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It is shown that parametric excitation of electrons is possible in a quasistationary magnetic field 
H + h(t)@llH, h <H) which is homogeneous over the volume of the solenoid. The frequencies on of the 
parametric instability depend on the geometry of the vortical electric field induced by the field h(t). In the 
cylindrically symmetrical case the frequencies o, = a/n,  where a is the cyclotron frequency and 
n = 1,2,3, ... . In the one-dimensional variant of the problem, which is realized in a rectangular solenoid 
XY with X<Y, the corresponding frequencies on = 251/n, n = 1,2,3, .... The obse~ed  difference 
between the spectra of the parametric excitation of an electron in the cylindrical and one-dimensional 
problem is preserved in the quantum treatment. For electrons whose average position is shifted relative to 
the symmetry axis of the solenoid, the parametric instability develops against the background of the 
electron motion typical of cyclotron resonance in the vortical electric field averaged over the electron 
orbit. Some singularities of the classical threshold of the parametric instability are discussed for a system 
of electrons localized on the surface of liquid helium. A scheme is proposed for using a cylindrically 
symmetrical vortical electric field to excite transverse waves in a hypothetical cylindrically symmetrical 
Wigner crystal made up of surface electrons in helium. 

PACS numbers: 93.20.C~ 

A characteristic feature of a system of electrons lo- consistent calculation of the corresponding relaxation 
calized over the surface of liquid helium is the weak- times is a major problem in itself and will be carried 
ness of its interaction with the liquid substrate. Thus, out separately. 
the electron mobility p determined experimentally by a 
number of workers1 in the region T =  0.5 K and a t  clamp- 
ing fields E ,  = 20-50 V/cm is of the order of p- lo7 
cm2/v-sec, which is larger by two or  three orders of 
magnitude than the record carr ier  mobilities in semi- 
conductors. Theoretical calculations of the mobility, 
which a r e  in good agreement with experiment in the 
ohmic region, lead to the conclusion that when the tem- 
perature is decreased to T -0.1 K and the clamping 
field is decreased to E ,  Sl V/cm the electron mobility 
along the helium surface can be increased by another 
two or  three orders of magnitude. An interesting pos- 
sibility of decreasing the contact between the electrodes 
and the liquid substrate was demonstrated recently by 
$del'man.2 It turned out that it is fairly easy in experi- 
ment to heat the system of surface electrons with an R F  
field and cause some of the electrons to  "evaporate" 
from the ground level to quasiclassical levels that exist 

It should be noted that parametric excitation of the 
electrons can occur spontaneously in real experiments 
on cyclotron resonance and can influence the cyclotron- 
resonance line width. This circumstance must be borne 
in mind in the interpretation of data on cyclotron reso- 
nance on surface electrons in helium and other systems 
of charged particles. In particular, it is most desirable 
to accompany the precision measurements of the cyclo- 
tron-resonance parameters with control experiments on 
the excitation of the electron system a t  the frequencies 
w,=n/n, where w and C2 a r e  the external and cyclotron 
frequencies, and n = 2,3,4, . . . . The absence of such 
resonances guarantees that a pure cyclotron situation 
exists. On the other hand, if such resonances do ap- 
pear, then when working a t  the frequency w,=Q an un- 
controllable parametric instability may become super- 
imposed on the cyclotron absorption. 

in a weak clamping field. Despite some increase in the 
average electron energy, the probability of their col- 1. CLASSICAL DESCRIPTION OF INSTABILITY 

lision with the surface-of the helium decreases sharply, 1. The question of parametric excitation of an oscil- 
thus contributing to  additional conservation of the ener- lator was investigated quite fully in the classical and 
gy accumulated by the electron system in the electro- quantum limiting cases. There a r e  many real physical 
magnetic field. systems that admit of parametric excitation. One of 

them is an electron in a magnetic field. The presence 
Taking the foregoing into account, we can conclude of parametric instability in the equations of motion of a that an electron sheet on the surface of helium is ap- magnetized electron is discussed, for example, in 

parently a convenient object for the observation of vari- Lehnert's book.3 The feasibility of resonance, in prin- 
ous subtle classical and quantum effects, kn0m.I to exist 

ciple, is implied also in the general solution of the 
in principle but easily suppressed by dissipative phen- 

quantum problem of electron motion in alternating fields 
omena in the system. Included among these effects is 

