
Carrolle used the Helfrich-Orsay theorf to calculate 
the dependence of the velocity v and angle 8, for a 
small excess over the threshold in a static field. Ex- 
panding the moments of the forces as a series in e2, he 
obtained the following relationships in a simple nonlin- 
ear  approximation: 

e,¶a (i-v,;/v), V W ~ J P .  

Clearly, the approach to the threshold should give 
near-zero values of the velocity and angle in the im- 
mediate vicinity of V,. The experimental dependence 
8,( V )  was in good agreement with the calculations. In 
all these investigations7* the measured or  calculated 
values of v and 8, tended to zero on approach of V to 

Vth. 

Our experiments showed that the quadratic depen- 
dence of the velocity on the voltage was retained in the 
case of an alternating electric field but was more com- 
plex. The velocity v ,  at V ,  was a constant independent 
of the field frequency. In the case of PAA this velocity 
was v,=20 p/sec; in the case of MBAA, we obtained 
v,f 3 p/sec. The finite velocity v,  correspond to finite 
and fairly considerable deformation angles 0, (from 13 
to 26") for values of V,, in the investigated frequency 
range. Thus, the results of experimental determina- 
tions of the velocities and deformation angles were in 
mutual agreement and indicated considerable nonlinear 

effects even at the threshold of the electrohydrodynam- 
ic instability in the conduction regime. 

These effects, ignored in most investigations, may 
be responsible for the growth of the initially small 
perturbation to the relatively large values of the ve- 
locity and deformation found by us. Our results differ 
considerably from those published earlier and it is not 
yet clear whether they can be explained within the 
framework of the existing theories of the electrohydro- 
dynamic instability. 
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Phase transitions in a cubic crystal with dipolar forces 
and an anisotropic correlation function 

A. I. Sokolov and A. K. Tagantsev 
K I. Ul'yanov (Lenin) Leningrad Electmtechnical Institute 
Zh. Eksp. Teor. Fi. 76, 181-192 (January 1979) 

The static critical behavior of a cubic ferroelectric (ferromagnet) is studied taking into account both the, 
dipolar and the crystal anisotropy of the correlation function of the order-parameter fluctuations. It is 
shown that the interaction of the critical fluctuations can lead in this case to a curious effect4 phase 
transition to an ordered phase that is not energetically the most favorable from the standpoint of the 
Landau theory. The form of the diagram of states in the coordinates of inverse correlation length, 
anisotropy of the correlator, and anisotropy of the anharmonicity is established in the critical region. The 
features that arise in the diagrams of states of the system as a result of the interaction of the fluctuations 
with the anisotropic spectrum are discussed. 

PACS numben. 77.80.Bh 

1. INTRODUCTION 

The problem of phase transitions in cubic crystals 
can be regarded at the present time as classical for the 
theory of static critical phenomena. Indeed, several 
dozen papers have been devoted to the critical thermo- 
dynamics of systems with cubic and hypercubic sym- 
metry,*and the most important of the results obtained 
have already appeared in reviews and b00ks.l'~ While 
studying the simplest model of this type, Wilson and 

Fisher5 encountered for the first time two very inter- 
esting phenomena, having, as was made clear later, 
an extremely general character-the change of the order 
of the phase transition in an anisotropic system under 
the influence of the critical fluctuations, and what it is 
now customary to call asymptotic symmetry or isotrop- 
ization. Models with generalized cubic symmetry have 
been investigated in detail by various methods based on 
the ideas of the renormalization group, and the corres- 
ponding problem has succeeded in becoming something 
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of the nature of a test for  checking the effectiveness of 
these methods. To data the critical behavior of (4 - c)- 
dimensional models with the point group of a cube 
(hypercube) has been analyzed in first ,  second, and 
third order in E.~-' The Cell-Mann-Low (GML) func- 
tions of these models, which determine the critical 
thermodynamics of the system in the framework of the 
philosophy of the renormalization group, a r e  known to 
fourth order in the invariant charges, both for four- 
dimensional space8 and for physical, three-dimensional 
space.'' Certain exact relations between the GML func- 
tions have been found in the case when the field of the 
fluctuations is a two-component field." The citical be- 
havior of many-component hypercubic models has been 
studied by means of the l / n  expansion.12 Finally, the 
variational principle and approximate recursion formu- 
las of Kadanoff13 have recently been applied to solve the 
problem under discussion. 

