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Elastic anomalies in cubic crystals at structural transitions describable by a three-component order 
parameter are considered in the framework of the renormalization-group method. It is shown that for 
small striction constants and certain ratios between the interaction constants there exists a region of 
temperatures in which the elastic compliances and thermal-expansion coefficients have power-law 
temperature dependences. The results obtained agree well with experimental data on the propagation of 
sound in the cubic phase of RbCdF, and TlCdF,. 
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As shown in Refs. 1 and 2, the interaction of the order 
parameter with the elastic degrees of freedom leads to 
the result that the phase transition changes from 
second-order to first-order. However, experimental 
studies indicate that the transition remains almost 
second-order and is accompanied by an appreciable 
increase of the elastic compliances. In agreement with 
this, for the example of a phase transition with a one- 
component order parameter in a cubic crystal it has 
been established3 that near the transition there exist, 
in the general case, several regions in which the elastic 
constants display scaling behavior, with different 
critical indices in each of these regions. In the present 
paper we consider phase transitions describable by a 
three-component order parameter in cubic crystals. 
The general analysis of the elastic properties in this 
case i s  extremely complicated. However, if the 
striction constants a re  sufficiently small, then, a s  will 
be seen from the following, the critical indices for the 
compliances in the first scaling region (the furthest 
from the transition point) can be calculated with neglect 
of the influence of the elastic degrees of freedom on the 
fluctuations of the order parameter. 

In all cases in which the order parameter cp, trans- 
forms according to a three-component irreducible 
representation satisfying the Landau condition: the part 
of the thermodynamic potential that depends only on (pi 

can be written in the form 

cD='lzacp,cpl+'l,$, (cp,cpi) Z+'/ i~z(cpr'+ ~z'+cpJ') .  

Following Ref. 5 we obtain for cP the renormalization- 
group (RG) equations in first order in E :  

In a clamped crystal (u, = const) the strictional 
coupling of the order parameter with the elastic de- 
grees of freedom leads to the appearance in the thermo- 
dynamic potential of an interaction of fourth order in 
cp,, corresponding to exchange of an acoustic phonon. 
Because of the anisotropy of the elastic properties, the 
tensor constant v,,,, of this interaction i s  found to de- 
pend on the direction of the momentum transfer. As 
was shown in Ref. 2, for an isotropic n-component 
model with an anisotropic compressible lattice, in the 
presence of such an interaction the order of the transi- 
tion changes from second to first i f  n<4. This result 
follows from the fact that the solution of the RG equa- 
tions for the complete vertex r = f l +  v has, for suf- 
ficiently large values of the correlation length 5 ,  a 
pole singularity, with r([) < 0  near the pole. The diver- 
gence of r also implies that the complete system of 
equations for 0 and v does not have stable fixed points. 
In particular, the isotropic fixed point 0* = &/(n + 8), v* 
= 0 for n < 4 turns out to be unstable with respect to 
deviations of v from its fixed-point value.' 

For the potential considered in the present paper, 
with cubic anisotropy in the cpi, it is possible, a s  in 
Ref. 2 (with certain complications associated with the 
tensor character of v,,,,), to show that the fixed points 
with v:~,, = 0 and with d? equal to the corresponding 
coordinates of one of the fixed points of Eqs. (1) a r e  
also unstable against arbitrary anisotropic perturba- 
tions. Evidently, a change in the order of the transition 
from second to first, analogous to that studied in Ref. 
2, also occurs in this case. Moreover, these unstable 
points a r e  simple singular points of the complete 

B I - ( ~ - i i $ , - ~ p z )  B,, 
(1) 

8 2 = ( ~ - 1 2 B i - g B z )  $2. 

The integral curves of these equations a re  represented 
in the Figure. For 6, + 36, > 0 and 19, > 0 they converge 
to a stable fixed point, and, consequently, in this re-  
gion of values of d, and p,, in the absence of coupling 
with the elastic degrees of freedom, the transition will 
be second-order with critical indices determined by 
the coordinates = &/I1 and @ = 0 of this fixed point 
(point b in the Figure). Here, the case 8, > 0  cor- 
responds to a transition to a rhombohedra1 phase 
(cp, = cp, = cps), and the case 0, < 0 corresponds to a FIG. 1. Integral curves of the renormalization-group equa- 
transition to a tetragonal phase (cp, = cp, = 0, cp, + 0). tions: a) (1/9, -1/27); b)(1/11,0); c )  (0,1/9). 

99 Sov. Phys. JETP 49( I ) ,  January 1979 0038-5646/79/010099-03W2.40 0 1979 American Institute of Physics 



system of equations. Therefore, for small bare values 
of the components vl (i.e., for small striction con- 
stants q i ,  vmp. -qi,S,, << &), the integral curves of 
this system in the space of the parameters B,, vIjRl lie 
close to the (B , ,  6,) -plane right up to the nearest (in the 
direction of increase of 5) fixed point and differ little 
from the integral curves of Eqs. (1). Consequently, for 
not-too-large values of the correlation length [such that 
the Bi(5) do not reach the indicated points], we can put 
the v,,, approximately equal to zero, and describe the 
dependence of the R i  on 5 by Eqs. (1). 

Everything we have said above about the behavior of 
the solutions i s  also valid for a free crystal, since the 
long-range interaction that arises through uniform de- 
formations in this case reduces to a self-consistent 
renormalization of the coefficient a and the form of the 
RG equations does not change. Generally speaking, 
such a renormalization can also cause the transition 
to become first-order if C, i s  sufficiently large near To, 
since for large C, the renormalized coefficient a' be- 
comes a nonunique function of a.' However, the esti- 
mates given in Ref. 2 show that this branching arises 
at values of 5 of the same order as  for the runaway due 
to the anisotropic interaction via the acoustic phonons. 
Thus, for small q, and in the free crystal there exists a 
region in which we can neglect the influence of the 
elastic degrees of freedom on the order-parameter 
fluctuations. In the present paper we shall confine 
ourselves to considering precisely this region. 