(Malkin, ~ a n ' k o ~ ) .  Nonetheless, a number of features 
parametric excitation of the electrons in a magnetic of this phenomenon for an electron in a magnetic field 
field. A description of this and some related phenomena 

have not been sufficiently well explained. It is mean- in a system of electrons over the surface of helium at  
ingful therefore to repeat the solution of the problem 

low temperatures is presented in the present paper. with attention focused on these singularities. 
Principal attention is paid to a discussion of the mech- 
anism of the effect in the nondissipative regime. A Consider a free electron in a stationary magnetic field 
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directed along the z axis. Assume that besides the main 
field the system has a weak alternating field h(t ) col- 
linear with the main field: hllH, h*rH. The cyclotron 
frequency of .the electron is then a periodic function of 
the time 

Q ( t )  = Q [ l + s ( t )  1, Q=eHlrnc, 

6 ( t )  = h ( t ) l H t l ,  h ( t )  =h,cos ot, 

e and m are the charge and mass of the free electron, 
and c is the speed of light in vacuum. 

The appearance of a periodic time dependence of the 
oscillator frequency in the oscillator problem is suffici- 
ent for parametric excitation of the oscillator. In the 
case of an electron revolving in a magnetic field, this 
statement is incorrect. A substantial additional factor 
that determines the transfer of the RF-field energy to 
the electron and must be taken into account in the equa- 
tions of motion is the vortical electric field E(r, t )  in- 
duced by h(t). A real field combination H+h(t)  can be 
obtained, for example, in the volume of a long solenoid 
of radius R under the condition cw-'>>R, where w is the 
frequency of the alternating magnetic field. In this case 
the vortical electric field E(r, t )  takes the following 
form in a Cartesian coordinate system connected with 
the z axis of the solenoid": 

Taking into account the presence of the fields h and 
E, , we write down the system of equations of motion of 
the electron in the combined field H +h(t): 

Proceeding in analogy with Ref. 5 (p. 80 of the original), 
we multiply the second equation of (3) by i and add it to 
the first 

Equation (4) explains the role of the electric field in this 
problem. In hct,  if we confine ourselves in the equa- 
tions of motion to allowance for the field h(t) alone, 
then we get in place of (4) 

z + i ~ ( t ) i = ~ ,  (5) 

whose solution is 

In this solution, the small increment h to the magnetic 
field H leads to a small perturbation i at any ratio of Q 
and w. In other words, there is no parametric reso- 
nance in the solution (5). 

Turning to Eq. (4), we rewrite it in a form convenient 
for comparison with (5a): 

According to (6), when account is taken of the vortical 
electric field, the equation of motion acquires an inte- 
gral term in which the oscillating part z in combination 

with 6 can produce upon integration a small frequency 
denominator, which is a characteristic attribute of the 
instability. The noted formal difference between (5a) 
and (6) has a simple physical meaning: The magnetic 
field by itself cannot perform work on the electron. 
Usually the change of the energy of the system under the 
influence of the alternating magnetic field is due to the 
onset of the electric field induced by the change of the 
magnetic field. A particular example of this general 
law is the difference between relations (5a) and (6). 

2. To obtain concrete results with respect to the be- 
havior of the electron in the combined field H +h(t), we 
consider first a special case, when the center of the 
electron orbit is situated exactly on the solenoid axis. 
In this case it is  convenient to transform Eq. (4) in the 
following manner3: 

It is useful to note that the transformation (7), per- 
formed in accordance with Eq. (5), leads to the equality 

Equation (7a) for 5 has an exact solution 

g=const.exp {- +J Q  ( t )  d t )  , 

which returns us to the definition (5a) of 2. Thus, al- 
lowance for the vortical field E,(Y, t )  and the difference, 
due to this field, between the functions X(t) from (7) and 
X*(t) from (?a) a re  indeed of fundamental significance 
in our problem. 