Actually, however, we do not know too much about the 
behavior of a cubic crystal in the region of strongly 
developed critical fluctuations. The fact is that all this 
abundance of theoretical information pertains principally 
to systems having an openly model character. To be 
specific, what was investigated in the papers enumera- 
ted above was strictly not s o  much a cubic crystal as 
what is called, in the language of quantum field theory, 
a two-charge model with an n-component isospin and an 
isotropic propagator. The anisotropic invariants char- 
acteristic for a cubic crystal and constructed from the 
projections of the gradients of the isospin variables14 
a re  absent in the Hamiltonian of this model. But we now 
knowx5 that taking these invariants into account alters 
substantially the predictions of the theory concerning 
the character of the phase transition. The same is also 
true with regard to taking account of the long-range di- 
pole-dipole forces, which lift the degeneracy of the 
spectra of the longitudinal and transverse long-wave- 
length fluctuations of the order parameter in ferroelec- 
tr ics and ferromagnets. 

Apparently, the critical thermodynamics of cubic crys 
tals was first  studied on the basis of a realistic model 
by Aharony and Fisher.'' They obtained a system of 
Wilson recursion equations for all  s ix  parameters of 
the Landau effective fluctuation Hamiltonian and found 
the asymptotic forms of some of the solutions of the 
system (the fixed points). In Ref. 16 the so-called iso- 
tropic dipolar limit was investigated in detail and the 
corresponding critical indices were calculated. In the 
general case, however, it was not possible to reach a 
definite conclusion concerning the character of the 
critical behavior of a cubic ferromagnet. One of the 
reasons for this was the use of approximate recursion 
equations, linearized in the crystal-anisotropy param- 
eter of the propagator. At the same time, in Ref. 16 a 
number of important results were obtained, stating un- 
ambiguously that the crystal and dipolar anisotropies of 
the correlation function can play a decisive role in 
shaping the critical thermodynamics of a cubic crystal. 

Following Aharony and Fisher, other authors con- 
sidered simplified models, ignoring either the dipolar l5 

or the crystal1' anisotropy of the propagator of the criti- 
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cal fluctuations. It was found that in both cases there is 
a strong tendency to change a phase transition that is 
continuous (in the framework of the Landau theory) into 
a first-order transition, and in  the second case this 
change occurs in the presence of arbitrarily small  cubic 
anisotropy of the bare anharmonic potential. These 
papers enlarged our s tore  of information about model 
systems, but they left open the question of the critical 
behavior of a cubic ferromagnet (ferroelectric). The 
present paper is devoted to the elucidation of this ques- 
tion. 

Below we shall study the phase transitions in a cubic 
crystal with dipolar forces on the basis of the full 
Aharony-Fisher Hamiltonian,16 i.e., without assuming 
the absence or smallness of the crystal o r  dipolar ani- 
sotropy of the correlator of the critical fluctuations. 
The system of GML equations for a three-dimensional 
cubic ferromagnet will be obtained in the quadratic ap- 
proximation in the invariant charges and investigated. 
We shall show that, when the crystal anisotropy of the 
correlator is taken into account, phase transitions to an 
ordered phase that is not energetically the most favor- 
able from the standpoint of the Landau theory turn out to 
be possible in our system. This leads to a substantial 
change in the form of the diagram of states of the crystal 
in the critical region as  compared with that predicted by 
the phenomenological theory. In the concluding section 
of the article we discuss the experimental situation and 
refine the limits of applicability of the results  obtained. 

2. THE HAMILTONIAN, PROPAGATOR, AND GML 
EQUATIONS 

We shall s tar t ,  then, from the following effective 
Hamiltonian 16: 

Here cp,  is the vector field of the fluctuations dE the 
order parameter, q is the three-dimensional wave vec- 
tor,  n, = qa /q ,  and fi) and y,6) a r e  the bare coupling con- 
stants. The bare "mass" 4 is a linear function of the 
distance from the line o r  surface of phase transitions in 
the phase diagram, and the dipolar gap A and param- 
e te r s  f and h characterize the bare anisotropy of the 
spectrum of the fluctuations. The case of absence of 
crystal anisotropy corresponds to f = O  and yy)=y,6). 

As is well known, a s  the system approaches the re-  
gion of strongly developed critical fluctuations the 
parameters of the effective Hamiltonian (1) begin to 
change and a re  renormalized, their evolution inside this 
region being described by the equations of the renormal- 
ization group. In principle, to study the critical be- 
havior of the crystal it ought to  be necessary to derive 
and analyze the renormalization-group equations for 
all the parameters appearing in (1). In practice, how- 
ever, in view of its extreme complexity such an analy- 
sis can hardly be performed. Therefore, the problem 
ar ises  of seeking approximations of a kind such that 
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using them would not impose restrictions on the size of 
the anisotropy constants. 

