
')In some papers, superradiance produced by incoherent 
pumping is called superfluorescence or intense superradiance, 
while optical induction and optical echo are called limited 
superradiance. 

"A more exact estimate of the angular dimension of one mode 
is given in Ref. 24. 

"This particular case of the solution of the system (21) was 
considered in Ref. 16. 

') The area of the pulse coincided with the polar angle of the 
Bloch vector. 
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The high-energy asymptotic behavior of the second Born approximation is examined. The formulas 
obtained are used to calculate differential and total cross sections for inelastic scattering of electrons from 
hydrogen and helium atoms. The results of the calculations are compared with experiment. 

PACS numben: 34.80.- 

1. INTRODUCTION 

Until recently the second Born approximation, unlike 
the f irst  one, had not been much used in the theory of 
collisions of electrons with atoms. This is evidently 
due to the simplicity and efficacy of the f i rs t  approxi- 
mation and the complexity of the second, together with 
the fact that the early studies seemed to indicate that 
the second approximation was not very efficacious. 

Of course problems involving two-electron transitions 
cannot be treated consistently without going beyond the 
limitations of first-order perturbation theory. But such 
problems are complex and have not been worked out well 
s o  far. In most of the studies total c ross  sections for 
single-electron transitions were calculated and com- 
pared with experiment, and various .attempts were made 
to improve the results of the f irst  Born approximation 
in the region of low collision energies where it usually 
gives values some 50-100% higher than the experimen- 

tal values. In particular, attempts were made to im- 
prove these results  by taking the higher-order (mainly 
the second-order) perturbation-theory contributions in- 
to account. 

Difficulties involved in calculating the integrals that 
arose  hindered the use of the second Born approxima- 
tion for a long time. But when Dalitz,' Lewis,' and oth- 
ers had developed a technique for  calculating these in- 
tegrals, the calculation of the contributions from in- 
dividual intermediate states ceased to  present any diffi- 
culties in principle, although the calculations remained 
rather laborious. 

The proposed technique was used in a series of stud- 
ies by Moiseevich and c o l l a b ~ r a t o r s ~ - ~  and by Wollings 
and McDowel17 to calculate the total elastic scattering 
cross  sections of hydrogen and helium as well as the 
total c ross  sections for  excitation of the 2s and 2p lev- 
les of hydrogen and the 2's and 2 l ~  levels of helium. 
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However, the cross sections obtained by taking into ac- 
count a number of what would seem to be the most im- 
portant intermediate states were close to the cross sec- 
tions given by the first Born approximation, and the at- 
tempt to improve these cross sections in the low-energy 
region was not successful. Not only was an attempt 
made in these studies to take precisely into account the 
contribution from individual levels, but an attempt was 
also made to take approximately into account the con- 
tribution from all other levels, including those of the 
continuous spectrum, by using the so-called closure 
formula. Although this method of summing over the 
intermediate states does lead to results that a r e  fairly 
reasonable a s  well as simple, we feel that it cannot be 
justified for the purposes for which it was used in the 
present case (to reduce the error  below 50%), and the 
fact that it did not lead to very good results does not 
seem surprising. Moreover, only the real part of the 
scattering amplitude was calculated in these studies. 
In any case, more recent s t u d i e ~ ~ ' ~  have shown that the 
accurate calculation of the cross sections for the 1s-2s 
and 1s-2p transitions and similar ones is a delicate 
problem for which the second-order corrections do not 
suffice. 

At the same time one may suppose (and the available 
experience with calculations confirms this) that the sec- 
ond-Born-approximation formulas can give a qualita- 
tively correct description of many second-order effects, 
just a s  the first Born approximation has led to many 
useful results in the case of one-electron transitions. 
On adopting such a qualitative approach it is natural to 
think of performing the calculation without using the 
correct matrix elements themselves, but to examine 
their asymptotic behavior at high collision energies and 
use only the asymptotic form of the matrix elements in 
the calculation. Such a procedure would be analogous to 
that used to describe the effect of electron exchange in 
first order perturbation theory." It is essentially the 
same a s  the usual method of employing the Born ap- 
proximation itself, the only difference being that the 
Born formula is so simple that the question of extract- 
ing its asymptotic behavior simply does not arise. 

