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A study is made of the motion of a rarefied plasma as a result of decay of a density discontinuity. Plasma 
is described by a kinetic equation with a self-consistent field which is solved numerically by the particle-in- 
cell technique. It is shown that eventually the motion approaches the self-similar solution considered by 
Gurevich, pariska~a, and pitaevskii [Sov. Phys. JETP 22, 449 (1966); 27, 476 (1968); 36, 274 (1973)l. 
It is shown that the self-similar solution dfilcriks correctly the acceleration of ions in a plasma expanding 
in vacuum. 

PACS numbers: 52.25.Fi, 52.25.Dg. 52.25.L~ 

61. INTRODUCTION 

The flow of a continuous medium due to decay of a 
discontinuity has been investigated in detail in gasdy- 
namicsl and gas kinetic^.^^^ In particular, it is known 
that under certain conditions this flow can have scaling 
similarity and can be described by self-similar 
(scaling-invariant) solutions of the appropriate equa- 
tions. The problem of decay of a discostinuity is more 
complex in the kinetics of a rarefied plasma. Gurevich 
et ~ 1 . ~  have shown that there is a limiting self-similar 
motion of a plasma which is attained when the charac- 
teristic spatial scale of the motion becomes much 
greater than the Debye radius and appropriate solutions 
of the kinetic equation with a self-consistent field a r e  
obtained. 

However, there has been no systematic study of the 
attainment of this self-similar limiting regime by a 
flow originating from an initial discontinuity. This is of 
interest because of the numerous applications of the 
solutions found by Gurevich et aL4 in the analysis of 
problems in ionospheric aerodynamics and laser plasma 
dynamics, which a r e  of practical importance. One of 
the typical examples i s  the problem of ion acceleration 
in an expanding plasma. It follows from the results  of 
Gurevich et ~ 1 . ~ 1 ~  that expansion of a plasma in vacuum 
is accompanied by acceleration of a considerable pro- 
portion of the total number of ions to energies consid- 
erably greater than the average thermal value. In the 
case of a multicomponent plasma the energy of such 
accelerated ions is approximately proportional to their 
~ h a r g e , ~  which is in agreement with the experimental 
results  (see Ref. 6 and the references given there). 

The question of ion acceleration was considered also 
by Widner et aL7 and by M u l ~ e r . ~  Numerical calcula- 
tions carried out using the hydrodynamic model yielded 
a certain limiting ion velocity, approximately equal to 
three t imes the average thermal velocity.' ~ u l s e r *  
used similar hydrodynamic calculations to conclude 
that the maximum energy of the accelerated ions i s  in- 
dependent of their charge. These conclusions were 
very different from the results  of GWevich et aL4e5 

Clearly, the hydrodynamic approximation is fairly 
rough when applied to the problem of expansion of a 

plasma in vacuum; the kinetic formulation of the 
problem adopted by Gurevich et ~ 1 . ~ 1 ~  i s  more correct." 

However, the quantitative results  of Gurevich et a1.4*5 
on the accelerated group of ions had to be refined 
somewhat because the self-similar solution i s  not 
valid throughout the space-time domain in which the 
ion acceleration takes place. 

It thus becomes necessary to solve the general self- 
similar problem of the motion of a plasma created by a 
density discontinuity. We shall tackle this problem by 
numerical methods. The solution obtained will be com- 
pared with the self-similar s ~ l u t i o n ~ * ~  and the range of 
validity of the latter will be found. Calculations will 
be reported for a two-component plasma with various 
ratios of the masses  of the components and also for the 
model of a plasma with a local equilibrium distribution 
of electrons used by Gurevich et aL4e5 The question of 
ion acceleration in one- and two-temperature plasmas 
will be considered in detail. 

We shall use the particle-in-cell methodg to solve 
the collisionless kinetic equation. The methodological 
features of the variant of the method used a r e  described 
elsewhere.'' A comparison of the self-similar solution 
with the exact one requires more detailed information 
on the distribution of the variables than that which can 
be obtained from the graphs of Gurevich et al. (Refs. 4 
and 5).2) Consequently, we prepared a special program 
for the solution of the self-similar problem and used it 
to carry out detailed calculations of the ion distribution 
function in a wide range of plasma parameters. The 
soluti6n method was similar to that used by Gurevich 
et a1.4.5 but we were able to avoid the incorrect opera- 
tion of numerical differentiation. 