We know very well that in the critical region the con- 
stants characterizing the dispersion of the spectrum of 
the fluctuations a r e  renormalized very slowly. To be 
specific, the rate of change of these parameters with 
variation of H, is of the order of magnitude of the criti- 
cal index 17, as is not difficult to see by considering the 
diagrammatic expansion of the mass operator. In 
three-dimensional systems with a scalar o r  vector order 
parameter, 17 - 0.05. Therefore, only in a very narrow 
region about the line of phase transitions, which, ac- 
cording to numerical estimates, i t  is far  beyond the 
capabilities of any conceivable experiment to reach,'' 
will the effective, "dressed" values of the dispersion 
constants differ a t  all significantly from their bare 
values. This permits us to neglect the renormalizations 
off, h ,  and the coefficient of q2 in the critical region 
and assume these to be equal to their bare values. 

A second substantial simplification ar ises  if we as- 
sume that the dipolar gap A is sufficiently large, viz., 
that A2 >> 14 1. In fact, a s  can be seen from the Dyson 
equation, the additive renormalizations of A2 and n i  
should have the same order of magnitude. In the critical 
region the physical "mass" w2  =w: + 6%: = 0, and, conse- 
quently the "mass" renormalization 6n: - In: 1. Hence, 
the gap renormalization 6A2- 6 n ; e  and can be ne- 
glected. There is, however, another reason for neglect- 
ing the renormalization of the gap, weightier than its 
relative smallness. The point is that, when the condi- 
tion A2 >> 1 ~ :  I is fulfilled, the inequality A' >> n Z ,  q: is 
valid, where q, is the scale of the momenta that a r e  
characteristic for the critical region. Therefore, the 
gap A is found here to be an irrelevant variable in the 
renormalization-group sense. The reason for this is 
simple. As is well known, the dipolar forces lead to the 
appearance of extra "stiffness" of the long-wavelength 
longitudinal fluctuations of the order parameter. As a 
result, this branch of the spectrum becomes noncritical, 
and in each order of perturbation theory the graphs con- 
taining one o r  more lines of longitudinal "fluctuons" are  
found to be small compared with the "purely transverse" 
diagrams, to the extent that the ratio x/A is small. The 
role of the dipolar interaction here reduces simply to 
suppression of the longitudinal fluctuations, and, for so  
long a s  the gap A is still sufficiently large, the dipolar 
interaction copes with this problem successfully, ir- 
respective of the actual value of A. It is clear that, in 
this situation, even appreciable renormalizations of A 
cannot affect the critical thermodynamics of the system. 

To what does the restriction >> x 2  correspond when 
applied to particular types of crystals? In ferromagnets 
this inequality defines the dipolar fluctuation region, 
which i t  is our main interest to investigate, since for 
A ' S U ~  our system behaves like a cubic crystal with no 
dipolar forces, whose critical behavior has by now been 
thoroughly studied. In ferroelectrics the dipolar inter- 
.action is always strong, and the gap A has the same 
order of magnitude a s  the Debye momentum q,. There- 
fore, the inequality A2 7> n 2  here does not impose any 
restrictions at all on the quantity n beyond those which 

already obtain in the critical region. 

Thus, we have established that, in the dipolar region, 
only the coupling constants yp) and y,b' and the inverse 
correlation length n o  a r e  subject to substantial critical 
renormalizations. Going over from n o  to the dressed 
inverse correlation length H and choosing this a s  the in- 
dependent variable, we can obtain, for the effective 
coupling constants y, and y,, GML equations that a r e  
equivalent, in our case, to the complete system of re-  
normalization-group equations. To derive the GML 
equations, however, we need to know the structure of 
the dressed propagator GaB(q). This is not difficult to 
find, if we turn to the well known expression for the 
bare Green function16 : 

This expression has the most general form permitted 
by the symmetry of the problem. Obviously, the exact 
propagator should also have this form, with the sole 
difference that in the expression for GUa(q) the bare con- 
stants will be replaced by their effective, renormaliza- 
tion values.' We recall, however, that the constants f ,  
A ,  and h a re  practically unchanged in the critical region, 
and the gap A is always much greater than the impor- 
tant momenta. Therefore, for GaB(q) the following ap- 
proximate formula will be very accurate: 

As we should expect, the dipolar gap A has dropped out 
of (3), and the propagator in this limit has turned out to 
be purely transverse: n,GUB(q) = 0. 