We shall see below that using the asymptotic behavior 
instead of calculating the integrals exactly makes it 
possible to obtain many useful results and leads to 
formulas that a re  quite comparable a s  regards simpli- 
city to the first-Born-approximation formulas. Such 
simple asymptotic behavior arises in two cases; when 
the momentum transfer is small, and when it is large. 
Moreover, more complete calculations in which the in- 
tegrals a r e  evaluated accurately show that the amplitude 
is a monotonic and fairly smooth function of the mo- 
mentum transfer even at medium collision energies, 
and the more so at high energies. It is therefore rea- 
sonable to fit the resulting asymptotic formulas together 
somehow and thereby obtain the scattering amplitude a s  
a function of angle for all angles. 

We have already noted that the second Born approxi- 
mation is most naturally used to calculate essentially 
two-particle processes. However, there a r e  at least 
three problems that seem at first glance to be single- 

particle problems, but in which second-order effects 
actually play a predominant part. These a r e  the prob- 
lems of large-angle electron inelastic scattering, the 
problem of calculating the cross sections for transitions 
involving a change of more than unity in the orbital 
quantum number, and the problem of calculating the ex- 
change-scattering differential cross section at small 
and large angles. We shall examine these three prob- 
lems in this paper. 

All three problems have been treated before. The 
first one was treated by Potapov," who proposed an 
elegant method for extracting the asymptotic behavior 
of the scattering amplitude for small and large momen- 
tum transfers, a s  well a s  a procedure for joining the 
asymptotic formulas together. Unfortunately certain 
features of the structure of the matrix elements occur- 
ring in the integral over the intermediate momentum 
were not taken into account in this paper, and the final 
formulas turned out to be valid only for s - s transitions. 

The second problem was treated by ~ a k s h t e i n  and 
Presnyakov,12 but on the basis of an oversimplified 
modification of the second-Born-approximation formu- 
las. It was also treated on the basis of the complete 
formulas by Wollings and McD~well.'~ However, these 
authors calculated only the real part of the scattering 
amplitude; such a treatment cannot be regarded a s  val- 
id, and indeed it led to poor final results. 

The third problem was treated, but only for forward 
(zero-angle) scattering, by  onh ham, l4 using the 1s - 2's 
and 1s - 2'P transitions in helium a s  examples. These 
calculations were compared with Lassettre's experi- 
ment'= for the 2% level, which gave a cross section 
some lo4 times larger than a first-order perturbation 
theory calculation at a collision energy of 500 eV. Both 
these papers appeared soon after that of Vriens et a1." 
in which it was first shown that the first-order forumula 
does not correctly describe the behavior of the ex- 
change-scattering cross section a t  small angles and that 
the calculated cross sections a r e  much smaller than the 
experimental values. The experiment16 was performed 
a t  collision energies from 100 to 225 eV, and the auth- 
ors  suggested that these energies may be too low for 
perturbation theory to be applicable. Lassettre's ex- 
periment showed that that view i s  incorrect. Bonham 
was able to show that using the second-order formulas 
would increase the calculated forward-scattering cross 
section with excitation of the 2% state by almost 100 
times, although the calculated cross section still re- 
mained far below the experimental value. Bonham 
therefore concluded that even the second-Born-approx- 
imation formalism does not give a satisfactory descrip- 
tion of experiment. 

The present work also arose from an attempt to un- 
derstand the behavior of exchange-scattering differen- 
tial cross sections. Below we shall show that, contrary 
to Bonham' s conclusion, the second Born approximation 
can provide a reasonable basis for the description of 
exchange processes at fairly high energies. Bonham's 
conclusion turns out to be based on an accidental coin- 
cidence of circumstances. Precisely the case of ex- 
change excitation of the 2% level of helium at energies 
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above 300 eV and scattering angles below 10" is an ex- 
ception to the general rule and requires additional study. 