Equation (7) for [ takes the form of the standard equa- 
tion of the theory of parametric resonance in the one- 
dimensional cases and the basic frequency in it is wo 
=Q/2. This means that parametric excitation of an 
electron located exactly on the axis of the solenoid does 
indeed take place and occurs at frequencies of the alter- 
nating field h(t)  which a r e  defined by the equation w, 
=2w0/n, n = 1 , 2 , .  . ., or, interms ofQ, 

w , = ~ / n ,  n = l , 2 , 3  ,... . (8) 

3. Relations (7) and (8) obtained for an electron lo- 
cated on a solenoid axis point to the existence of param- 
etric instability in the discussed situation. However, 
most electrons located, for example, on the surface of 
liquid helium in a plane normal to the solenoid axis have 
Larmor-orbit centers that a re  noticably displaced from 
the solenoid axis. To study the dynamics of these elec- 
trons it is necessary to take into account the fact that 
the quantity z contains a large constant zo , which de- 
termines the position of the center of the Larmor orbit 
of the given electron relative to the axis of the solenoid. 
Under such conditions the use of the transformation (7), 
which is  convenient for oscillating variables, turns out 
to be ineffective. More suitable is an approximate 
method of solving the problem, based on separating the 
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rapidly oscillating part of the electron coordinate. We 
put 

z=b( t )+z . ( t ) ,  (9) 

where z,(t) i s  the running coordinate of the center of the 
electron orbit, and g is a rapidly oscillating increment, 
whose average value over the period of variation of the 
field h(t) is close to zero. Substituting (9) in (4) and 
averaging the result over the period of the oscillation of 
the field h(t ), it is easy to obtain an equation that de- 
termines the time variation of the coordinate of the cen- 
ter  of the electron orbit: 

The definition (10) shows that the drift velocity of the 
center of the orbit is proportional to the convolution 
(* . a )  of the quantity 6 with the amplitude 5 of the oscil- 
latory motion of the electrons (which in turn is propor- 
tional to 6). Thus, z,(t) varies with time only in second 
order in 6 and is quite small if 6<<1. This circum- 
stance makes it possible to split the general equation (4) 
for z into two equations for z, and 5. The first takes 
the form (10). The second, which is linear in 6, is 

where z,(t) is defined by (10). The solution of (11) con- 
sists of a homogeneous part and inhomogeneous part. 
The homogeneous part is of greater importance for the 
parametric resonance and coincides with the already 
investigated equation (7). As to the inhomogeneous so- 
lution, in the approximation linear in 6 it takes the form 

t l=b i  cos ot+cr sin o t ,  

bi=iQc,lo, ~ ~ = i 0 Q z ~ 8 ~ / 2 ( 6 3 ~ - 0 ' ) .  

This solution, which usually appears in the theory of 
cyclotron resonance, corresponds to motion of a mag- 
netized electron in a locally homogeneous alternating 
field equal to the average value of the vortical field on 
the orbit of the given electron. In the next higher or- 
ders of perturbation theory in 6,, the amplitude 5 in Eq. 
(11) acquires increments 5, that contain resonant de- 
nominators at the frequencies w, =52/n. However, the 
amplitudes of the corresponding resonances contain the 
small quantity 6," at w = w,, n = l ,2,3, . . . . 

Having the solution (12), we can return to an investi- 
gation of (10). In this equation, in the calculation of the 
mean values (6t)  and ( 5 ; ) ,  it is necessary to use for 5 
the complete expression, which includes both the homo- 
geneous and the inhomogeneous parts. In the case z, 
>>R, (R, is the U r m o r  radius of the electron), how - 
ever, i.e., for electrons far enough from the solenoid 
axis and at sufficiently short instability development 
times, the inhomogeneous part of 5 contains the large 
factor z, /RH>>l compared with the solution of the 
homogeneous equation. As a result we can confine our- 
selves to the inhomogeneous solution in the calculation 
of (6k) and (65) for such orbits. 

