation energies of the 
system a r e  proportional to the frequencies determined 
by Chaplik As can be seen from what follows, to eluci- 
date the form of the phase diagram of the system know- 
ledge of the energy spectrum is not sufficient; it is also 
necessary to find the wavefunctions, which were not 
determined by F~kuyarna .~  

The phase diagram of a TEL in a magnetic field was 
first  discussed in a paper by Lozovik and Yudson5; how- 
ever, the authors confined themselves to the case of 
absolute zero temperature and did not take into account, 
even qualitatively, the low-frequency branch of the ener- 
gy spectrum. In a paper by Chaplika an attempt was 
made to construct the phase diagram of the system with 
allowance for the true form of the spectrum of the mag- 
netized TEL. But since the mean square displacement 
of the lattice si tes was calculated without taking the re-  
sults of the solution of the quantum problem into account, 
a large part of the author's statements turn out to be 

Several cases must be distinguished. If the two-di- 
mensional electron density in the system is such that a 
two-dimensional Wigner lattice exists in zero magnetic 
field,? it remains stable in any magnetic field and the 
melting temperature increases with increase of the 
field. But if the lattice does not exist in zero magnetic 
field, it can be realized when, a t  the least, the value of 
the magnetic field is greater than that a t  which all the 
electrons a r e  in the lowest Landau level, and the aver- 
age electron-electron spacing r, >> .>. In the case r, S A, 
to all appearances the lattice does not exist. Moreover, 
i t  seems highly likely that a TEL is formed by the elec- 
trons belonging to the last of the Landau levels occupied 
a t  T =0, in the case when the average spacing between 
them is appreciably greater than the corresponding 
Larmor radius. 

2. THE QUANTUM PROBLEM OF A TEL IN A 
MAGNETIC FIELD 

Suppose that we have a two-dimensional electron sys- 
tem with average spacing r, between the electrons. We 
take the perpendicular magnetic field to be so  large that 
A << r,. It is natural to assume that in this case at T = 0 
the ground state of the system is a lattice. It will be 
shown below that the mean square displacement (u2) of 
an electron from its  lattice si te is -A2, SO that our as- 
sumption is justified. 

Let R,  be the si tes of a two-dimensional triangular 
lattice, and u, the displacement of the electrons from the 
sites. Then, omitting the constant terms, we write the 
Hamiltonian of the system in the harmonic approxima- 
tion4: 

Here the operator hi, = @, , +e~,(r,) /c ,  where A is the 
vector potential of the external magnetic field B, and the 
dynamical tensor G;: has the form 
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aE e2 In the case when a Wigner lattice exists in the absence 
- ~ K T ] ~ , ,  , i+j, of a magnetic field, the frequencies w,(k) and w,(k) ob- 

Gilab= a2 (2) viously coincide with the frequencies of the longitudinal 

] i=i* and transverse vibrations of a two-dimensional Wigner 
crystal, as determined in Refs. 3 and 7. But if there is 

where R f k =  IRi -Rk(. The operators fit, and satisfy no Wigner lattice in the absence of a magnetic field, we 
the commutation relations can still introduce the frequencies w, and w, by the form- 

- .. ha ulas (5), (7), and (8). We assume that the potential 
[l''I,=, l''Id=-i-z6i,ea~, a energy of the system has a minimum for all values of the 

fiia, , @ I  =-ihSi,Gas, 
concentration; therefore, the corresponding quadratic 

- - (3) form in the normal coordinates (4) should be positive- 
[ %., ufl I =o, definite, so  that only as a result of large zero-point vi- 

where brations might the lattice not exist. 

cw= 1-1, a-y, p=z 

0, a=B 

Unlike F u k ~ y a m a , ~  we introduce the following canonic- 
a l  transformation of the operators: 

;is= (+) {itu cos mi+;-ka sin BJ, 
k>O 

rii== (+) * x (8; cos * , + i ;  sin m i ) .  

Here k >  0 denotes the sum over half the states of the 
two-dimensions! Brillouin zone of the reciprocal lattice. 
The operators IIt and 22 a r e  Hermitian and, a s  is 
easily verified, satisfy the same commutation rules (3), 
with the replacement i -  k, j -  kt. 

The Hamiltonian (1) written in terms of the operators 
(4) is a sum of independent Hamiltonians: 

I 

Our next problem will be  to determine the energy eigen- 
values and wave functions of a Hamiltonian of the type 
(5), and we shall not write out the index k explicitly. 

