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A comparison is presented of the results of the quantum and semiclassical theories of superradiance. It 
follows from the comparison that the onedimensional semiclassical model of superradiance is valid at large 
Fresnel numbers. It is shown that the applicability of the spatially homogeneous solution is restricted to 
short or closed systems, and comes into play for extended systems only during the time of one passage of 
the light through the system. Numerical calculations are made of the superradiance pulses, of the 
population kinetics, and of the polarization under spatially homogeneous initial conditions. The properties 
of these quantities, which are due to invariance of the equations and of the initial and boundary 
conditions to scaling transformations, are discussed. 

PACS numbers: 42.50. + q 

1, INTRODUCTION 

Even though Dicke's paper1 in which he predicted 
superradiance theory was published more than 20 years 
ago, discussions of the models and approximations that 
describe this phenomenon adequately still 
Superradiance is collective spontaneous emission of a 
polyatomic system under conditions when the relaxation 
of the off-diagonal density-matrix elements of the atom 
is slower than the de-excitation process. One charac- 
teristic feature of superradiance, the proportionality of 
its intensity to the inversion-density squared, is due to 
the onset of a macroscopic dipole moment. The phasing 
of the atomic dipoles, which accounts for  this effect, 
takes place spontaneously in the course of the emis- 
sion, regardless of the character of the excitation (co- 
herent or incoherent). This distinguishes superrad- 
iance from optical induction, where the quadratic effect 
is connected with coherent pumping.' 

Intense superradiance wasobserved in optizally 
pumped HF gas on the transition between the rotational 
sublevels of an excited vibrational state.5 The observed 
increase of the radiation intensity (by ten orders of mag- 
nitude compared with spontaneous emission) and the 
quadratic dependence of the intensity on the inversion 
density weed with Dicke's theory. To explain the wave- 
form of the superradiance pulse, however, and to de- 
termine the influence exerted on the collective effect by 
the homogeneous broadening of the spectrum, a more 
detailed theory was necessary. The details were ob- 
tained in two approximations, quantum (quantum de- 
scription of the electromagnetic field and of the atomic 
~ystem)~-lO and semiclassical (classical description of 
the electromagnetic field and quantum description of the 
atomic ~ y s t e m ) . ~ ~ ~ ' - ' ~  

of this phenomenon (as well as of ordinary spontaneous 
emission) is possible only with the aid of quantum elec- 
trodynamics. At the same time, for sufficiently simple 
models of superradiant systems (a system in a volume 
with linear dimensions smaller than the wavelength, in a 
system in the single-mode approximation without re-  
tardation and Coulomb interaction) the quantum theory 
yields the dynamics of the de-excitation most effective- 
ly. 

It is known that in a two-level approximation all the 
operators pertaining to a polyatomic system can be ex- 
pressed in terms of Pauli matrices (or energy spin oper- 
ators). In particular, the energy operator of a poly- 
atomic system interacting with an electromagnetic field 
is given by 

where 

&=he R:' +z fickikAtin, 
II 

fl 
8,.,=gO1 jx (cap) [a:' .ilk exp (~kr,) +#~'r ik l+exp(-rkr j )  1. (2) 

I N  > k I  

Here h4) and h(;) a r e  the operators of the energy spin 
of thej-thatoms, â ,, and ii;, a r e  the operators of an- 
nihilation and production of a photon with momentum k 
and polarization e,, w ,  is the resonant frequency of the 
atom, p is the matrix element of the dipole moment of 
the transition, r, is the radius vector of the j-th atom, 
N is the number of atoms, and the interaction constant 
gb is given by 

V h (3) 
The purpose of the present paper is to compare the where V is the quantization volume. 

r e s u l k  of -the quantum and se&iclassical theories, to If the linear dimensions of the system a r e  less than 
determine the regions of applicability of various semi- the wavelength, the exponentials in (2) can be omitted. 
classical models of superradiance, and to investigate 

In this case the energy operator commutes with the 
the solutions obtained for  them. operator of the square of the total energy spin: 