In the calculations presented below we follow Pota- 
pov's method" to obtain the principle terms in the as- 
ymptotic behavior of the Born approximation, which are  
valid for all transitions. Our procedure for fitting to- 
gether the asymptotic results differs from Potapov's, 
being both simpler and more accurate. Using these 
formulas we calculate the differential cross sections 
for excitation of the 2s and 2p hydrogen levels and the 
2'S, 2'P, 2%, and 2 ' ~  helium levels, a s  well a s  the 
total cross sections for excitation of the 3'0 and 4% 
helium levels. The results of the calculations a r e  com- 
pared with experiment and with the results of other in- 
vestigators. 

We use the hydrogen atom to illustrate the method for 
extracting the leading terms in the asymptotic scatter- 
ing amplitude. No difficulties will be encountered in 
extending the results to more complex atoms. 

2. THE SCATTERING AMPLITUDE I N  THE FIRST 
BORN APPROXIMATION 

In the first Born approximation, the scattering ampli- 
tude has the form 

where $J, and $, are  the wave functions for the initial 
and final states of the atom and A =k -kt is the momen- 
tum transfer, k and k' being the momenta of the incident 
and scattered electrons. In the subsequent calculations 
it will be convenient to choose the quantization axis in 
the direction of k. We therefore rewrite Eq. (1) in a 
coordinate system having its z axis in the direction of 
k and explicitly exhibit the dependence of FB, on the 
angles defining the direction of A. On inserting the 
atomic wave functions in the form of products of radial 
and angular functions and making use of the expansion 
of a plane wave in a series of spherical functions, we 
obtain 

where A =(A(, =A/A, and 

Fwr(A) = ( -1)  I+mojl=-ip 

m (3) 
K[45r(2La+1) (21,+1) (21+1) 1" ~ . ( r ) ~ @ ( r )  jl (AT)+ dr, 

j , (~ , )  being a spherical Bessel function. 

If the initial state is an s state (1,=0), a s  will be the 
case in all the examples examined below, Eq. (2) sim- 
plifies to 

The exchange scattering amplitude is  
i i 

gi:' (k, k') = - j exp (-ik'r,) $p(r,)- exp (ikr,) $, (r , )  dr, dr,. (5) 
2n r, 

It is not difficult to show1' that the expansion of g:: in  

powers of the reciprocal velocity has the form 

For A - 1, the first term is the leading term in the as- 
ymptotic exchange-scattering amplitude. It has been 
repeatedly used. Sometimes, however, the second 
term, which is proportional to k-', must also be re- 
tained since, a s  we shall see below, the principal sec- 
ond-order terms in the interaction a r e  also proportional 
to k-'. Moreover, F~:(A) is proportional to k-' or k-' 
when A<<1, and then the first term turns out to be pro- 
portional to k-' or k-4, respectively. 

3. THE SCATTERING AMPLITUDE I N  THE SECOND 
BORN APPROXIMATION 

The contribution of the second-order terms to the 
scattering amplitude has the form 

In our case 

V(r , ,  r,) = i / r l2 - i / r1 ,  (8) 

and E,,  = E ,  + ka/2, where E, i s  the energy of the atom 
in state a. The summation i s  taken over all intermedi- 
ate states y .  For the Coulomb interaction, Eq. (7) re- 
duces immediately to the form 

in which FBa(q)  is defined as in Eq. (1). 

It will be convenient in the subsequent calculations to 
separate out the terms with y = CY and y = p  in the sum- 
mation over y: 

The first of the integrals in Eq. (10) can be evaluated 
without much difficulty,' but, since it contributes only 
to the elastic scattering, it is of no interest to us here 
and we shall drop it. 

The remaining integrals can also be calculated ac- 
curately but, as we noted in the Introduction, we shall 
not undertake that task but shall examine their behavior 
only in the limiting case of high scattering energies 
(k>>l). Then the two limiting cases of large and small 
momentum transfers naturally arise. 