The Hamiltonian (9) is a particular case of a Hamil- 
tonian quadratic in the operators of the momenta and 
coordinates. The general method of diagonalization of 
this type of Hamiltonian is based on the following proper- 
ty. Since all  t he  commutators of operators forming the 
Hamiltonian a r e  c-numbers, i t  is easy to show that the 
result of the commutation of an arbitrary linear combin- 
ation of momentum and coordinate operators with a 
quadratic Hamiltonian will again be a certain linear com- 
bination of these operators. This makes it possible. 
when solving the corresponding simple problem for the 
eigenvalues, to construct a system of lowering and 
raising operators for the given Hamiltonian. 

Choosing henceforth the Landau gauge A = (0, Bx, O), 
in our case we easily find that 

[R, &+I =ho+ci+, [R, 6+]=tro-6+, (10) 

where 

a r e  the frequencies determined by Ch3plik3 (w, is the 
cyclotron frequency). 

The operators 21 and 8 have the form 

ji-(2pho+)-'h(& cos a+po23 sin a-ipo+.i. cos a+i(o+/02)p, sina}, 
(1 1) 

b= (2@o-) -'h {-& sin a+porg cos a+ipo-.i. sin a+i (o-/a,)& cos a}. 

The commutation relations (3) show that (5) is the Here, 
Hamiltonian of a "particle" in a constant magnetic field 
and in a certain force field with tensor GOLB. Since the tg2a= - 20.0: 
operators fig and 3; a r e  Hermitian, the commutation o:+o,=-a,' ' 

rules can be satisfied when we go over to the coordinate It is easy to verify that the following commutation rela- 
representation tions a r e  fulfilled: 

,. a e 
(6) 

[ci, &+]=I, [%,%+1=1, [ci, i ]=0,  [&+, S]=O, 
&==P, Ilka=-ih- + - A,, (12) 

az. c 
and the Hamiltonian (9) can be represented in the form 

where curl  A =B (the specified external magnetic field). 
R=ho+ (ci+ci+'h) +ho- (^b+b^+'12). 

Rotating the coordinate axes through the angle 
(13) 

- - - 

GUY (k) -Grr(k) 
Obviously, therefore, the energy eigenvalues of the 

"= 2Gw(k) 
(7) Hamiltonian (9) a re  

and putting 

p:=G= cost y+GY" sinZ y+2GZ" sin y cos y, 

po~=G"sin~+G"cosZ y-2GXY sin y cos y, 

E (n,, n,) =(ni+'12)ho++ (n2+'/z)h~-, 

and the wave functions a r e  equal to 
(8) In,, n,>=(ci+)"~(b^+)"~I~). 

we bring the Hamiltonian to the form Here 10) is the ground-state wave function, which is 
easily determined from the condition 

(9 8l0)=6l0)=0. 
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It has the following form: 

1 O)= (2ln) " (af i )  " exp (wZ+fiyz+iyzy) , (16) 

where 

It can be seen clearly from (14)-(16) that, despite the 
equal-spacing character of the spectrum, the wave func- 
tions of the Hamiltonian (9) a r e  not products of wave 
functions of harmonic oscillators with frequencies w+ 
and w-, a s  was assumed implicitly in Ref. 6. 

We note also that i f  one of the frequencies w, van- 
ishes (e.g., w-  = O  when w, or w2 =O), this simply means 
that the corresponding raising operator and the Hamil- 
tonian have common eigenfunctions. In this case the 
variables in the Schrddinger equation can usually be 
separated, and its solution is most simply found direct- 
ly. 

In discussing the phase diagram of the system we 
need to know the expectation value of the square of the 
position vector of the particle in the wave functions (15). 
Expressing r2 in terms of the operators ( l l ) ,  it is 
easily found that 

where 

3. THE PHASE DIAGRAM OF THE SYSTEM AT T =O 

To construct the phase diagram one usually analyzes 
the Lindemann constant y = (u2)/r:, where u is the dis- 
placement of a particle from its equilibrium position; 
the angular brackets denote thermodynamic averaging. 
For y less than a certain critical value y,  a crystal 
lattice exists: for y > y, melting occurs. Thus, it is 
necessary to calculate (~,(u(a)~). Since the rotation 
transformation (7) leaves the quantity Z , ( X ~ ) ~  invariant, 
using (4) and (17) we find that 

h 1 t+oCz 1 t-o.' =-z NIL ( ( % ( k ) + T ) T + ( % ( k ) + - ) - ) .  d 2 w-t (18) 

where ii,,,(k) a r e  the corresponding Bose occupation 
numbers. 