2. QUANTUM THEORY OF SUPERRADIANCE [ R ,  PI =o, 

The quantum theory of superradiance is primarily ~ z = ~ $ ~ ~ + R ~ ~ + R : ~ ,  R o = x  R:' 
of heuristic significance, since a consistent explanation f 
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Assume that at the initial instant of time all the atoms 
were excited. Then thAe corresponding state is  an eigen- 
state of the operator R2 with eigenvalue R(R + 1) 
=+N(+N+ 1). Since 2' is an integral of the motion, the 
quantum number R =N/2 is conserved while the system 
evolves. The de-excitation is accompanied by a cascade 
transition between states with quantum numbers R, 
=AN LN - 1 

2 ~2 , . . . , GN. The probability per unit time of 
a transition between the states (+N, R,) and I ~ N ,  R, - 1) 
can be calculated by perturbation theory: 

2n Vo' 1 1 
= ( R . J B ~ . . ~ ~ N , R . - ~ ) I ~  

1 1 
* ( a - u o ) d o  sin 0 d0 dq=y (-N+R, ) ( T ~ - ~ . + l ) ,  

(5) 
2 

where y = 4p2w9,/3h3 i s  the radiation constant of one 
atom. 

The realization of the cascade transition in time with 
probabilities (5) can be obtained by the Monte Carlo 
method.lg The intensity fluctuations that appear in this 
case were investigated in Refs. 7, 20, and 21. 

The superradiance intensity averaged over different 
realizations can be obtained by summing the average 
transition times TR,= y;;:. In fact, the average time in 
which n photons will be emitted (under the conditions 
n>>l,N>>l) is 

x/a-a x/a-m 
dRz 2 y '  = - arcth 

%--N/Z N / Z  

(6) 
From this we get for n 

where 

N-1 P h N .  to=y-' arcth- = - 
N f 1  N 

With the aid of (7) we obtain the average number of 
photons emitted per unit time: 

The operator k2 of an extended system does not com- 
mute with the interaction Hamiltonian (2). However, a s  
shown by Dicke,' at  a fixed value of the wave vector k 
the operators 

have the same commutation properties a s  i ,  and k,, 
and the operator 2; commutes with the corresponding 
terms of the Hamiltonian (having the same wave vector 
k). It is  sh_own 1a;er that the eigenstates IR,, R,) of the 
operators Ri and R: approximately diagonalize the ma- 
trix of the self-energy part.' An investigation of the 
cascade transition between these states yields an esti- 
mate of the influence of the extended character of the 
system on the dynamics of the superradiance. The cal- 
culation of the probability of the transition between the 
state IR,,R,) and l~ , ,R , - l )  is  similar to (5), except 
that the integration of the sphere of radius k,= wdc in 
k space must be replaced by integration over certain 

regions of this sphere with angular dimensions i2 about 
the point k, (Ref. 8): 

yh. &=yf(N/2+R.) (N/2-R,+1). (11) 

I€ (for the sake of argument) the direction of the radia- 
tion is perpendicular to the vector p, then 

The value of the solid angle 52 is connected with the un- 
certainty of the quasimomentum k of the state IR,,R,) 
and depends on the finite character of the dimensions of 
the system and on the inhomogeneity of the disposition 
of the atoms. Assume that the distribution of the atoms 
is homogeneous within a rectangular parallelepiped with 
dimensions L, D, D, and let k be directed along the 
edge L. It i s  obvious that in this case S2 is  the solid 
angle subtending the intersection a sphere of radius k ,  
= wdc, with center a t  the point k ,  and a parallelepiped 
with dimensions 1 / ~ ,  1/D, 1/D. 

where F = D2/~L is the Fresnel number. Thus, the fact 
that the system is extended changes the time scale of the 
superradiance by a factor k2/D2 or k/L, respectively 
for large and small values of the Fresnel number. 

According to (12) and (13) we have 

where n =N/LD~ is the inversion density. 