The scattering amplitude for A >> 1 

In view of the behavior of the matrix elements F,(x) 
at small and large x: 
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The scattering amplitude for A << 1 
For small-angle scattering we have A - - E  ,)/hv 

with k-k' and k >>l. Hence it is not necessary here to 
transform the coordinate system a s  we did in the case 
A >> 1. In view of (1 I), all the integrals a r e  well de- 
fined, and for the term involving electron-electron in- 
teraction, for example, we obtain 

it is not difficult to see that the main contribution to the 
integrals of interest to us comes from values of n close 
to unity. It can be seen in an obvious way that the sec- 
ond and third integrals in (10) a r e  proportional to A-'. 
The last integral, however, is proportional to A -8 - J s - J y  

and should be dropped for the case A>>l. Thus, for the 
case k >>I and A >>I we reach the following simple re -  
sult'l: 

Here, in accordance with the condition k>> 1, we have 
retained only the leading terms in the Green's function. 
The angular integration in the first of these integrals 
can be performed at once. Recalling that, in accord- 
ance with (4), we have Fg, (x)  = F ~ ~ ~ ( w )  YIB me(>), we ob- 
tain 

where 

Cancellation of terms arising from the electron-elec- 
tron and electron-nucleus interactions, which assures 
the electrical neutrality of the atom as  a whole when A 
is small, plays an important part in the integrals con- 
taining y = a and y =!. Finally, a s  Potapov pointed out,'' 
it is useful to bear in mind that in the case A<<l the 
second-order terms will be of the order of l/k, while 
the second order terms in the scattering amplitude for 
dipole transitions will be of the order of k, and in the 
other cases, of the order of unity. Hence for direct 
scattering in the small-angle region there is no reason 
to expect the second-order terms to alter the cross 
sections greatly. 

in which 

where the P,(x) a r e  Legendre polynomials and the sign 
"v.p." indicates that the principal value of the integral 
is to be taken. Thus, the contribution comes from 
either the first or  the second term in the braces, de- 
pending on the parity of I .  

In the second integral we must take account of the 
fact that we have chosen the quantization axis in the 
direction of k, whereas it i s  convenient to use a co- 
ordinate system with the z axis in the direction of k' 
when calculating the integrals; the wave functions oc- 
curring in FBa must therefore be subjected to the ap- 
propriate preliminary transformation. We finally ob- 
tain 

For exchange transitions the situation is different. An 
expression for a typical integral occurring in the scat- 
tering amplitude can be written down directly by analogy 
with (18); it has the form 

the C; being defined by formula (19) as  before. 

It is not difficult to see, however, that in the case of 
small-angle exchange scattering the first-order term 
i s  of the order of k-' for dipole transitions and of the 
order of k-4 in the other cases. Thus, for small-angle 
scattering the second-order terms in many cases turn 
out to be the principal ones, a s  was first shown by Bon- 
ham.14 For large scattering angles the first-order 
scattering amplitude falls off even faster (as A-s-za-'e) 
and the second-order terms a r e  always the governing 
ones. la 

in which 

where the P;L(x) a r e  associated Legendre polynomials. 
In accordance with (14), the coefficients C, for I =0,1,2 
have the following values: 

C,=-in", C,=2(3/n)'", C2=i(5n)". 

For the case of exchange scattering we must return to 
Eq. (7) and, in analogy with Eq. (5), interchange the 
arguments of the final-state wave function. By per- 
forming calcuIations similar to the preceding ones we 
can easily show that the following expression, in which 
the coefficients CzB a r e  the same a s  in (14), is obtained 
for the exchange amplitude: 

Thus, formulas (15) and (18) solve the problem of 
finding the asymptotic behavior of the scattering amp- 
litude for large and and small scattering angles. As we 
noted before, analysis of more complete calculations 
in which the assumptions k >> 1 and A>>l were not 
lnades. 9 . 1 9  shows that the imaginary part of the scatter- 

ing amplitude varies rather smoothly on going from 
large to small scattering angles. The preceding an- 
alysis [and indeed the very structure of formulas (lo)] 
suggests a procedure for smoothly fitting together the 
two asymptotic expressions. It is obvious that we shall 
correctly write both limiting cases if we replace IA + x i Z  
in the denominators of the integrals in (10) by QZ =xz  
+A', It is also obvious that that substitution corre- 
sponds simply to employing the theorem of the mean in 