In the actual averaging it is necessary to take the 
slowly varying quantity z , ( t )  in (10) outside the sign of 

integration over the period of the field h(t). As a re -  
sult we get 

< & > + 1 / . t 6 ~ ) = 1 ~ , ~ l o  (13) 

and Eq. (10) takes the form 

The solution of this equation has an oscillating charac- 
ter  with a characteristic period 

which is much longer than 52-I if &#n2. In the case 
6 = 6, sinot , the quantity ( 6 t )  + (55) has a structure 
similar to (19), but with the imaginary unity. As a re- 
sult, the equation for z,(t) has a solution that varies 
exponentially in time, with a time scale (15). 

In the general case of an arbitrary initial phase of 
b(t), the solution for z,(t) contains oscillations and an 
exponential dependence on the time. 

Thus, the appearance of an inhomogeneity in the equa- 
tion of motion of an electron displaced from the solen- 
oid axis leads to two additional effects (compared with 
the situation on the solenoid axis). First, the center of 
the electron orbit drifts, and the more so the farther 
the average position of the electron from the solenoid 
axis and the closer the external frequency w to the cy- 
clotron frequency 52. Second, the inhomogeneous solu- 
tion contains resonant denominators at the frequencies 
on =S2/n, which coincide with the frequencies w, (8) of 
the parametric instability. The latter means that one 
of the main characteristic features of the parametric 
instability-that it has a threshold in the presence of 
friction in the system-turns out to be somewhat blurred 
in the case of a magnetized electron. When one of the 
resonant frequencies on is approached at arbitrarily 
small amplitude of the alternating signal and in the case 
when the electron absorbs energy from the RF field, 
one of the resonant denominators of the inhomogeneous 
solution should come into play and lead to the onset of a 
thresholdless singularity in the absorption at this fre- 
quency. However, the influence of the inhomogeneous 
resonant denominators on the total absorption of the RF 
field energy by the electron decreases rapidly with in- 
creasing number of the harmonic of the resonance, 
since this effect is proportional to 6,", whereas the con- 
tribution of the parametric instability for all n remains 
proportional to 6,. All that changes is the threshold on 
the harder side, and the time of stability development 
increases. 

4. Let now the cross section of the solenoid be a rec- 
tangle with sides X and Y with X<< Y. This change of 
the solenoid geometry, which is insignificant from the 
point of view of producing a homogeneous magnetic field 
in the interior of the solenoid, exerts a surprising in- 
fluence on the parametric instability of an electron in a 
magnetic field. 

Formally this change of the solenoid geometry allows 
us to speak of a change in the geometry of the vortical 
electric field, which in this case takes the form 
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The corresponding equations of motion of the electron 
in the magnetic field a re  no longer symmetrical within 
the variables x  and y, so  that they cannot be written in 
terms of a single complex quantity x  = x  +iy: 

It is easy to verify, however, that the second equation 
of (17) has as its first integral 

The integration constant in (18) is  chosen such that in 
the absence of an alternating magnetic field the oscil- 
lations of the electron along the x =is occur near the 
specified position of the center x,(O) of the electron or- 
bit. Considering for simplicity an electron located at 
the center of the solenoid, i.e., having xo(0) =0, and 
substituting j from (18) in (1'0, we again arrive a t  the 
Mathieu equation 

but with frequency oo =a and not n/2 a s  in (7). This 
means that at the chosen geometry of the vortical elec- 
tric field the frequencies of the parametric instability 
are determined by the relations 

o.=2Q/n, n=l, 2, 3,. . . , (20) 

which differ from (8). In particular, the first resonant 
frequency corresponds in this case to double the Lar- 
mor frequency, w, =2S2. 

In the general case xoP 0 the equation of motion for x ,  
written in terms of 7 = x  =xo , is of the form 

Just a s  in the cylindrical variant, Eq. (19a) contains 
inhomogeneous terms proportional to x, , which corre- 
spond to the influence exerted on the electron motion by 
the vortical electric field averaged over the electron 
orbit. 