The quantity i2 determines the angle divergence of one 
mode.2' Comparing it with the angular dimension D 2 / ~ '  
of the system, we find that for large values of Fresnel 
numbers there can exist several modes, and for small 
values of Fresnel numbers a single-mode regime exists. 
One can expect in the latter case (if the retardation can 
still be neglected) the kinetics of the superradiance 
pulse to have the form (10) with 7, equal to (14b). For 
the multimode regime, the mixing of the different modes 
in the course of the radiation leads to loss of coherence 
of the atomic system, and consequently to a partial sup- 
pression of the superradiance effect. At F >  1 the quan- 
tity rR does not depend on the transverse dimension D 
of the system. Since large values of the Fresnel num- 
ber are  reached with increasing D, this'result can be 
attributed to the homogeneity of the field in the trans- 
verse direction. 

3. SEMICLASSICAL APPROXIMATION 

In the semiclassical approximation, the problem of 
superradiance of two-level atoms can be described by 
the system of equations for the single-atom. density ma- 
trix I lpab l l  and the equation for the electric field inten- 
sity: 

ihpa=V.bp,-pabvh, 

where the subscripts a and b number the ground and ex- 
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cited states of the atom, and Vba - p  E is the matrix 
element of the interaction. The polarization vector P 
is expressed in terms of the density matrix: 

lD(r, t )  - n ~ ( f i b + w )  (16) 

Here n is the density of the radiating atom, which we 
assume to be equal to the initial inversion density. The 
term with the f &st  derivative in the equation for the 
electric field describes the value of losses. 

In practice the system (15) can be solved only in the 
one-dimensional approximation (i.e., assuming the field 
to be homogeneous in the transverse direction); this ap- 
proximation, a s  already noted, corresponds to a large 
number of the Fresnel number. In this case the field E 
and the density matrix depend only on one spatial coor- 
dinate z directed along the radiation. The direction of 
the dipole moments of the transition of all the atoms 
will be assumed to be the same and perpendicular to the 
z axis. The vectors E and P have the same direction, 
and we shall therefore omit the vector designations from 
now on. 

Neglecting the volume losses (n' = O), Eq. (15) for the 
electromagnetic field has the following explicit solution: 

Using (16), we get 

We separate in the density-matrix elements the essen- 
tial dependence on the time: 
p ~ - R - ( z ,  t )  eup ( - i o . t ) ,  pOb=R+ ( z ,  t )  cxp ( h o t ) .  (R- ' -R+) ,  (19) 

and reduce the Bloch vector with components X, Y, and 
z : 

X+iY=R+, Z5(pbb-poo)/2. (20) 

We then obtain with the aid of (18) 

(a) Short system (L <<x) .3' If L <<A, we can neglect the 
retardation and the dependence of the polarization on z .  
Then 

Using (22) and neglecting the rapidly oscillating terms, 
we obtain 

where 

It is easy to verify with the aid of (23) that the Bloch 
vector preserves i t s  length. Under the initial condition 
of total inversion we have (xa+ ~ ' + ~ z ) l / ~ =  1/2. We in- 

troduce the polar angle 9 and the azimuthal angle cp. 
Then 

XI.'/, sin 0 cos cp, Y='/, sin 8 sin cp, Z-'/r cos 8 (24) 

and the system (23) takes the form 

where 

This is half the value of 7 ,  obtained in quantum theory 
[see (14a)l. 

The solution of the system (25) is 

It follows therefore that the number of photons emitted 
per unit time is [cf. (9)] 

The delay time to is determined from the initial value of 
t?(O), which in turn can be determined from the condition 
that a t  the s tar t  of the process the de-excitation intensity 
f averaged over the period and corresponding to the 
initial polarization P(0) is equal to the spontaneous- 
emission intensity J,, : 

Equating these two quantities we get 

It is interesting to note that the expressions for the in- 
tensity (28) and for the delay time (30) coincide with the 
corresponding results obtained in the quantum analysis 
of single-mode superradiance (see formulas (9) and 
(14a)). The difference, by a factor of two, of the values 
of 7, (cf. (14a) and (26)) can be attributed to the fact 
that in semiclassical description account is taken of 
emission in two opposite directions, whereas the quan- 
tum results pertain to a single mode, i.e., emission in 
a single direction. 