We proceed now to the derivation of the GML equa- 
tions. Since the technique for obtaining these is well 
k n ~ w n , ' ~ * ' ~ ~ ' ~  we shall discuss, only some of the most 
characteristic details. The GML equation will be de- 
rived directly for three-dimensional space in the lowest 
approximation in the invariant charges, which, for d = 3, 
is evidently the optimal approximation.1° In this ap- 
proximation terms associated with the renormalized 
mass operator a re  absent, so  that the invariant charges 
here will coincide with the physical charges." An im- 
portant feature of the problem is the nondiagonality of 
the propagator. As a result, even in the one-loop ap- 
proximation for the vertex part  three different integrals 
arise: 

In the limit n<< q, these integrals depend only on f and n, 
and al,/a n Z  = -1,/2x2. Differentiating the diagrammatic 
expansion for the vertex raay &(q, qf , q") with respect to 
n: using the Ward identity 
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and expressing the derivative with respect to w i  in 
terms of the derivative with respect to uZ ,  we can ob- 
tain the following equations for the physical charges 
y l = ~ r u a u a ( O ,  0,O) and r2=raa6,(0,  0,O): 

For what follows it is convenient to go over to the di- 
mensionless charges g, =y,/w and the dimensionless in- 
tegrals Jk =uIk,  and also to introduce the new indepen- 
dent variable t = -1nu in place of w. Then Eqs. (6) take 
the form 

dgr/dt=gt-gJtg,'-12J,glgz-2 ( J i + J z )  g;', 

dgzldt=gz-9Jsg,'-6(J,+Jz) gtgz- (J,+7Jz+4Js) gz'. 
(7) 

These a r e  the GML equations, whose solutions describe 
the thermodynamics of our system in the critical region. 

3. THE PHASE TRAJECTORIES, SEPARATR ICES, 
AND DIAGRAM OF STATES 

Even a cursory glance at the formulas (3) and (4) is 
sufficient to make it clear that the integrals I, (J , )  can- 
not be calculated analytically. However, before turning 
to a computer for help, it is useful to investigate the 
system of GML equations in general form, without 
specifying the values of the parameters occurring in it. 
As usual, we shall be interested in the separatrices 
and singular (fixed) points of the system (7), whose type, 
number, and location determine the character of the 
critical behavior of the crystal. In the case of a system 
of the type under consideration, the search for the sin- 
gular points can be simplified radically by noting that 
all its singular points should lie on rectilinear phase 
trajectories emerging from the coordinate origin. The 
proof of this statement is elementary, and we only 
point out that the presence of this property is due to 
the lowest (second) order of the right-hand sides of Eqs. 
(7) and the special form of the linear terms. Thus, in 
order to establish an upper bound on the number of sin- 
gular points, and also to obtain some idea of their dis- 
position in the phase plane, it is sufficient t o  find all 
the straight phase trajectories of the system (7) that 
pass through the coordinate origin. In their turn, these 
phase trajectories also possess a useful property: the 
ratio gl/g, does not change a s  we move along them. 
Therefore, if we find the "equation of motion" of the 
quantity z =g,/g2 in "time" t, the positions of the r e -  
quired rectilinear phase trajectories will be determined 
simply by the roots of i ts  right-hand side. 

The derivation of the "equation of motion" for  z pre- 
sents no difficulty. Combining Eqs. (7) in the appropri- 
ate way, we shall have 

By direct inspection one can convince oneself that the 
"king" straight line g, = O  is not a phase trajectory of 
the system (7).' Consequently, the polynomial in the 
square brackets should vanish on all  the rectilinear 
phase trajectories. This polynomial is a homogeneous 

function of the integrals J, ,  and i ts  properties depend 
only on their ratios. Therefore, it is convenient to in- 
troduce the new parameters 

after which the equation for the stationary points of (8) 
takes the form 

The parameters .$ and 5,  which depend on f, have been 
s e t  up in such a way that .$ -5 = O  when f =0, i.e., in the 
absence of crystal anisotropy in the propagator. In this 
"isotropic" limit Eq. (10) has a single real  root, a s  is 
easily seen by rewriting i ts  left-hand side in factored 
form: 

The phase trajectory corresponding to the root z = 1 co- 
incides with the "Heisenberg" straight line g, =g,, and 
on it there is a singular point of the "saddle" type. The 
phase diagram of the system of GML equations for this 
case is given in Ref. 17. 

In the general case,  however, the elucidation of the 
structure of the phase plane of the system (7) is a con- 
siderably more complicated problem than for f =0, and 
its solution is  left to the Appendix. There it is shown, 
in particular, that for al l  values of f within the physical- 
ly interesting interval (-1,20) the system of GML equa- 
tions has one rectilinear phase trajectory of the form 
g,  =zag,, where zo is the real  root of Eq. (10). This 
straight line passes through the f i r s t  quadrant, and the 
nontrivial singular point lying on it is a saddle point. 
The pattern of the phase trajectories for the case under 
consideration is depicted in Fig. 1. An extremely im- 
portant feature is that, unlike in the "isotropic" limit 
(f =O), the separatrix g, =z,,g2 here does not coincide 
with the "Heisenberg" straight line. The angle of in- 
clination $ of the separatrix is determined by the mag- 
nitude of the anisotropy parameter f; the corresponding 
curve, together with a graph of the dependence z,(fl, 
is given in Fig. 2. It can be seen that the angle J, can 
differ substantially from 45" even for comparatively 
small  values off. 