5. The results (8) and (20) for the spectra of the pa- 
rametric excitation call for some comments that indi- 
cate the region of existence of such a difference. The 
structure of the vortical electric field in the interior of 
the solenoid is described by expression (2) or  (16) un- 
der the conditions when the electromagnetic problem is 
quasistationary, i.e., under conditions when the char- 
acteristic electromagnetic wavelength A =c/o is much 
larger than the radius of the solenoid. Only under these 
conditions can the alternating magnetic field h(t) be re- 
garded as  spatially homogeneous in the interior of the 
solenoid (accurate to terms R/h<<l), and we can confine 
ourselves in the calculation of the fields to a solution 
of one equation, curl E = -h/c. An attempt to calculate 
the dimensions of the solenoids when the magnetized 
electron is located near the surface of the solenoid, 
with an aim at reducing the problem in both cases to a 
semi-three -dimensional one, and consequently to ob- 
tain coincidence of the spectra of the parametric exci- 
tation, leads automatically to violation of the quasi- 
stationarity condition. It is obvious that the quasi- 
stationary solutions discussed above do not admit of 

such a limiting transition, although in principle it does 
exist. 

2. CLASSICAL THRESHOLD OF PARAMETRIC 
INSTABILITY FOR ELECTRONS IN A MAGNETIC 
FIELD 

1. Assume first for the sake of argument that we are 
dealing with an electron in vacuum. The equation of 
motion (4) with allowance for the radiation friction takes 
the form (Ref. 5, p. 265 of the original) 

The transformation (7) of this equation yields the rela- 
tion 

.. 8' 
~+--(1+26. cos mt,g 

4 

@la) 
Assuming in the vicinity of the first resonant frequency 

o--'I4Q+e, e a Q ,  

and carrying out the standard calculations for the theory 
of paramagnetic resonance, it is easy to determine the 
condition for the onset of excitation: 

For comparison, in the case of an oscillator with fric- 
tion &, the condition similar to (22) is  

- ( 1 / , 6 , ' ~ = - 4 ~ ' )  "WE< ( l / r s o Z ~ Z - 4 ~ = )  '". (22a) 

The numerical value of T is very small: T = sec. 
As a result the limitation on the amplitude of the alter- 
nating magnetic field for parametrix excitation of an 
electron in vacuum is negligible: 6, >> S1r=C4 x 

2. In the case of electrons on the surface of liquid 
helium in a plane normal to the magnetic field, the 
problem of the dissipative phenomena that accompany 
the parametric instability has a number of specific 
singularities. 

Assume that we are  dealing with a small concentration 
of surface electrons, when the electron-electron inter- 
action can be neglected. In this case the odd part of the 
distribution function of the electrons turns out to be 

Here v is the random velocity 'of the electrons along the 
helium surface, f ,(v) is the spherical part of the dis- 
tribution function, and u is the directional velocity of 
the electrons. The quantity u(t) is determined by solv- 
ing the equation 

eE e 
li+v(v)u=---- 

m mc [U X(H+h)l, (24) 

where v(v) is the effective frequency of the collision of 
the electron with ripplons, and depends on v. 

Equation (24) is classical in form, but the frequency v 
depends on the velocity v. This means that the solution 
of the problem of parametric instability for Eq. (24) in 
the region of one of the resonance frequencies (for ex- 
ample, the frequency w, = a )  leads to the following 
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characteristic dependence of the velocity u on the time6: 

u(t ,  v)-exp 111.69-v (v) It. (2 5) 
In other words, when describing the ensemble of elec- 
trons by means of a distribution function in the veloci- 
ties f,(v), we arrive at the conclusion that if v depends 
substantially on v then, with increasing 6, the parametric 
instability can initially occur only in individual regions 
of the electron distribution function, which satisfy the 
inequalits 

6.8/4>v (v) . (26) 
For this reason, the concept of a threshold, which is 
clearly defied in a mechanical problem with friction, 
loses its literal meaning for an ensemble of electrons. 
Nonetheless, the parametric instability leads in this 
case to significant effects, since it is physically clear 
that the absorption of the energy of the RF field even by 
a small group of electrons, defined by the condition 
(26), should influence the properties of the entire dis- 
tribution function, meaning also the macroscopic prop- 
erties of the system of electrons. 