(b) Extended system (spatially homogeneous solu- 
tion). We consider an extended system with L>> X. We 
seek the solution of Eqs. (15) in the form of plane waves 
whose amplitudes do not depend on the spatial coor- 
dinates: 

E=PP(t) exp (-iw,t+ikz) + c.c., (31) 
pM=R-( t )  exp (-io.t+ikz) , pab=R+ ( t )  exp (iwot-ikz) . 

In the approximation of slowly varying amplitudes, we 
get from (15) 

A+xA=goR-, R-=2goAZ, t=- go (AR++ASR- ) ,  (32) 

whereA is the dimensionless amplitude of the electric 
field intensity, [A12 is the number of photons in the 
volume per atom: 

1 , *  A-- i (2nho0n)- '"8,  x = - x  2 e-. 
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Eq. (32) reduces to the equation of a mathematical pen- 
dulum for a polar angle 8: 

i j + ~ 8 - ~ , "  sin O=O. (33) 

The solution of this equation was used in Refs. 3, 7, 9, 
17, and 18 to determine the waveform of the superrad- 
iance pulse, wherein the volume losses described ef- 
fectively the radiation emitted from the volume. To this 
end, the coefficient x was assumed equal to c/2L. Al- 
though the pulse obtained in this manner has the same 
superradiance properties, we must agree with the auth- 
o r s  of Refs. 2 and 4 that these solutions cannot be used 
for  a quantitative description in those cases (particularly, 
in the experiment of Ref. 5) when the spatial-inhomo- 
geneity condition is not satisfied. 

Obviously, the spatial-homogeneity condition is satis- 
fied under cyclic boundary conditions, i.e., for  a closed 
system. The dynamics of the radiation a t  a fixed inver- 
sion density does not depend in this case on the length of 
the system and is determined by the ratio of the con- 
stants x andg,. The intensity of radiation (the number 
of photons passing through the cross section per unit 
time) is given by 

A'A NC . 
z = - c = -  

L 4go'L 
ez, 

i.e., i t  is proportional to the kinetic energy of the pen- 
dulum. In the case of large damping (x >>gd i t  follows 
from (33) and (34) that 

CN 1 t-to 
I =--secha- 

2Lx T ,  21n. ' 

where 

X 2 
1,' = -, to=?,' ln- 

goZ e(o) ' 

In the general case (x -gd damped oscillations of the 
intensity, connected with energy exchange between the 
atoms in the field will take place in the system. In the 
limiting case x = 0 the period of these oscillations is 
equal to 2g-11n[8/0(0)]-the half-period of the oscilla- 
tions of the mathematical pendulum, and the intensity 
a t  the maxima (corresponding to the maxima of the kine- 
tic energy of the pendulum) reaches the value I,,, = Nc/ L. 

It should be noted that the solution described above (of 
the mathematical-pendulum type) will determine the in- 
tendty of the radiation in the single-mode regime dur- 
ing a time L/C under all boundary conditions. Since the 
maximum of the intensity in this solution is inversely 
proportional to the length of the system, while the num- 
ber of pulsations is proportional to this length, the in- 
tegrated intensity of these pulsations is practically in- 
dependent of L and amounts to about to 2% of the stored 
energy (see Fig. lc). 

(c) Extended system (zero boundary conditions). In 
the general case the superradiance pulse of an extended 
system can be obtained by numerically solving Eqs. (15). 
We seek the solution in the form of plane waves propa- 
gating in one direction, with amplitudes that vary slowly 
in space and in time: 

FIG. 1. Superradiance pulses (intensity per atom) for systems 
of various lengths: 8 (0)= 4 .1r2;  a) L = 0.5 c/go; b) L = 4c/ 
go; c) L = 18 c/go. 

E = 8 - ( t ,  z )  exp ( - ioot+ikz)  
+8+ ( t ,  z )  exp ( i o , t - i k z ) ,  

Substituting (36) in (15) and neglecting the relatively os- 
cillating terms, we obtain 

If we introduce in place of t the retarded time T = t - z  /c ,  
then we can rewrite (37) in the form 

In the dimensionless variables 5 = z  /L and T = T / T ~  We 
obtain 

The radiation intensity (the number of photons pass- 
ing through the cross section per unit time) can be rep- 
resented in the form 

%+8- N z-- 1 
C- - - e+e-. 