Thus, all the phase trajectories of the system of 
GML equations that originate in the region of stability 
of the Hamiltonian (1) (g,> 0, 2g2 > -gl) go outside this 

FIG. 1 .  Pattern of the phase trajectories of the system of GML 
equations for finite anisotropy of the propagator. The "Heisen- 
berg" straight line g,=gz is shown by the dashed line, and the 
region of instability of the Harniltonian ( 1 )  i s  shaded. 
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FIG. 2. Graphs of the dependences of the magnitude of the real 
root of Eq. (10) and the angle of inclination of the separatrix 
gi =aog2 on the anisotropy parameter f. 

region as t- -. From this, a s  is well known, i t  follows 
that the phase transition in a cubic ferromagnet (ferro- 
electric) with an anisotropic correlation function should 
be a first-order transition. The same result was ob- 
tained earl ier  for the case f = 0.17 Thus, there is a de- 
finite analogy between the critical behaviors of the sys- 
tem with the Hamiltonian (1) and the model with f =O. 
But there a re  also serious differences between them. 
The point is that, when the crystal anisotropy of the 
correlator of the fluctuations is taken into account, 
phase transitions to an ordered phase that is not ener- 
getically the most favorable from the standpoint of the 
Landau theory turn out to  be allowed in the system. It 
is easy to see  this by considering Fig. 1. Since the 
angle of inclination of the separatrix g, =z,g2 for f #  0 
differs from 45", the system of GML equations has 
phase trajectories intersecting the "Heisenberg" straight 
line (two of them a re  depicted in the Figure). This 
means that a situation is possible in which a cubic crys- 
tal  having anisotropy of the bare coupling constants of 
the "rhombohedral" type (yf)> y,e') will undergo a phase 
transformation to a tetragonal phase, and vice versa. 

The mechanism of this curious phenomenon can be 
elucidated a s  follows. In the critical region the fluctua- 
tions of the order parameter give r ise  to strong renor- 
malizations of the anharmonicity constants of the origin- 
a l  Hamintonian. The fluctuation corrections to the con- 
stants yP)and y," a r e  expressed in terms of the correla- 
tion function GaB(q) and depend, accordingly, on the 
anisotropy parameter f. Through these corrections, the 
anisotropy of the spectrum of the critical fluctuations 
enters into the equations controlling the evolution of the 
effective coupling constants y, and y,, and this leads to 
violation of the symmetry of these equations and their 
solutions. But since the form of the free energy of the 
crystal a s  a function of the (pJ, and, in particular, the 
positions of its minima, a re  determined by the relative 
sizes of y, and y,, the structure of the ordered phase is 
also found to depend on the anisotropy of the fluctuation 
spectrum. 

We Shall try to elucidate further the appearance of 
the diagram of states of a cubic ferromagnet in the re-  
gion in which phase transitions to the anomalous (not 
describable by the Landau theory) ordered phase a r e  
possible. We note that such phase transitions a r e  due 
exclusively to the interaction of the critical fluctuations. 
At the same time, it is clear that far from the critical 
region, where the fluctuations a re  small, the phase 
predicted by the Landau theory is thermodynamically 

stable. Therefore, on the diagram of states there should 
be aboundary separatingthe regions of existence of these 
two ordered phases. When this boundary is crossed 
a first-order phase transition will occur in the crys- 
tal, and the boundary itself, obviously, should l ie In a 
region of rather strong critical fluctuations. Thus, the 
region of stability of the anomalous phase does not ex- 
ceed the critical region in size. Specifically, the extent 
of the region of the anomalous phase is determined by 
the parameters f, yf), and y,6) of the effective Hamilton- 
ian. As can be seen from Eqs. (7) and Fig. 1, for values 
off, yf", and y,6) close to those which they take on the 
line of coexistence of all  three phases, the region of the 
anomalous phase should be very narrow. For fixed yf) 
and y,6) this region will grow with increase of If 1, and 
for constant f will decrease with increase of the ani- 
sotropy of the anharmonicity (i.e., the difference lyf) 
-.y:)l). As a result, the diagram of states of a cubic 
ferromagnet in the coordinates x 2 ,  f ,  (y,6)-yf)) will have 
the form depicted in Fig. 3. 