The results  for the same variants a r e  in good agree- 
ment with those of Gurevich et aL4e5 By way of exam- 
ple, Fig. 1 shows two families of integral curves of the 
self-similar solution in the plane of the two variables 

u=u(m$2Te)", z= (x l t )  (m,l2T,) "; 

the curves correspond to the values of the ratio ,8 = Te / 
T, = 1 and 0 = 10. The principal properties of the self- 
similar solution follow readily from Fig. 1: an increase 
in T results in unbounded acceleration of ions and a 
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FIG. 1. Characteristics 
of the self-similar soh- 
tion in the u r  plane. The 
continuous curves corres- 
pond to p= 1 and the dash- 
ed curves to B= 10;  g re- 
presents the ion distribu- 
tion function. 

simultaneous reduction in their temperature (the dis- 
tribution function tends to a delta-like shape); the 
acceleration of ions increases with the initial electron 
temperature. 

$2. STRUCTUREOF FLOW. COMPARISON WITH 
SELF-SIMILAR SOLUTION 

Decay of a density discontinuity begins with the motion 
of the electron component; the electric field resulting 
from the charge separation is responsible for the ion 
acceleration. The process of ion acceleration then con- 
tinues and at the same time the total energy of the elec- 
tron component decreases when the ion increases. The 
distribution of the electric field at various moments is 
shown in Fig. 2b. This figure gives the results  of cal- 
culations carried out on the assumption that electrons 
have a local equilibrium distribution function in a self- 
consistent field corresponding to  an instantaneous dis- 
tribution of the charge density (formally, this case 

FIG. 2. a) Time dependences of the electric field intensity at 
the point x=O. The curves differ in respect of the ion mass. 
A represents the self-similar solution. b) Spatial distribution 
of the electric field at various moments. The dashed curves 
give the self-similar solution. The points on the continuous 
curves are the positions of the ion front. 

FIG. 3. Potential at the point x / r D = 5 0  plotted as a function of 
time for various values of the ratio m i  / m e ;  A is the self-sim- 
ilar solution. 

corresponds to  the mass ratio mi/me - a). Initially, a 
narrow peak of the field intensity appears in the vicinity 
of a discontinuity and this peak eventually expands and 
decreases in amplitude. The time (in units of o;:) i s  
given alongside each curve. For comparison, this 
figure includes the field distributions calculated for the 
same moments from the self-similar ~ o l u t i o n . ~  The 
points on the continuous curves show the successive 
positions of the boundary of an expanding ion cloud. We 
can see  that a considerable difference between the self- 
similar and exact field profiles appears only in the 
region ahead of the ion front, where the conditions of 
validity of the self-similar solution a r e  not satisfied. 

Figure 2a gives the time dependence of the electric 
field a t  the point of the initial density discontinuity x = 0. 
The dashed curve represents the self-similar solution 
and the other curves found by numerical solution for 
various values of the mass  ra t io  p = mi/me. Consider- 
able differences between the curves a r e  observed only 
during the initial stage of the expansion. 

In the case of finite mass  ratios (p = 16, 64) the in- 
tensity (Fig. 2a) and the potential (Fig. 3) of a self- 
consistent electric field oscillate with time. These 
oscillations, like those discussed earlier,1° make it 
difficult to compare the numerical and self-similar 
solutions so  that we shall make this comparison em- 
ploying the results  of calculation for a model with local 
equilibrium electrons. The corresponding profiles of 
the potential cp (in units of Ti/e) a r e  shown for various 
moments in Fig. 4. The dashed lines in this figure 

FIG. 4. Potential plotted as a function of the variable x / r D  at 
various moments in time. The chain curve is the position of 
the ion front. 
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FIG. 5, Potential plotted as a function of the self-similar var- 
iable r at various moments in time. The self-similar solu- 
tion is curve A. 

represent the self-similar solutions; the chain line 
intersecting a l l  the curves is the position of the ion 
front. It follows from Fig. 4 that throughout most of the 
region where the ion density does not vanish, the self- 
similar solution is very close to  the exact one. Some 
difference between the potential profiles a r e  observed 
only near the moving ion front where the quasi-neu- 
trality condition is not satisfied. 

It is interesting to note that, in contrast to  many 
problems in which the solution evolves with time in such 
a way a s  to approach monotonically the asymptotic self- 
similar result, in the present case the attainment of the 
self-similar regime is nonmonotonic: the difference 
between the exact and self-similar values of the poten- 
tial in the vicinity of the ion front oscillates with time. 
This is shown particularly clearly in Fig. 5, which 
gives the dependence of the potential on the self-similar 
variable T at various moments in time (the values of 
oflt a r e  given alongside each curve; A is the self- 
similar solution). It is clear from Fig. 5 that eventually 
the self-similar profile of the potential is established 
throughout a wide range of the variable T. The boundary 
of the region where the self-similar solution applies is 
close to the ion front ahead of which the deviation of 
the profile from the self-similar solution alternates 
from positive to negative values. 