2 n  hoonL 2 t ,  
(40) 

Fig. 1 shows the superradiance pulses obtained under 
the homogeneous initial conditions 

for different lengths L. At L > ct,, pulsations appear, 
corresponding to the "mathematical pendulum" regime. 
One can expect for a system with sufficiently large di- 

FIG. 2. Pulse of super- 
radiance of an extended 
system (without retarda- 
tion): 8 ( 0 ) = 4 ~ 1 0 - ~ .  

s IW 2m m vwt /r ,  
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FIG. 3. Scaling properties of superradiance of an extended 
system (without retardation): 6 (0)- 4 ~10' 4; a) polarization; 
b) population. 

mensions the emission of radiation in the form of pul- 
sations to be suppressed by the competing process of 
radiation in the direction with the shorter length (i.e., 
with smaller grain). 

4. SCALING PROPERTIES OF SUPERRADIATION 

A solution that describes superradiance stimulated by 
a like pulse of small area  0 was obtained for the sys- 
tem (15) in Ref. 4.4' The authors called attention to the 
fact that the shape of the pulse is determined only by the 
quantities 6 and 7,. This property was called the scaling 
property of superradiance, since i t  is governed by the 
scale invariance of Eqs. (39) and of the initial conditions 
to a scale transformation (see also Ref. 11): 

The homogeneous initial conditions used in our paper a re  
in the general case not invariant to the scale transfor- 
mation (41). Therefore the shape of the superradiance 
pulse depends also on the length of the system (see Fig. 
1). Under homogeneous initial conditions, the scaling 
properties manifest themselves in the case when the re-  
tardation can be neglected, i.e., if T,> L/C. In this case 
the variable T in the equations has the meaning of time 
(and not retarded time); since the initial condition is 
homogeneous over the length O(0,c) =const and Eqs. (39) 
do not depend explicitly on L, the distribution of all the 
quantities 2, R r ,  and E' for systems of different but 
a t  equal instants of time (in units of T,) a re  similar in 
form. The consequence is a universal form of the super- 
radiance pulse under identical initial conditions for sys- 
tems with different lengths (Fig. 2). 

The invariance of Eq. (39) and of the initial and boun- 
dary conditions R *  (0, b )  =R'(T, 0) to the scaling trans- 
formation (1) leads to the following properties of the 
solution. The dependence of R * and of Z on T a t  a fixed 
value of L coincides with the dependence of these quan- 
tities on L a t  a fixed value of 7, i.e., R *  andZ a re  func- 
tions of the product 87 (Fig. 3). The distribution of the 
quantities R , Z ,  and c *  over the length a t  the instant 
of time T, is obtained by stretching the distribution of 
these quantities a t  the instant of time 7, with a stretch- 

FIG. 4. Distribution of the population in superradiance of an 
extended system (without retardation) at various instants of 
time: 0 ( 0 ) = 4 . 1 0 ' ~ ; a ) r ~ = 6 0 s , ; b ) s ~ = 4 0 0 s , .  

FIG. 5. Scaling properties of the distribution of the polariza- 
tion of superradiance of an extended system (without retarda- 
tion: 8 ( 0 ) = 4 . 1 0 ' ~ ; a ) r ~ = 6 0 7 ~ ; b ) r ~ = 4 0 0 ~ ~ .  

ing coefficient a! = TJT,; the intensity E *  is multiplied 
in this case by the stretching coefficient (Figs. 4,5,6). 