Anomalies in the elastic properties arise a s  a result 
of the interaction of uniform deformations with the 
order parameter; in the case under consideration this 
interaction has the form 

where e,, e,, and e, are  those linear combinations of 
uniform deformations that diagonalize the matrix of the 
elastic constants in the cubic phase: 

1 1 1 
e 1- - -uii. 31. ez= -(ull-uz2), 28h e,= 5(u11+~22-2~,S).  

In the expression (2) q, i s  nonzero only when the sym- 
metric square of the representation according to which 
the pi transform contains the representation according 
to which the shear components ui (i # j) of the deforma- 
tion tensor transform. 

In the cubic phase the elastic compliances a re  ex- 
pressed in terms of correlation functions of the e, and 
u,, a s  follows: 

Because of the coupling (2) these expressions contain 
singular parts proportional to correlators of the cor - 
responding quadratic forms of components of the order 
parameter, so that the scaling dimensions of the de- 
formations coincide with the scaling dimensions of these 
quadratic forms, viz., 

But the dimensions of (P, cp,, c ~ :  - pi, etc. can be de- 
termined with the aid of the RG equations for the fields 
4, 4, h, and A,, thermodynamically conjugate to these 
quantities, putting vfs, = 0, a s  already indicated. 

In first order in & these equations have the form 

For bare values of Pi lying in the vicinity of the lines 
0, + 30, = 0, p, = 0, or 8, = 0, the solutions of Eqs. (1) 
in the considered region of values of the correlation 
length tend exponentially to the fixed points a ,  b,  and c, 
respectively. Therefore, in these cases the Pi in (4) 
can be replaced by their values at the corresponding 
fixed point. The resulting coefficients of the Xi in the 
right-hand sides of Eqs. (4) will be the dimensions of 
these fields, which a re  connected with the dimensions 
of interest to us by the simple relations A,, + A V i v i  = d, 
e t ~ . ~  

Finally, we obtain 

Thus, for values of the Bi belonging to the neighbor- 
hood of the lines indicated, the elastic compliances and 
also the thermal-expansion coefficients a,, in the cubic 
phase display power-law dependences, the exponents of 
which can be found without difficulty from (5) - (7).5 

1) 0,  =-3j3,, 8,<0 (on the boundary with the tetragonal 
phase): 

2) PI = 0, 4 > 0 (the vicinity of the triple point): 

3) 8, = 0, 8, > 0 (on the boundary with the rhombohedral 
phase) : 

It i s  necessary to note also that the critical temperature 
T, in the power dependences under consideration i s  de- 
termined by the condition 2a + 50, + 36, = 0 and differs 
from the transition temperature To. Since the scaling 
dimensions (5) - (7) have the same values below the 
transition: we can also find the critical indices in the 
low-symmetry phases. Determining the expressions 
for the pair correlators of the quantities e, and u,, in 
terms of the compliances with allowance for the form 
of the matrices S,, in these phases, we obtain, e.g., for 
B,=O. 

1) tetragonal phase: 

2) rhombohedral phase (in the axes of the original 
cubic phase): 
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The results obtained have been compared with the ex- 
perimental data on the propagation of sound in RbCdF, 
and TlCdF, crystals undergoing a phase transition from 
the cubic (0:) to the tetragonal ( D Y ~  phase at the tem- 
peratures To = 124 K and 192 K, re~pectively.~ The 
order parameter transforms according to a three- 
dimensional irreducible representation of the group 
O;, associated with the vector k = (9, 9, 9). In this case, 
q, # 0 in (2). 

In the cubic phase the elastic compliances calculated 
from the sound velocities have, in the vicinity of the 
transition, temperature dependences of the following 
form: 

i )  RbCdFJ 
2p(S, , -S ,L)  =[1290.2+70.9~+85.4(i/~)~-"]~ lo-' (seclkm)' 

for 11'tT-To<66". T.=130.8 K; 

for l 1 ' < ~ - ~ , < 5 6 " ,  T,=130.0 K; 
2) TICdFs 

2p(S,,-S,,)=[1978.6+172.7(1/~)~~~~~10-' (sec/km)' 

for S0<T-To<38", T,=196.8 K. 

Here T =  (T - Tc)/Tc. The terms linear in T in the 
expressions for the compliances of RbCdF, a r e  tem- 
perature dependences f a r  from the transition, extra- 
polated into the critical region. The formulas given for 
S,, -S,, in both crystals give values of the sound 
velocities that differ (in the indicated intervals of T 
- To) from the experimental values by not more than 
*3.5 x km/sec, while for S,, the difference i s  not 
more than 4 . 4  x lo-, km/sec. 

The values of the critical indices for RbCdF, (ysll-sl, 
= 0.35 and ys4 = 0.29) a re  in satisfactory agree- 
ment with the theoretical values for a transition to the 
tetragonal phase with 6, = -38, (y,,, -,,, = 7/18=0.39 

- 5/18 = 0.28). Evidently, the same ratio and Y s , ~  - 
between the 4, is also realized in TlCdF, (ysll_,12 
= 0.36). Unfortunately, the small number of experi- 
mental points for S ,  in the critical region does not 
permit us to establish the value of yq4 reliably in this 
case. 
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