The most characteristic feature of this phase dia- 
gram is the twisting of the surface separating the two 
ordered phases in the critical region. We recall that 
this surface is planar in the framework of the Landau 
theory. Such a deformation of the phase-separation 
surface specified in the coordinates x2, f, (y:)- ylPf) 
should also lead, obviously, to the appearance of cer-  
tain anomalies in the structure of r ea l  phase diagrams 
of crystals, in which experimentally controllable quan- 
tities play the role of the independent variables. To see 
this, we suppose, e.g., that the correlation length n-' 
depends primarily on the temperature T, the anisotropy 
(y,6, - y?)) of the anharmonicity depends on the pressure 
P, and the parameter f is insensitive to variation of 
these quantities and is nonzero. Then, inthe P - T dia- 
gram of the cubic ferromagnet, the line separating the 
two ordered phases and the boundary of the region of the 
paramagnetic phase will form a characteristic "beak" 
pointing in one direction o r  the other depending on the 
sign off. An idea of the form of the diagram of states of 
the crystal in this case is given by sections of the three- 
dimensional phase diagram of .Fig. 3 with f =const. 

The appearance of a "beak" in the diagram of states 
can have extremely interesting consequences. Indeed, 

FIG. 3. Diagram of states of a cubic ferroelectric (ferromag- 
net). All three surfaces are surfaces of first-order phase 
transitions. The letters C, T, and R denote the regions of ex- 
istence of the cubic, tetragonal, and rhombic phases. 
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if the anisotropy of our crystal is such that sign f 
=-sign(ytl - yp)), and the difference yf) - y? is not too 
large, on lowering of the temperature this crystal will 
successively undergo two first-order phase transitions, 
close in temperature. Inasmuch as the Landau theory 
predicts here one continuous phase transition, there a r e  
grounds for speaking of a splitting of the phase transition 
into two under the influence of critical fluctuations with 
an anisotropic spectrum. The splitting effect, a s  can be 
seen from Fig. 3, is more strongly pronounced the 
larger the crystal anisotropy of the correlation function, 
and disappears completely in the "isotropic" limit f = 0. 

4. CONCLUSION 

We shall discuss possible experiments in which it 
might be possible to observe the effects predicted above. 
Evidently, the fluctuational change of the anisotropy of 
the effective anharmonic potential is the most easily 
susceptible of direct experimental detection. It can be 
detected without difficulty by measuring the components 
of the nonlinear magnetic (dielectric) susceptibility ten- 
sor  a s  functions of the temperature in the para-phase. 
The observation of the change of sign of the difference 
y ,  -y2 in the critical region, which would be evidence 
of the possibility of a phase transition to an anomalous 
(not describable by the Landau theory) phase, could be 
of special interest here. Anotherway of seeking such a 
transition is to study experimentally the diagram of 
states of the crystal in the region of strongly developed 
critical fluctuations with the aim of observing the "beak." 
In this case, of course, we must direct our attention 
primarily to substances which have phase transitions 
close in temperature and in which the Ginzburg-Levan- 
yuk parameter, which determines the size of the criti- 
cal region, is not too small. 

The question of the experimental observation of the 
phenomena described is intimately connected with the 
problem of the effect of strictional interactions on the 
critical thermodynamics of the crystal. The point is 
that the Aharony-Fisher Hamiltonian that we have 
taken a s  the starting point does not take into account the 
interaction of the field of the fluctuations of the order 
parameter with noncritical degrees of freedom, e.g., 
with acoustic phonons. At the same time, i t  is well 
known that such interaction can radically change the 
critical behavior of the system." It is very difficult a t  
present to say what will be the result of taking this into 
account in the given case, since even for considerably 
simpler models (uniaxial r n ~ d e l s , ' ~  models with an iso- 
tropic p r~paga to r , '~  and models without dipolar forcesz5) 
the analysis of the situation is extremely complicated 
and does not always give unambiguous r e s ~ l t s . ' ~  There- 
fore, we confine ourselves here to remarking that our 
treatment is applicable only to crystals with weak stric- 
tion, i.e., to those systems in which first-order phase 
transitions occur up to the point a t  which strictional in- 
teractions become important. Obviously, these crystals 
should be borne in mind when the corresponding experi- 
ments a re  se t  up. 

In conclusion we wish to thank A. L. Korzhenevskii 
and B. N. Shalaev for discussions on the present work. 

One of us (A.L S.) has also discussed the results with 
V. L. Pokrovskii and D. E. Khmel'nitskii and is extreme- 
ly grateful to them for useful comments. 