We note that the dependence of FBa on the direction of 
the vector x was not taken into account in Ref. 11, so 
that the results obtained there a r e  valid only for s - s 
transitions. 
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calculating the integrals w e r  the angles specifying the 
direction of the vector n. In this manner we finally ob- 
tain the following formulas, useful a t  all scattering 
angles, for the scattering amplitude in the second or- 
der: 

where Q2=A2+n2, the Clgand Cfymy are  defined by 
formulas (14) and (19), and @z8m8 is defined by formula 
(16). 

For the exchange-scattering amplitude we obtain the 
same formula (21) but with n2 replaced by k2 in the de- 
nominators: 

The total direct- and exchange-scattering amplitudes 
a re  of course 

f = f ( ~ ) + f ( n )  g=g(i)+g(a). (23) 

It will be useful to discuss once again the orders of 
magnitude of the individual terms in these formulas. 
The preceding analysis shows that it is useful not only 
to discuss the limiting cases of large and small scat- 
tering anlges (A >>I and A << 1, respectively), but also 
to examine the case A - 1. From formulas (I), (21), and 
(22) we obtain the estimates listed in Table I. Here we 
use the notation g(') =g?) +gk1) in accordance with the 
separation of g(')(h) into two terms in Eq. (6). It is  
especially clearly evident from the Table that the main 
contribution to the direct scattering comes from the 
first-order terms when A<< 1 or  A - 1, and from the 
second-order terms when A >>l. 

For exchange scattering the situation is more com- 
plicated. Here the second-order terms always con- 
tribute to the principal terms in the asymptotic expan- 
sion of the scattering amplitude for both small and large 
angles. For medium angles (A - 1) the first order term 
g:') turns out to be the principal one. Since it is just 
this angular region that makes the main contribution to 
the total exchange-scattering cross sections, we can 
understand why earlier calculations in which only this 
term was considered led to poor agreement with experi- 
ment. 

TABLE I. 

Finally, for optically allowed transitions at small 
scattering angles one must take into account the con- 
tribution from the first-order terms g:') and g:'), both 
of which a r e  proportional to k-', while g ,  becomes the 
principal term when A - 1. 

4. CALCULATIONS AND DISCUSSION 

Using formulas of the type of Eqs. (I), (6), (21), and 
(22), we made calculations for many transitions in hy- 
drogen and helium, since it is just for these atoms that 
a fairly large mass of experimental data has now been 
accumulated and calculations have been made in various 
alternative approximations. We shall consider the sev- 
eral problems in the order in which they were listed in 
the Introduction. 

1. Excitation with large-angle scattering 

The simplest problem in which it is necessary to take 
into account the contribution to the scattering amplitude 
from second-order terms in the interaction in order to 
obtain a correct description of the process is that of 
calculating the excitation of an atom with deviation of 
the scattered electron through a large angle. Actually, 
an electron cannot be scattered through an angle greater 
than ~ / 2  by an electron at rest. Since an atomic elec- 
tron is not at rest, however, such large-angle scatter- 
ing is indeed possible, but its probability is very low 
in the case of fast incident electrons since in addition 
to the usual Rutherford factor A-4, it is also propor- 
tional to the probability that the atomic electron have a 
velocity comparable to that of the incident electron. 
This probability, in turn, is proportional to k-a; hence 
if only the electron-electron interaction is taken into 
account the cross section falls off a s  A'4k-8, and this is 
already in sharp contradiction with experiment for scat- 
tering angles abwe 40" and collision energies abwe 50 
eV. 

These simple considerations have been noted by a 
number of authors1'* 20*21 and quite obviously make it 
necessary to take at least two interactions into account 
in the calculation; the interaction with the atomic elec- 
tron, and with the nucleus. In that case, a s  is evident 
from Eq. (13), the cross section turns out to be pro- 
portional only to k - ' ~ - ~ .  Of course a similar result can 
be obtained by using the Glauber approximation or  some 
modification of the distorted-wave method. 