A comparison of the results of the quantum and semi- 
classical (one-dimensional) theory of superradiation 
shows that a t  Fresnel numbers greater than unity, the 
time scale of the superradiance pulse, determined by 
the quantity T,, is the same. The complexity of the 
quantum analysis is due in this case to the need for tak- 
ing into account several modes with close values of the 
momentum, and makes therefore the semiclassical de- 
scription preferable. For a quantitative investigation 
of the superradiance pulse, even for spatially homogen- 
eous initial conditions, the assumption that the ampli- 
tudes of the solution a re  homogeneous is in the general 
case not justified. The solutions a r e  homogeneous either 
for systems shorter than the wavelength, or  for closed 
systems with cyclical boundary conditions. In the latter 
case the value of T, does not depend on the length of the 
system and is determined by the coefficient of the 
volume losses. A homogeneous solution for  the super- 
radiance pulse of an extended system i s  obtained only 
during a time t i  L/C. The invariance of the initial con- 
ditions and of the equations that describe the evolution 
of the superradiance to scaling transformation leads to 
scaling properties of the solution. These properties 
have a particular simple and illustrative form for  suf- 
ficiently short systems, when the retardation can be 
neglected (T,> L/c). A consequence of the scaling in- 
variance is the universality of the shape of the super- 
radiance pulse and the similarity properties of the dis- 
tribution of the field, of the polarization, and of the pop- 
ulation along the system a t  different instants of time. 

The authors thank V. I. Perel', I. V. Sokolov, and 
A. S. Troshin for  a discussion of the work and for cr i -  
tical remarks. 

0 0.5 1.0 
z/L 

FIG. 6. Scaling properties of the distribution of the intensity 
of superradiance of an extended system (without retardation): 
0(0)=4.10'~; a) ~ ~ = 6 0 s , ; b )  s2=400s , .  
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')In some papers, superradiance produced by incoherent 
pumping is called superfluorescence or intense superradiance, 
while optical induction and optical echo are called limited 
superradiance. 

"A more exact estimate of the angular dimension of one mode 
is given in Ref. 24. 

"This particular case of the solution of the system (21) was 
considered in Ref. 16. 

') The area of the pulse coincided with the polar angle of the 
Bloch vector. 
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the second Born approximation 

L. A. Burkova and V. I. Ochkur 
A. A. Zhdanov Leningrad State University 
(Submitted 18 July 1978) 
Zh. Eksp. Teor. Fiz. 76, 76-90 (January 1979) 

The high-energy asymptotic behavior of the second Born approximation is examined. The formulas 
obtained are used to calculate differential and total cross sections for inelastic scattering of electrons from 
hydrogen and helium atoms. The results of the calculations are compared with experiment. 

PACS numben: 34.80.- 

1. INTRODUCTION 

Until recently the second Born approximation, unlike 
the f irst  one, had not been much used in the theory of 
collisions of electrons with atoms. This is evidently 
due to the simplicity and efficacy of the f i rs t  approxi- 
mation and the complexity of the second, together with 
the fact that the early studies seemed to indicate that 
the second approximation was not very efficacious. 

Of course problems involving two-electron transitions 
cannot be treated consistently without going beyond the 
limitations of first-order perturbation theory. But such 
problems are complex and have not been worked out well 
s o  far. In most of the studies total c ross  sections for 
single-electron transitions were calculated and com- 
pared with experiment, and various .attempts were made 
to improve the results of the f irst  Born approximation 
in the region of low collision energies where it usually 
gives values some 50-100% higher than the experimen- 

tal values. In particular, attempts were made to im- 
prove these results  by taking the higher-order (mainly 
the second-order) perturbation-theory contributions in- 
to account. 

Difficulties involved in calculating the integrals that 
arose  hindered the use of the second Born approxima- 
tion for a long time. But when Dalitz,' Lewis,' and oth- 
ers had developed a technique for  calculating these in- 
tegrals, the calculation of the contributions from in- 
dividual intermediate states ceased to  present any diffi- 
culties in principle, although the calculations remained 
rather laborious. 

The proposed technique was used in a series of stud- 
ies by Moiseevich and c o l l a b ~ r a t o r s ~ - ~  and by Wollings 
and McDowel17 to calculate the total elastic scattering 
cross  sections of hydrogen and helium as well as the 
total c ross  sections for  excitation of the 2s and 2p lev- 
les of hydrogen and the 2's and 2 l ~  levels of helium. 
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