Concrete results a r e  easier to o w i n  from the in- 
equality (26) for a system of electrons localized on the 
surface of liquid helium because of the specific prop- 
erties of the function v(v). As shown in a number of 
papers7'' devoted to the calculation of v(v) in collisions 
of electrons with the ripplons, the function v(v) has inthe 
presence of aclamping electric f ield EL a minimum v,, 
determined from the condition av/m 1, = .,, = 0. 

The position of the minimum, i.e., the value of v,, , 
depends on the intensity of the clamping field E ,  and 
can vary in a wide range. Obviously, the inequality (26) 
begins to be satisfied primarily for electrons with ran- 
dom velocities v -v,, , for which v= v,, . Consequent- 
ly, the determination of the threshold of the parametric 
instability in this case yields differential information on 
the value of v,, . 

We note that the width of the cyclotron-resonance line 
also contains information on the function v(v). This in- 
formation, however, is integral, averaged over the 
electron distribution function. In this sense, the pa- 
rametric and cyclotron resonances complement each 
other well. 

The concrete form of the function v(p), p = m\ vl , 
which contains the contributions of the clamping field 
and of the polarization interaction of the electrons with 
the ripplons, can be taken from Ref. 9: 

A=e2(e-1)/4(e+i) ,  7=mNRa, 
e-1-0.06, 7=7.6.10-' cm, 

where T is the temperature, a is the coefficient of sur- 
face tension, and t is  the permittivity of the liquid 
helium. 

In the region of weak clamping fields, the equation 
~v/ap  = O  for the determination of k,, =p,, /ii is of the 

form 

(28) 

An approximate solution of this transcendental equation 
can be obtained by successive substitutions. Thus, in 
the zeroth approximation we have 

Substituting this value of k,$, into the argument of the 
logarithms, we have the more accurate value kk) 

The succeeding refinement of k,, is obvious. The nu- 
merical values of some of the first approximations for 
k,, at  E ,  = 1 V/cm a re  k%= 2.74 x lo5 cm-', 2.08 
x lo5 cm", k22 = 1.68 x lo5 cm-'. The corresponding val- 
ue is v,, = v(k,,) = sec. The inequality (26) is then 
satisfied at anintensity h, 2 10e.  As to the field H, by 
virtue of 6,<< 1 it should be of the order of H 2 102 Oe. 

3. QUANTUM TREATMENT 

1. In the quantum limiting case the presence of pa- 
rametric instability should follow from the solution of 
the Schr'Minger equation. As is clear from the classi- 
cal analysis presented above, interest attaches in this 
case to both the cylindrical-symmetry and the one- 
dimensional variants of the problem. Both variants ad- 
mit of an exact solution in the sense that the solution of 
the quantum problem reduces to a solution of the corre- 
sponding equation for the classical oscillator. 

We begin with the simpler one-dimensional case, as- 
suming, a s  above, that a similar situation can be real- 
ized in a redangular solenoid XY, X<< Y. Choosing the 
vector potential to be 

An-- [H+h(t)  12, A,=A.=O, (30) 
writing down the electron wave function in the form 

9-exp {i(pnyfp.z)/hJcp(z) (31) 
and omitting the spin part of the problem, we have an 
equation for cp: 

c p , / e ~  =xo is the average position of the oscillating 
electron at h =O. Assume, as above, that initially x, =O. 
As a result we get 

Equation (33) has the standard form used in quantum 
theory of parametric resonance for a one-dimensional 
os~illator.'~ It is typical that the natural frequency of 
this oscillator is a, i.e., the spectrum of the frequen- 
cies a t  which parametric excitation of the given oscil- 
lator is possible coincides with the classical result (20). 

In the case xof 0 we have in the approximation linear 
in 6: 

The term 26x0(x -x,), in this equation has the meaning 
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of the local homogeneous electric field that acts on an 
electron oscillating about the point x,. We can thus 
conclude on the basis of (33) and (33a) that a complete 
one-to-one correspondence exists between the classical 
and quantum variants of the one dimensional problem of 
parametric excitation of an electron in a magnetic field: 
The resonance frequencies a r e  determined by (20); for 
the electrons whose average position is shifted relative 
to the plane x, =0, a periodic field averaged over the 
electron orbit appears and introduces cyclotron-reso- 
nance elements into the parametric resonance. 