It is clear from our results  that the self-similar solu- 
tion gives a correct  asymptotic description of the flow 
resulting from a density discontinuity. The self- 
similar solution is inapplicable during the initial stage 
of the discontinuity decay and in the vicinity of an ion 
front. It also does not describe the oscillations of the 
electric field at frequencies of the order of the electron 
plasma value, which appear if allowance i s  made for 
the finite electron mass. 

$3. ION ACCELERATION 

An analysis based on the self-similar solution5 indi- 
cates that expansion of a plasma in vacuum results  in 
the acquisition by a considerable proportion of ions of 
an energy which is many times greater than the average 
thermal value. Ion acceleration occurs a s  a result of 
the action of an electric field. Since the distribution of 
the field intensity given by the self-similar solution 

differs slightly from the exact one (Fig. 2b), it is inter- 
esting to  study the influence of this difference on the 
distribution function of accelerated ions. The fullest 
information on the particle acceleration can be obtained 
by determining the local distribution function. However, 
in the particle-in-cell method such a calculation pre- 
sents familiar difficulties because the total number of 
large particles is limited. The average distribution 
functions in some spatial region can be calculated much 
more simply and more accurately. Computation of such 
average values for the exact self-similar solutions 
makes it possible to  determine the range of validity of 
the self-similar solution in describing the motion of an 
accelerated group of ions. 

The results  given below were obtained as follows. A 
numerical solution at some moment t was used to cal- 
culate the average distribution functions of ions in an 
interval Ax selected in such a way that the correspond- 
ing interval of variation of the self-similar variable 

was unity. The results  of these calculations a r e  repre- 
sented by the continuous curves in Fig. 6. Next, the 
self-similar solution was used to find the averages of 
the distribution functions over several  intervals of the 
variable T of length AT = 1 (dashed curves in Fig. 6). 
The parameter of this family of curves was the variable 
T at the midpoint of each of the integration intervals. 
For convenience, the values of the average distribution 
functions a t  their maxima were taken to  be unity. A 
comparison of the curves showed that the self-similar 
solution differed little from the exact one. 

It should be noted that the proportion of particles with 
velocities six t imes greater than the thermal value is 
found to be several orders  of magnitude greater than 
for the Maxwellian distribution, i.e., ions a r e  indeed 
accelerated strongly. We should bear in mind that the 
quantitative results  of our calculations can be affected, 
in a certain range of the initial plasma parameters, by 
the collisional effects ignored in the self-consistent 
field approximation. Numerical simulation of the ac- 
celeration in this range of initial densities and temper- 
atures can be made conveniently employing a method 
proposed by Ivanov and Shvets.12 The results  of these 
calculations will be presented in a separate communi- 
cation. 

FIG. 6. Average distribution functions of ions at wpi t = 60. The 
numbers alongside the curves are the values of T at the mid- 
point of the integration interval. 
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The distribution function shown in Fig. 6 applies at a 
moment t = 6 0 ~ 2 .  In fact, it does not change greatly 
beginning from t = low;.  A later moment is chosen 
solely because for a fixed value of AT the segment Ax 
increases proportionally with time and integration of 
the distribution function is carried out over this seg- 
ment; this means that the number of large particles 
within this segment also increases proportionally to 
time. Consequently, the precision of the calculation of 
the distribution function is improved. An analysis of 
the results of this numerical simulation shows that, 
with the exception of the initial moments, the number 
density of large particles AN/AX in given segments of 
AT remains quite accurately constant, i.e., AN in- 
creases linearly with time a s  expected for self-similar 
motion. Numerical values of the densities in the exact 
and self-similar solutions a r e  in good agreement in a 
fairly wide range of the variable T .  Thus, the self- 
similar describes correctly the dynamics of 
ion acceleration during expansion of a plasma in 
vacuum. 

$4. TWO-TEMPERATURE PLASMA 

If the temperatures of electrons and ions a re  different, 
the qualitative picture of the evolution of a density dis- 
continuity remains basically the same a s  in the one- 
temperature case. However, there a re  important 
quantitative differences. It is shown in Fig. 7 how the 
density of ions increases at a point separated by 5 0 r D  
from the initial boundary of a plasma cloud for dif- 
ferent values of the ratio 0 = T, /T , .  As 0 increases, the 
rate of filling of vacuum with the plasma r ises  and the 
values of the ion density found by numerical simulation 
exceed somewhat the values deduced from the self- 
similar solution (the dashed curves in Fig. 7 corre- 
spond to the asymptote of the self-similar solution4 in 
the 0 >> 1 case). 