Figure 1 shows the combined differential cross sec- 
tions for excitation of the 2s and 2p levels of hydrogen 
over the wide range of incident-electron energies from 
54 to 680 eV (curves 2). The scattering amplitudes 
were calculated with formulas (1) and (21), using the in- 
itial (Is) and final (2s or 2p) states a s  intermediate 
states. The contribution from other states was con- 
siderably smaller. The experimental cross sections 
obtained by Williams and WillisZ2 are  also shown on the 
figure, a s  well a s  the cross sections calculated in the 
first Born approximation (curves 1) and a cross section 
calculated by Byron and Latour,' using a more accurate 
method than ours for calculating the second-Born- 
approximation integrals (curve 3). 
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FIG. 1. Cross  section for excitation of the 2s and 2p s ta tes  of 
hydrogen. Curves : 1-first Born approximation, 2-scattering 
amplitude calculated with formulas (1) and (21) of the present 
paper, 3-second Born approximation 4Ref. 8). The experimen- 
tal points a r e  from Ref. 22. 

Figures 2 and 3 show the differential cross sections 
for excitation of the 2% and 2 ' ~  states of helium. The 
calculations show that in these cases the main contrib- 
ution to the scattering amplitude comes from the IS, 
2lS, and 2 ' ~  intermediate states. Zn our calculations 
for these and all other transitions we used the wave 
functions from Refs. 23 and 24 for the ground and ex- 
cited states of helium; these wave functions a re  fairly 
simple but are  quite accurate enough for our purposes. 

To illustrate the difference between our results and 
those that can be obtained with Potapov's formulas we 
show cross sections calculated in accordance with Ref. 
11 in Figs. 2 and 3 (curves 3). We recall that for s - s 
transitions our formulas differ from Potapov's only in 
the method for matching the cross sections for large 
and small momentum transfers, while for s - p  tran- 
sitions they differ also by a numerical coefficient. As 
is evident from the figures, this difference is clearly 
seen on comparing the calculations with experiment. 

Finally, the calculations of Geltman and Hidalgo," in 
which Coulomb wave functions were used instead of 
plane waves for the final state, a re  also shown in the 

-3 
-3 

---_ -4 
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FIG. 2. Cross  section for excitation of the 2's state of helium. 
Curves: I-first Born approximation, 2-calculated with for- 
mulas (1) and (21) of the present paper, 3-second Born approx- 
imation (Ref. l l ) ,  4 - c a l ~ u l a t e d ~ ~  using Coulomb wave functions. 
Experimental points: 0-Ref. 16, .-Ref. 25, A-Ref. 26, 
x-Ref. 32. 

FIG. 3. Cross  section for  excitation of the 2 ' ~  state of helium. 
The notation i s  the s ame  a s  in Fig. 2. 

figures (curves 4). Critical remarks regarding these 
calculations will be found in Ref. 11. 

On the whole, we can evidently say with some con- 
fidence that the simple second-Born-approximation 
asymptotic formulas (1) and (21) reproduce the experi- 
mental data for problems of this type fairly well at 
collision energies above 100 eV and for all scattering 
angles. 

2. The total cross sections for excitation of the 3'0 and 
4' D He levels 

First -Born-approximation calculations give cross 
sections for transitions of the type 1s -ns or I s  -np 
that a re  50-100% larger than the experimental values. 
That situation is standard. For Is-nd transitions, 
however, whose probabilities a r e  considerably lower, 
the first-Born-approximation cross sections turn out 
to be smaller than the experimental values and only ap- 
proach the latter a t  high collision energies. vainshtein 
and Presnyako~'~ suggested an explanation for this sit- 
uation, pointing out that in this case the direct transi- 
tion might be less intense than the two-stage cascade 
consisting of two intense dipole transitions. Essentially 
the same possibility was noted even earlierz7 in connec- 
tion with a discussion of the Coulomb excitation of nu- 
clei. Formulas (21) and (22) provide a simple and 
natural means for calculating such processes. 