APPENDIX 

In this Appendix we shall elucidate the structure of 
the phase diagram of the GML equations (7) for nonzero 
anisotropy of the propagator. As pointed out in the main 
text, to solve this problem it  is necessary to find the 
real  roots of Eq. (10) for nonzero values of the para- 
meters ( and t. In principle, the values of 5 and & are 
uniquely determined by the value of the anisotropy con- 
stant f. We, however, shall assume f i rs t  that 5 and & 
are  independent variables, with the aim of investigating 
the question of the roots of Eq. (10) in general form. 
We a re  encouraged to carry  out such an investigation 
by the fact that the GML equations lying a t  the basis of 
the theory a r e  themselves approximate. Therefore, be- 
sides information on the properties of the system (7) 
i t  is also very desirable to have data on the extent to 
which these properties a re  stable against any particular 
perturbation of the initial equations. 

Thus, we shall consider the discriminant of the cubic 
equation (lo), which is given by the following expres- 
sion: 

D ( L  6) --'/toa[gE'-2%' 456+19) +bZ(9t'+186+37) 
-4f (1211-176-5\+4(~-86a+3~) 1. (A. 1) 

We recall that Eq. (10) has three real  roots when D<O 
and one when D > 0. Correspondingly, the equality 

defines in the (5, t )  plane a boundary separating two 
regions, each of which is characterized by i ts  own num- 
ber of real  roots of Eq. (10). It is possible to establish 
the shape of this boundary by solving Eq. (A.2) for 5 or  
5. To solve Eq. (A.2) directly, however, is too cumber- 
some. It is natural, therefore, to  attempt to seek a 
more or less convenient parametrization for the function 
[(c) satisfying this equation. It is indeed possible to find 
such a parametrization. It has the form 

The two branches of the curve specified by these formu- 
las a re  shown in Fig. 4; the region where Eq. (10) has 
three real  roots is shaded. 

We can now concentrize the values of the parameters 
5 and 5. They depend on f through the integrals J,  ap- 
pearing in the GML equations. These integrals were cal- 

FIG. 4. For the investigation of Eq. (10). 
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culated on a computer f o r  27 values of f  lying i n  the in- 
t e r v a l  (-1,20),*and the p a r a m e t e r s  [ and f w e r e  then 

found f r o m  the formulas  (9). The r e s u l t s  of these  calcu- 
lations are shown in Fig. 4 in  the f o r m  of a curve which 
plots the function {(t) es tabl ished f r o m  its computer  

parametr izat ion [(f), b ( j .  The  numbers  alongside the  
curve are equal  to the values o f f  at the corresponding 
points. 

A s  can be seen f r o m  Fig. 4, the  curve  [(g) lies en- 
t i re ly  in  the region in which Eq. (10) h a s  one real root. 
Th is  means that f o r  any reasonable values of the ani- 
sotropy constant f the s y s t e m  of GML equations can  pos- 

sess not m o r e  than one nontrivial s ingular  point. Since 
the s igns of all the coefficients in  the s q u a r e  b racke ts  in 
Eqs. (7) coincide, the sys tem does indeed have this  s in-  
gular  point. We note that the curve  5(6) in  Fig. 4 p a s s e s  
approximately through the middle of the region i n  which 

Eq. (10) possesses  one real root. Therefore,  the pro- 
per t i es  of Eqs. (7) discussed h e r e  should be s tab le  
against  not-too-strong variat ions of the GML functions. 
This  fact  gives us grounds to hope that the exact GML 
equations of our problem also possess  analogous proper -  
ties. 

An extremely important point is that- the rectilinear 
phase t rajectory on which the nontrivial s ingular  point 

lies is not, fo r  f z 0, the "Heisenberg" s t ra igh t  line. Its 
angle of inclination J, is determined by the magnitude of 
the root z, of Eq. (10): J,=arccotz,. The curves  of the 
dependences of z, and J I  on f i n  the interval  (-1,20), 
obtained by computer solution of Eq. (lo), are given in 
Fig. 2. A s  we see, the root z, is positive f o r  all values 
o f f  of interest to us. Knowing this  it is not difficult to 
deduce that the nontrivial s ingular  point of the  sys tem 
(7) should lie in the  f i r s t  quadrant of the phase plane. 
But th i s  information is already sufficient to establ ish 
the type of the fixed point, with the aid of Eq. (8). In 
fact ,  the cubic polynomial in the right-hand s ide  of (a), 
having a positive coefficient of z3 and one positive real 
root, should have a positive derivative at the point 2,. 
Since g, > 0 i n  the f i r s t  quadrant, dz/dt > 0 f o r  z > z, and 
dz/dt< 0 fo r  z <  z,. This  means  that  as we move along 
the phase t ra jec tor ies  of the sys tem of GML equations 
we move ever  fu r ther  f r o m  the s t ra igh t  l ine g, = z d 2 .  
But in  moving along this  s t ra igh t  l ine itself we inevit- 
ably arrive at the nontrivial s ingular  point, s ince  the 
point g, =g, = O  is unstable. It is clear f r o m  th i s  that the 
nontrivial s ingular  point is a saddle point. The en t i re  
pa t te rn  of the  phase t ra jec tor ies  of the s y s t e m  of equa- 
tions (7) is establ ished without difficulty f r o m  these 
data. This  pat tern is depicted in Fig. I. 

