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An analysis is given of the interaction between a two-level atom and two monochromatic classical 
electromagnetic fields of arbitrary amplitude and frequency close to the frequency of the atomic transition. 
Published work on this problem is reviewed. An analytical solution is obtained for the case of identical 
fields, and equal and opposite detuning from resonance. It is shown that, in contrast to the single field, 
the time average of the upper-level population in the case of two resonance fields may exceed 50% for 
certain detuning to amplitude ratios, and may reach approximately 70% in the optimum case. The case of 
separated resonances is examined. It is shown that there are satellite resonances that can be physically 
interpreted as Raman scattering events with three, five, or more photons. Stark shifts of resonance peaks 
of the type mentioned above are determined. Analytic expressions are obtained for the width of single- 
photon resonances and multiphoton combination resonances. The opposite case of close external-field 
frequencies is also analyzed. The general case is investigated numerically. 

PACS numbers: 32.60. + i, 32.70.Jz, 32.80.Kf 

$1. INTRODUCTION 

The behavior of an atomic system in a strong elec- 
tromagnetic field has assumed considerable theoretical 
and experimental importance since the advent of power- 
ful lasers. In this paper, we consider the case where 
only two atomic states participate in the interaction 
with high-intensity radiation. The atom is thus re- 
placed by a two-level system which exhibits a dipole 
interaction with a strong classical electromagnetic 
field. All the relaxation processes a r e  ignored, and 
the levels a re  assumed to be nondegenerate. 

The behavior of a two-level system in a single mono- 
chromatic resonance field has been investigated in de- 
tail, since the work of Rabi, in the resonance approxi- 
mation (rotating wave approximation, see, for exam- 
ple, Ref. 1). The case of two monochromatic fields, 
i.e., the so-called bichromatic field, has attracted 
much less attention because of its considerable com- 
plexity. The general formalism for the description of 
the interaction between a two-level system and several 
quantized electromagnetic fields was examined by 
Change and Stehle.' In particular, they examined the 
case of the bichromatic field. However, they reported 
specific results only for the case where the second 
field was much weaker than the first, and i ts  effect 
could be reduced to a nonresonance shift of the reso- 
nance peak due to the f i rs t  field. 

The case where one of the fields (the probe field) was 
infinitely weak was discussed within tee framework of 
perturbation theory by Delone and Krainov3 and by 
M ~ l l o w , ~  taking into account spontaneous radiative 
transitions within the two-level system. Both fields 
were assumed to be resonance fields, i.e., their fre- 
quencies were taken to be close to the level separation. 
A calculation was made of the transition probability in 
this system in the presence of the probe field a s  a func- 
tion of its frequency. 

The interaction of a two-level system with two modes 
of a quantized electromagnetic field was considered by 

S ~ a i n . ~  The modes were assumed to have equal and 
opposite detuning, and their amplitudes were taken to 
be equal. The essential assumption introduced by 
Swain5 was that the following initial conditions were 
satisfied: the atom was in an excited state and the two 
modes of the quantized electromagnetic field were in 
the vacuum state, i.e., did not contain photons. It is 
important to note that this formulation of the problem 
completely excludes Raman processes with three, five, 
or  more photons. For  example, in three-photon Raman 
scattering, the atom should undergo a transition to the 
lower state and this should be accompanied by the emis- 
sion of two photons of one of the modes and the anni- 
hilation of one photon of the other mode. This process 
is forbidden in the formulation given by Swain5 because 
of the absence of photons corresponding to the second 
mode in the vacuum state. 

We shall use similar conditions for the detuning and 
mode amplitudes in Sec. 3 to consider classical electro- 
magnetic fields, i.e., fields containing a large number 
of photons corresponding to  both modes. Raman scat- 
tering with three, five, and more photons will be pos- 
sible and, in general, relatively important. The re- 
sults of the calculations describedin Sec. 3 are ,  there- 
fore, different from those reported by S ~ a i n . ~  It is 
clear from the foregoing that, in the case of a single 
mode, for which Raman scattering of the above kind is 
absent, the quantum and classical approaches to the 
description of the electromagnetic field lead to the 
same result, namely, the Rabi solution. This is a 
well-known fact. 

Guccione-Gush and GushQave given a numerical 
solution for the interaction between two resonance 
fields and a two-level system for certain definite values 
of field parameters. They assumed that the frequen- 
cies w ,  and w, were close to the level separation w,,, 
and maintained that the number of effectively partici- 
pating quasienergy harmonics in the wave function was 
small and that the situation was analogous to that pre- 
vailing in the case of a monochromatic field. They 
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performed a numerical solution of the problem on the 
basis of this assumption. We shall see later (Sec. 3) 
that this assumption is not valid. 