The results of a calculation for the 1s-3b transition 
in He a re  shown in Fig. 4 a s  an example. As before, 
curve 1 shows the contribution of the first-order terms 
to the cross section, and curve 2 was calculated with 

FIG. 4. Cross  section for excitation of the 3'0 state of helium. 
Curves: I-first Born approximation, 2-calculated with for- 
mulas (1) and (21) of the present paper,  3 and 4 - c a l ~ u l a t e d ~ ~  
by the method of second-order potentials with and without allow- 
ing for the 2 ' ~  level, 5-~alcula ted '~  in the second Born approx- 
imation taking only Ref. (2) into account. Experimental points: 
0-Ref. 29, A-Ref. 30. 
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formulas (1) and (21) with the llS, 2'P, 3'p, and 3'0 
states included a s  intermediate states. These results 
can be compared not only with experiment, but also with 
the second-Born-approximation calculations of Wollings 
and ~ c ~ o w e l l , ~ '  in which, however, only the real part 
of the scattering amplitude was taken into account, and 
with a calculation by Bransden and IssaZ8 using the so- 
called method of second-order potentials, which is es- 
sentially a variant of the strong coupling method. The 
latter calculation was performed twice; once with the 
IS, 3 ' ~ ,  and 3'0 states included as intermediate states 
(curve 3) and once with the IS, 2'p, 3'p, and 3% states 
so  included (curve 4). 

Figure 5 shows the parts played by different inter- 
mediate states in the excitation of the 310 level of He. 
It is evident from the figure that the main contribution 
to this process actually comes from two successive 
dipole transitions that go via the 2 ' ~  o r  3 ' ~  level. Scat- 
tering from the nucleus a s  well a s  the contribution from 
the first-order amplitude play a much less important 
part here than in the preceding problem. Taking the 
higher n 'P states into account also makes little differ- 
enece. Thus the difference between curves 3 and 4 in 
Fig. 4 also becomes quite understandable. 

Similar results can be obtained for the 4'0 level. 

3. Differential cross sections for exchange scattering 
with excitation of the Z3s and Z3p He levels 

In the Introduction we noted that experiment clearly 
indicates that the exchange-scattering differential cross 
section has a peak at small scattering angles. Recent 
experiments (see Ref. 15, and especially Ref. 25) show 
that at energies of 100-200 eV the peak in the differ- 
ential cross section for excitation of the 2 ' ~  He level 
lies in the angular range 10-20°, whereas the differ- 
ential cross section for excitation of the 2's level in- 
creases clear down to 5"-the smallest angle at which 
it was measured. Such behavior is in obvious conflict 
with the first -order perturbation-theory predictions, 
especially for the 2's level. 

Taking the second-order terms into account improves 
the situation considerably, a s  will be seen from the cal- 
culation results shown in Figs. 6 and 7. In both cases 
all  states with n = 1 and n = 2 were taken into account a s  
intermediate states; states with n = 3 give a consider- 
ably smaller contribution. 

Contributions from individual states to  the amplitude 

FIG. 5. First-order amplitude and cont+ibutions of various in- 
termediate states to the second-order amplitude for the IS-3lD 
transition in helium. Curves : 1-f2)(2'p) , 2-f ( 2 ) ( 3 1 ~ ) ,  3- 
f ( 2 ) ( 3 1 ~ ) * 1 0 ,  4- f (2)(1~)*10,  5-f(')-10. 

FIG. 6. Cross section for excitation of the 2% state of helium. 
Curves: I-first Born approximation, 2-calculated with for- 
mula (22). 3-calculated with formulas (6) and (22). Experi- 
mental points: 0-Ref. 16, .-Ref. 25, x-Ref. 32. 

for excitation of the 2's and z3p levels a r e  shown in Fig. 
8. It is quite evident how the total amplitudes for these 
processes a r e  made up. In particular, it i s  evident that 
for the 1 s -2 '~  transition the term gil), the second term 
in formula (6), plays an important part in forward scat- 
tering, whereas for the lS-23S transition gi1)(0) = O  and 
the amplitude is due almost entirely to the second-order 
terms. Moreover, the main contribution comes from 
terms describing the interaction with the nucleus in the 
initial or final state, i.e., from the distortion of the in- 
cident plane wave by the nuclear field. In the case of 
excitation of the 2 ' ~  level, the density of atomic elec- 
trons in the final state near the nucleus is smaller than 
in the case of excitation of the 2's level, and the part 
played by terms corresponding to two-electron transi- 
tions is accordingly more important. The part played 
by the 2 ' ~  intermediate state i s  especially large. 