"we also include in this class of systems the two-component 
model usually used to describe tetragonal crystals. 

" ~ h o s  who have not been convinced by this argument can verify 
its validity in a purely formal way by considering the Dyson 
equation for G@(g). 

3 ) ~ h i s  is also understandable physically: because of the, pres- 
ence of the ccnondiagonalv dipolar forces the components of 
the fluctuating vector field cp turn out to be coupled to each 
other even when there is no bare anharmonic interaction be- 
tween them (7:" =0). Therefore, the phase trajectories in 
such cases can intersect the "Ising" straight line without 
hindrance.17v21 

4 ) ~ h i s  interval certainly includes all  values of the parameter f 
that a re  of physical interest. 

'M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974). 
'A. Z. patashinskirand V. L. ~okrovskir ,  Fluktuatsionnaya 

teoriya fazovykh perekhodov (Fluctuation Theory of Phase 
Transitions), Nauka, M., 1975 (English translation published 
by Pergamon Press ,  Oxford, 1979). 

3 ~ .  Aharony, in Phase Transitions and Critical Phenomena, 
ed. C. Domb and M. S. Green, Vol. 6, Academic Press ,  
N. Y., 1976. 

4 ~ .  Z. patashinski: and V. L. ~okrovskir ,  Usp. Fiz. Nauk 
121, 55 (1977) [Sov. Phys. Uspekhi 20, 31 (1977)l. 

5~ G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 
(1 972). 

61. J. Ketley and D. J. Wallace, J. Phys. A6, 1667 (1973). 
'A. Aharony. Phys. Rev. B8, 4270 (1913). 

F. Lyuksyutov and V. L. Pokrovskii, Pis'ma Zh. Eksp. 
Teor. Fiz. 21, 22 (1975) ~ E T P  Lett. 21, 9 (1975)l. 

'B. N. Shalaev, Zh. Eksp. Teor. Fiz. 73, 2301 (1977) [Sov. 
Phys. JETP 46, 1204 (1977)l. 

I0A. I. Sokolov, Fiz. Tverd. Tela 19. 747 (1977) [Sov. Phys. 
Solid State 19, 433 (1977)l. 

"A. L. ~orzhenevskir,  Zh. Eksp. Teor. Fiz. 71, 1434 (1976) 
[SOV. Phys. JETP 44. 751 (1976)l. 

"D. J. Wallace, J. Phys. C6, 1390 (1973). 
1 3 ~ .  C. Yalabik and A. Houghton, Phys. Lett. 61A, 1 (1977). 
I4A. D. Bruce, J. Phys. C7, 2089 (1974). 
1 5 ~ .  Nattermann and S. Trimper, J. Phys. A8, 2000 (1975). 
I%. Aharony and M. E. Fisher, Phys. Rev. B8, 3323 (1973). 
"A. I. Sokolov, Pis'ma Zh. Eksp. Teor. Fiz. 22, 199 (1975) 

[JETP ~ e t t .  22, 92 (1975)). 
1 8 ~ .  Nattermann, J. Phys. C9, 3337 (1976). 
"T. Tsuneto and E. Abrahams, Phys. Rev. Lett. 30, 217 (1973). 
'OS.  L. Ginzburg, Zh. Eksp. Teor. Fiz. 68, 273 (1975) [Sov. 

Phys. JETP 41, 133 (1975)l. 
'IA. L. ~orzhenevski j  and A. I. Sokolov, Pis'ma Zh. Eksp. 

Teor. Fiz. 27, 255 (1978) [JETP Lett. 27, 239 (1978)l. 
"A. I. Larkin and S. A. Pikin, Zh. Eksp. Teor. Fiz. 56, 1664 
(1969) kov. Phys. JETP 29, 891 (1969)l. 

'9. F. Lyuksyutov, Zh. Eksp. Teor. Fiz. 73, 732 (1977) [Sov. 
Phys. JETP46,  383 (1977)l. 

2 4 ~ .  E. ~hmel'nitskirand V. L. Shneerson, Zh. Eksp. Teor. 
Fiz. 69, 1100 (1975) [SOV. Phys. JETP 42, 560 (1975)l. 

2 5 ~ .  K. Murata, Phys. Rev. B15, 4328 (1977). 

Translated by P. J. Shepherd 

SOV. Phys. JETP 49(1), January 1979 A. I. Sokolov and A. K. Tagantsev 98 