The formula (18) generalizes the well known expres- 
sion for the Lindemann parameter8 to the case of non- 
zero magnetic fields. In the limit when w,- 0 ,  it takes 
the usual form.' 

For T =0, from (18) we find an expression for the 
mean square amplitude of the zero-point vibrations of 
the TEL: 

We have made use of the identity w+w- = w,w2, and have 
put El =fi2 =O. It can be seen from (19) that a magnetic 
field always reduces the amplitude of the zero-point 

FIG. 1. 

vibrations of the lattice. In the limit of a strong mag- 
netic field [wc>> w, - (e2/pr@1'z, where the frequency w, 
plays the role of the Debye frequency], from (19) we find 

In the isotropic model used by Chaplik; we have w,(k) 
=sk  for the transverse mode and ~,(k)=(cyk)"~ for the 
longitudinal mode. Here, cy = 4nezn,/p c =s2ko, where k, 
=2(m,)lf2 is the Debye wave number, chosen in such a 
way that the correct  number of degrees of freedom is 
obtained. Using these approximations we see  that the 
integral (2) converges, and 

The phase diagram of the system at T =0  is depicted 
schematically in Fig. 1; the shaded region corresponds 
to the crystalline phase. 

Thus, the amplitude of the zero-point vibrations is 
-A and decreases with increase of the magnetic field. 
Consequently, for any initial surface electron density 
there exists a magnetic field that crystallizes the elec- 
trons into a lattice. The assumption of the existence of 
a lattice in a strong magnetic field, which was postula- 
ted as  the basis of our analysis, is thereby justified. 

The erroneous conclusion reached in Ref. 6, con- 
cerning the cold melting of a TEL in a strong magnetic 
field, arose, a s  we see,  because the author calculated 
the amplitude of the zero-point vibrations from the usual 
formulas for phonons ((r2) =E/p w ,); from this he ob- 
tained (we reall  that w- = w ,w2/wc ) the result that (2) 
-w, and increases with increase of the field. 

4. FINITE TEMPERATURES 

We shall carry  out the calculations for the most in- 
teresting case of a strong magnetic field (wc>> w,) and 
not-too-high temperatures, when we may assume that 
the oscillators of the branch w +  a r e  in the ground state. 
Then, from (18) we find 

ti ( C ( U < ~ ) ~ ) =  ( ~ ( u , ~ ) ~ ) I  r -o  + - ~ " ( k ) , " " : .  N P  o - t  (21) 

In a strong field, for the branch w- we have w - 
= w ,w2/w,; therefore, for not-too-low temperatures, 
Ew-5 T, s o  that for  the average number of quanta we 
obtain fi,(k) = T/EW -. On the other hand, under the con- 
dition w, >> w, i t  is easy to find that 

t-o," 1 o o 
-s- -+2 

"-t oAo: a,) 
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Finally, we obtain 

FIG. 2. 

Thus, the mean square displacement in the lattice is 
equal to 

It can be seen from this expression that the magnetic 
field has a strong effect on the zero-point vibrations 
of the system, while the thermal corrections for T>tiw- 
do not depend on the magnetic field. 

As is well known,' in the two-dimensional case a t  
T # 0 the mean square displacement in the lattice diver- 
ges logarithmically. This corresponds to the logarith- 
mic divergence of the sum over k in (22). Thus, the 
theorem concerning the impossibility of a phase transi- 
tion in an infinite two-dimensional system remains true 
in a magnetic field. This does not prevent, however, 
the existence a t  T #O of a polycrystalline two-dimension- 
a l  lattice, a s  assumed by Chaplike In this case the ex- 
pression (22) contains In(k,~),  where L is the character- 
istic size of the crystallites and k, is the Debye wave 
number. 

Since w i  - e2 /pr i ,  in a given field a lattice exists a t  
values of the concentration and temperature such that 
the inequality 

is fulfilled. 

The form of the phase diagram at T # 0 is given qual- 
itatively in Fig. 2. We note that T,,,,,- lh increases with 
increase of the magnetic field. 
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