A similar solution is obtained for the cylindrically 
symmetrical variant of the problem. An investigation 
of the properties of the Schr'ddinger equation for the 
electron in an alternating magnetic field with a vector 
potential chosen in the form 

was carried out by Malkin and M a n ' k ~ . ~  Just a s  in the 
one-dimensional case (30), the solution of the Schr'ddin- 
ger equation can be reduced here to a solution of the 
equation for the classical oscillator. The details of 
this analysis can be found in Ref. 4. We note only the 
detail of greatest importance for our study, namely 
that the characteristic frequency w, of the indicated 
classical oscillator is equal to half the cyclotron fre- 
quency, w, = a/2.  This means that when the vector 
potential is chosen in the form (34) the spectrum of the 
frequencies of the parametric resonance is determined 
by relation (8) rather than by (20), in full accord with 
the classical predictions obtained above. 

The noted difference between the parametric-reso- 
nance frequency spectra, due to  the choice of the ex- 
p l i c i t ~  form of the vector potential in the form (30) or  
(34), does not contradict the known requirement of 
gauge invariance of the physical results. In this case 
this difference is preserved also in the classical limit, 
when the problem is solved in terms of H + h ( t ) .  The 
real cause of the produced frequency difference is the 
difference in the structure of the vortical electric field. 

4. EXCITATION OF TRANSVERSE WAVES IN A 
TWO-DIMENSIONAL WIGNER CRYSTAL 

The possibility of producing vortical closed electric 
fields on a helium surface, which was noted above, may 
prove to be useful for the observation of some collective 
phenomena in a system of surface electrons. In par- 
ticular, these fields can excite transverse sound os cil- 
lations in a hypothetical Wigner crystal on the surface 
of the helium. 

We consider first  free, transverse, radial vibrations 
of an electron crystal in the form of a flat disk. Ac- 
cording to the prevailing concepts11w l2 the low-frequency 
transverse vibrations of the electron crystal have an 
acoustic character or  else contain a threshold frequency 
w, brought about by deformation. The phenomenological 
description of such vibrations of u(r, t )  is by means of 
the equation 

where c ,  is the speed of the transverse sound in the 
electron crystal. To determine the spectrum of the vi- 
brations (35) and (35a) it is  necessary also to specify 
the boundary conditions. These conditions a r e  that the 
amplitudes of the displacements on the disk axis be fin- 
ite and that the elastic s t resses  on the outer boundary 
of the disk vanish; this corresponds to free slippage of 
the disk relative to the liquid surface of the helium. 
The last condition is equivalent in our case to the re-  
quirement 

where R is the radius of the disk. 

A solution of (35) o r  (35a) which satisfies the imposed 
boundary conditions leads to the following relations for 
the spectrum of the electron crystal: 

lo ( x )  - x l ,  (5) 4, x=m'RIcL, (37) 

J,(x) is a Bessel function, while w* i s  equal to w in the 
case (35) and to w - w, in the case of (35a). 

Thus, the spectrum of the oscillations of the electron 
crystal takes the form 

on0Rlc,=h,, (38) 

where X, a r e  the roots of the reduced transcendental 
equation. The first  of these roots a r e  A, = 1.25, A, 
=4.05, . . . . 

Assume now that a small inductance coil of an LC cir-  
cuit, with radius r,<<R is coaxially placed on the disk. 
Flow of alternating current through the coil produces a 
magnetic field whose lines a r e  normal to the electron 
disk. The smallness of the coil compared with the ra- 
dius of the disk and the rather rapid decrease of the 
coil field with increasing distance between the coil and 
the surface allow us  to assume that the net magnetic 
flux through the surface of the disk i s  equal to zero. In 
other words, all  the magnetic flux lines of the coil pass 
through the electron disk before they a r e  closed in the 
exterior of the coil. Under these conditions the net 
vortical electric field induced on the surface of the disk 
i s  equal to zero, s o  that the action of this field on the 
crystal electrons reduces to application of a moment of 
forces in an angular direction without production of a 
resultant rotation of the crystal a s  a whole. 