Returning to Figs. 6 and 7 for the differential cross 
sections, we see that the calculations agree less well 
with experiment for exchange scattering than for direct 
scattering. This i s  especially the case for excitation of 
the 2's level. At 100 eV our calculations reproduce the 
cross section more or  less well only for the smallest 
and largest scattering angles, the calculated cross sec- 
tions being much too large at intermediate angles. The 
calculation agrees considerably better with experiment, 
however, even at the collision energy E =200 eV, and at 
E = 500 eV the calculated cross sections practically 
agree with experiment for scattering angles larger than 
10 ". 

At high energies, however, the differential cross sec- 
tions for this transition exhibit a new feature; they de- 
velop a sharp peak at scattering angles below 10". Our 
formulas do not reproduce this peak, and that is what 
led Bonham14 to conclude that second-Born-approxima- 
tion calculations a r e  inadequate. It is rather to be con- 
cluded from our results, however, that the theory em- 
ployed merely cannot explain the sharp forward peak in 

FIG. 7. Cross section for excitation of the state of helium. 
The notation is the same a s  for Fig. 6. 
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FIG. 8. First-order amplitude and contributions of various in- 
termediate states to the second-order amplitude for  the ls-z3S 
and 1 s - 2 ~ ~  transit ions in helium a t  E= 200 eV. a-The 1 s - 2 ~ ~  
transition; curves : I-gl", 2-g$" , 3-gC2'(1s), 4-g'2'(23~), 
5-g'2'(21~), 6-g'2'(21~), 7-g(2)(23p). b-The 1 s - 2 ~ ~  transi-  
tion; curves: l-g:'' *1/2, 2-gi", 3-g(')(1~), 4-g'2)(23~), 
5-g'2' ( 2 1 ~ ) .  

the scattering with excitation of the 2's level and that 
the asymptotic cross sections approach the experimen- 
tal values less rapidly in this case than in other cases. 

Huo3' attempted to  explain the sharp peak in the ex- 
citation cross section for the 2's level and found that 
intermediate P states of the continuous spectrum make 
a large contribution to this transition. She was able to 
obtain the correct order of magnitude for the cross sec- 
tion and even to show that, as a function of energy, the 
cross section has a minimum a t  E - 200 eV and falls off 
slowly a t  energies above 300 eV in accordance with the 
experimental data then available. More recent experi- 
mentsZ5 showed, however, that the cross section actual- 
ly falls off considerably faster than Huo's calculations 
predicted. Moreover, in Ref. 31 the cross section was 
obtained only for zero scattering angle, and it is not 
clear how sharp a peak this theory predicts. Finally, 
the relation between this theory and Bonham's theory is 
not clear. The closure formula was used in Bonham's 
theory, i.e., it is supposed that the entire continuous 
spectrum (including the P states) is included in the 
treatment in some reasonable approximation. We there- 
fore feel that this problem requires further study. 

The cross section for excitation of the 2'P level does 
not exhibit any special features and agrees fairly well 
with our calculations in the energy region 50 GE 4200 eV 
in which measurements have been made. One can only 
see  a certain enhancement of the cross section a t  the 
smallest scattering angles. This enhancement is due to 
the term gil' in the amplitude. In general we may 
s t ress  that although we did include this term in the cal- 
culations since it behaves as k-3 and is therefore not to  
be dropped on formal grounds, it actually always leads 

to  a certain discrepancy with experiment. This is il- 
lustrated by Figs. 6 and 7, which show the cross sec- 
tions calculated with (curves 3) and without (curves 2) 
using this term. 
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