The effect of bichromatic C0,-laser radiation on a 
two-level system consisting of the 4=S and 4=P states of 
helium was investigated experimentally by Prosnitz et 
aL7 In addition, a third, weak, field transferring the 
particle to a third level from one of the resonating 
states was also introduced. When the electric field 
was of the order of 6 x lo4 V/cm, the resonance satur- 
ation parameter, i.e., the ratio of the perturbation to 
the resonance detuning, was of the order of unity. The 
probability of transitions to  the third level in the 
presence of the probe field was calculated on a compu- 
ter  within the framework of the resonance approxima- 
tion for this particular system. However, numerous 
additional assumptions relating to the cutoff in the rank 
of the Hamiltonian matrix in the course of its diagonal- 
ization were introduced. Their validity is not clear. 
No comparison was made between theoretical and ex- 
perimental data because of the uncertainty in the laser 
electric field a t  different points in the active volume of 
the medium. 

The general equations for the case of the bichromatic 
field a re  discussed in Sec. 2 below, and the case of 
symmetric detuning and equal fields, which can be 
solved exactly, is examined in Sec. 3. Section 4 is 
devoted to the case where the field frequencies w, and 
w, a re  sufficiently different in comparison with their 
amplitudes. This section also considers different mul- 
tiphoton combination resonances in the system. Sec- 
tion 5 gives a brief description of another limiting case 
in which w, and w, a re  close to one another, and, fin- 
ally, Sec. 6 discusses a numerical calculation for the 
intermediate case. 

As already mentioned, we shall neglect throughout 
the width of the upper level, y, connected with spontan- 
eous transitions to the lower state. This is valid for 
strong perturbations V>> y, and we shall assume that 
this is so. It is, of course, also assumed that V<< w,, 
0 2 .  

If, in a realistic situation, spontaneous transitions 
with widths yf to some other levels different from the 
two under examination a re  important, i t  must be as- 
sumed further that the time of operation of these fields, 
T ,  i s  restricted by the condition ylT << 1 (no relaxa- 
tion to other states). 

§2 EQUATIONS FOR THE BlCHROMATlC 
RESONANCE FIELDS 

Consider the effect of two monochromatic fields, 
Vcos w,t and aVcos(w,t+ J,), on our two-level system 
on the assumption that the frequencies w, and w, a re  
close to the level separation w,,. When this condition 
is satisfied, we can use the so-called generalized reso- 
nance or  ladder  approximation^.^ This takes into ac- 
count only graphs in which the absorption of a photon of 
a particular type is accompanied by the subsequent 
emission of a photon (not necessarily of the same type) 
and vice versa. 

In this approximation, the equations describing the 
behavior of the probability amplitudes Ca(t) and Cb(t) 
for finding a particle in the upper and lower levels a r e  
a s  follows: 

i&ddcp= [e-iU'.+1)v+ae-zUx-I)v+8? l cb ,  

i#b/dcp= [ e t L l ~ + ~ ~ ~ + a e ~ h l i - ~ l ~ - ~ t  I c.. 
(1) 

where, in dimensionless notation, A= 1, cp EBVt, X 
I (w, - wl)/V, and x =  (2wb, - w ,  - w,)/(w, - w,). 

The diagonal matrix elements (if they a r e  present) 
lead to rapidly oscillating terms and do not contribute 
to (1). 

Substituting 
C.=C.'exp(-ik/2),  C,=C,'exp ( i h x / 2 ) ,  

in (I), we can readily show that C: and C; satisfy a se t  
of equations with periodic coefficients with period equal 
to8 2n/X. This means that the Floquet theorem i s  valid 
for the case of the bichromatic fields (but only for the 
resonance approximation and not for the exact se t  of 
equations a s  for the single monochromatic field). 

We shall now investigate the various exact and approx- 
imate solutions of (1) for different values of the param- 
e ters  x ,  A, 0 ,  J ,  (to be specific, we assume that 0 < a 
< 1). 

$3. THE CASE OF EQUAL FIELDS AND EQUAL AND 
OPPOSITE DETUNING 

Consider the case where CY = 1 and x = 0, We thus 
assume that the detuning of the two resonances relative 
t o  wba a re  equal in magnitude and opposite in direction. 
The set  of equations given by (1) can then be solved 
exactly. To be specific, we suppose that Ca(0)= 1 and 
find that 

When X < 1, the Fourier ser ies  for C,(t) includes appre- 
ciable contributions due to harmonics with n c 2/A, not 
only n = 0, A, a s  in the case of the monochromatic 
field. 

From (2), we find that the mean population of the 
upper level, wb = ( 1  Cb(t) 1 '), is given by 

4 
W b  ='[1-CW 2 J" (t)] . (3 

Figure 1 shows w, a s  a function of X for + = 0  and J,=n. 
It is found that wFU= 0.70 for J,= 0 and this occurs a t  
A = 1.05. The corresponding figure for J,= n is 0.55 
and occurs a t  X=2. It is clear that in contrast to the 

L 1 I I I 

0 a5 1.0 7.5 2.0 a 
FIG. 1. Mean first-level population probability wb for a two- 
level system in the case of equal and opposite resonant de- 
tuning and equal field amplitudes: (a) phase of second field 
relative to the first JI = 0; (b) $ = T. 
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case of the single field, the upper-level population in 
the presence of two resonance fields may exceed 5096, 
and may even reach 70% when +=O. This result refers  
to the case of a fixed phase difference between the two 
acting fields. In the case of noncoherent fields, we can 
average over the phase J ,  i f  we assume that all  the phase 
values a r e  equally probable. We then obtain (w,) 
. . -  -:[I -4(4/h)] which i s  always less than i, just a s  in 

the case of a single field. It is, however, important to 
note that, both in the coherent and noncoherent cases, 
an increase in the fields i s  accompanied by a tendency 
of the population probability toward for each of the two 
levels and, in contrast to the single resonance field, 
this occurs nonmonotonically. 