The change in the electron temperature has a con- 
siderable influence on the self-consistent field poten- 
tial. It follows from the self -similar solution that at  
the point of the initial discontinuity x = 0 the potential 
rises linearly in the absolute sense on increase of 
T $ T ~ .  This result follows also from the numerical 
calculations. The values of the potential and ion den- 
sity at x = 0 remain unchanged after a short initial 
period. 

FIG. 7. Time dependences of the ion density at the point x / r D  
= 50 for various values of B . 

FIG. 8. Position of the maximum of the distribution function 
plotted a s  a function of the ratio T, / T i .  The numbers along- 
side the curves are the values of the self-similar variable 7 .  

The dashed curves give the self-similar solution. 

An increase in the electron temperature has a strong 
influence on ion acceleration. In particular, the posi- 
tions of the maxima v, of the distribution functions 
calculated by the method described in the preceding 
section a r e  shifted, on increase of T e / T i ,  toward 
higher velocities. The results of calculations of v ,  are 
presented in Fig. 8. The continuous curves deduced 
from the numerical solution represent positions of the 
maxima of the distribution function integrated over the 
coordinate. The integration intervals Ax correspond to 
the segments AT = 1 centered at the points 7 = 2 and 
T = 3. The dashed curves a r e  the maxima of the local 
distribution functions with the same values of T which 
a r e  calculated from the self-similar s o l u t i ~ n ~ * ~  in the 
limiting case of >> 1. The differences between the 
curves a re  slight and a r e  partly due to the fact that 
integration of the distribution function with respect to 7 
shifts the position of the maximum toward lower 
velocities. Thus, the laws governing ion acceleration 
in a two-temperature plasma are  also described 
satisfactorily by the self-similar dependences deduced 
by Gurevich et ~ 1 . ~ 9 ~  

The authors a r e  deeply grateful to L. P. ~ i taevsk i r  
for numerous valuable discussions. 
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Establishment of the vibrational distribution of diatomic 
molecules 
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An analytic theory is developed of the establishment of the vibrational distribution function of diatomic 
anhannonic molecules. The solutions obtained are compared with the results of accurate numerical 
calculations. The rate of heating of a gas is found after the beginning of pumping and in the case of 
pulsed excitation of the vibrations. 

PAC§ numbers. 33.10.Gx, 31.20. - d 

An interesting example of a system far from the 
equilibrium i s  a vibrationally excited gas of diatomic 
molecules. For many such molecules (for example, 
N,, CO, HC1, H,, etc.) the relaxation time 7,-, of 
the conversion of the vibrational to the translational 
energy i s  long compared with the time taken to esta- 
blish the vibrational distribution function (T,,,). This 
means that it i s  quite easy to establish a state in which 
a gas has low translational and rotational temperatures 
but i s  highly excited in the vibrational sense. Such a 
state has a number of special features which affect, 
for example, the dispersion of sound, the degree of 
dissociation of molecules, the relaxation of the vibra- 
tional energy into heat, and the possibility of a popu- 
lation inversion between neighboring vibrational-rota- 
tional levels (for a review see, for example, Ref. 1). 

It i s  shown in Ref. 2 that, in the absence of the V-T 
relaxation, the vibrational distribution of molecules is  
affected greatly by their anharmonicity. A further 
development of the idea of Ref. 2 allowing for the V-T 

has led to the establishment of an 
analytic theory describing the steady-state distribution 
of molecules between the vibrational levels. 

We shall give an analytic theory of the transient 
processes of the establishment and relaxation of the 
vibrational distribution function under conditions far 
from equilibrium. 

The evolution of the vibrational distribution function 
f (v) can be described by a system of kinetic equations 

space of vibrational numbers in a section between the 
v-th and (v+ 1)-th levels; i, i s  the excitation frequency 
of the v-th level by external sources. The flux II,,, 
can be expressed in terms of the frequencies of the 
V-V exchange QZ,"," and the frequencies of the colli- 
sional and radiative relaxations P, and A,: 

Application of a familiar makes it possible 
to  simplify considerably the expression for the flux in 
the case of a state far from equilibrium. The main 
assumption of this theory,s5v6 which i s  the smallness 
of the change in f, in the I AV 1 )Avo case [Av, i s  the 
V-V exchange radius representing a reduction in the 
probability of exchange in processes with an energy 
defect (as a rule, we have A v o =  1-3)], makes it poss- 
ible to adopt a continuous variable v,  use an analog of 
the Fokker-Planck approximation, and obtain the fol- 
lowing differential form for II,,,: 

Specifically, we can use the following approximation 
for  the V-V exchange rate:lv5*' 

af/at=n.+,-n.+i,, (1 
where 6,-, i s  the reciprocal V-V exchange r a d i u ~ ' ~ ~ * ~  

where II,, is the flux of vibrational populations in the depending on the type of molecule and gas temperature 
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