By adding to Eqs. (35) and (35a) an external force 
having the indicated properties, we can obtain reso- 
nant excitation of transverse waves in a Wigner crystal 
a t  the frequencies w, from (38). In this case the Q of 
the exciting LC circuit should decrease resonantly. 

The author thanks G. Babkin, V. Gantmakher, and 
V. Dolgopolov for a discussion of the results and for 
useful remarks. 

The electric field (2), taken on the surface of the solenoid, 
i.e., a t  x 2 c y 2 = r 2 ,  coincides with the field E = Z I ( t ) ,  where 
Z =  - iwc- 'L i s  the impedance of the solenoid, L i s  the induc- 
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Recursion equation for the percolation problem 
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A recursion equation allowing for an arbitrary change in scale is obtained for the percolation problem. 
The percolation threshold for two-dimensional space coincides with the exact value PC = 0.5, and the 
corresponding threshold for three-dimensional space is PC = 0.16, which agrees with the available data. A 
calculation is given of the critical index which governs the power-law behavior of the conductivity near the 
percolation threshold. The recursion approach confirms the hypothesis of scaling invariance. 

PACS numbers: 64.60.Fr 

1. The percolation theory methods are being used 
widely to solve various problems in the physics of dis- 
ordered  system^.'.^ Numerical calculations in the lat- 
tice problems and in the continuum analog of the perco- 
lation problem have yielded the most important char- 
acteristics of disordered systems and the hypothesis of 
scaling invariance has been put f ~ r w a r d ~ - ~  by analogy 
with the theory of phase transitions. As a result of the 
scaling invariance and universality, percolation along 
channels of dimensions of the order of the lattice con- 
stant has little effect on the large-scale properties of 
such systems and this justifies the application of the re -  
normalization group methods to the calculation of the 
percolation threshold and critical indices. The first  at- 
tempts have been made7s8 to use the recursion equation 
in solving the two-dimensional problem of bonds7. and 
the problem of sites.' The doubling procedure is used 
in Refs. 7 and 8 and this suffers from low p r e c i ~ i o n . ~  

is much less  than the correlation radius2 but much 
greater than the lattice constant. We shall assume that 
this region is described approximately by a single pa- 
rameter p ( ~ ) ,  which i s  the probability that the region i s  
conducting. Then, the probability that the region is not 
conducting i s  1 -P(L). We shall combine N~ cubes into 
one with a characteristic size NL and calculate the 
probability P&L) that the cube of d i m e n s i o n s N ~  is 
conducting. If we connect current-carrying conductors 
to two opposite ( d- 1)-dimensional faces of the cube 
NL, we find that the probability that the current passes 
through the cube can be calculated as follows. We con- 
sidered a "column" of N d-dimensional cubes joining 
these faces. The probability that the column i s  conduct- 
ing is [p(L)IN. The current can pass between the faces 
if at least one of the N ~ - '  columns i s  conducting. The 
probability of this happening is 1 - (1 - P N ~ Y ~ - ' .  This is 
the probability that the cube NL i s  conducting: 

We shall propose an improved recursion equation P(NL) = I -  [i-PN(L) IN"-'. (1) 
which can be applied to systems of any dimensions in Equation (1) allows only for the shortest leakage paths 
space and which allows for  an arbitrary change in scale 
which increases considerably the precision of the re-  

between the opposite faces of the cube NL. The most 

sults. Our method is readily seen to be similar to the accurate results may be expected in the limit N-1 (Ref. 

recursion approach of A. A. Migdal, who f i rs t  applied 9) with Eq. (1) continued analytically to nonintegral val- 
ues  ofN. If we assume thatNL=L+dL, where dL is an 

this to the theory of phase transitions and gauge  field^.^ 
infinitesimally small change in scale, and expand both 

2. We shall derive the recursion equation by selecting sides of Eq. (1) a s  ser ies  up to the f i rs t  order in dL/L, 
in a d-dimensional system a region in the form of a d- we obtain the following equation which describes the de- 
dimensional cube with the characteristic sine L, which pendence of P on L for an arbitrary change in scale: 

108 Sov. Phys. JETP 49(1), January 1979 0038-5646/79/010108-02$02.40 O 1979 American Institute of Physics 108 