We note that the problem can be solved just a s  sim- 
ply for any even number of resonance fields that a re  
equal in pairs and have symmetric dispositions of the 
resonance detuning relative to the level separation (but 
not necessarily equal for different pairs). Instead of 
(3), the mean population w, is then given by (to be 
specific, we take all phases J,, =0): 

Since the number of parameters is large, i t  is not clear 
whether still higher population inversion can be 
achieved by a suitable choice of these parameters a s  com- 
pared with the case of the bichromatic field. 

Returning now to the bichromatic field, we can intro- 
duce a real  factor f(t), representing the turning-on of 
both fields: Vf(t)coswt. This problem can also be 
solved: instead of (2), we obtain an analogous formula 
in which (for example, for $=0)  

1 

2 
- - s i n ~ p - c ~ j  eos ~pf(cp)dcp .  
h 

a 

We note that, for the bichromatic field with x=J,=O, 
the above problem i s  equivalent to that of a resonance 
monochromatic field with slowly-varying complex am- 
plitude 1 + exp(-2iAt). Several workers (see, for ex- 
ample, Ref. 9) use the resonance approximation to con- 
sider the effect of a monochromatic field with ampli- 
tude varying slowly with time, Vf(t)eiAL, on a two-level 
system (A is the resonance detuning relative to the ex- 
ternal field). The set  of equations was solved exactly 
for A=0. 

84. THE CASE OF SEPARATED RESONANCES 
(A>> 1) 

When the frequency difference is large, only one of 
the fields is in resonance with the atomic transition and 
the curve representing w, a s  a function of x is a super- 
position of two resonance Rabi curves. The approxi- 
mate solution is 

The resonance half-width for x =  -1 is 2/h << 1, whereas 
the resonance half-width for x =  1 is 2a/h << 1. The 
phase J ,  is unimportant in this case. 

When h >> 1, the presence of the two different fre- 

I a 

FIG. 2. Graph for the three-photon matrix element associated 
with resonance at the combination frequency 20, - wz.  

quencies ol and w, leads to resonance not only a t  these 
two frequencies but also a t  the combination frequencies 
of the form6 nw, - (n - l)w, o r  no, - (n - l)w,. These are  
generated by multiphoton matrix elements. For  exam- 
ple, the resonance a t  the combination frequency 2w1 
- a, is generated by the three-photon matrix element 
shown graphically3 in Fig. 2. This leads to narrow 
satellite lines on the graph of w, a s  a function of x, in 
addition to the peaks given by (4). The shape of the 
peak near x =  -3 is described by the Breit-Wigner 
curve with wra=$, corresponding to the resonance a t  
frequency w,, = 2w1 - o,. If we elevate the matrix ele- 
ment (see Fig. 2), we find that the half-width of the 
three-photon Raman resonance is a/2h3 i< 1, i.e., i t  is 
small in comparison with the half-widths of the single- 
photon resonances since, by assumption, A >> 1. 

Similarly, for the peak near x = 3, which corresponds 
to resonance a t  the frequency w,,= 2w, - ol, we find 
that the half-width is a2/2h3 << 1. The half-widths for 
the higher, i.e., five-photon, Raman- type resonances, 
a r e  a s  follows: for w,, = 3w1 - 2w2(x = -5), the half- 
width is a2/(2h)' whereas, for w,, = 3w, - 2w,(x= 5), the 
half-width is a3/(2h)'. The shape of these resonances 
i s  again described by the Breit-Wigner curve similar to 
that indicated above. The width of the five-photon 
resonances is small in comparison with the width of the 
three-photon resonances, and even more so in compari- 
son with the width of the single-photon resonances. 

Let us now determine the resonance Stark shifts of 
the resonance peaks. In the case of two fields, the fre- 
quencies w, and w, in the approximation which we a re  
using (A >> 1) a r e  so  different that the fields V (frequen- 
cy w,) and a V  (frequency w,) produce line shifts that 
can be separated: 

Thus, firstly, the positions of the single-photon reso- 
nances a re  shifted because of the interaction between 
them. These shifts a re  described by the f i rs t  term in 
(5) for  x =  1 and by the second term for x = -1. The 
true positions of the peaks are,  therefore, x =  -1 + a2/ 
h2 and x =  1 - 1/h2. As h is reduced, the two single- 
photon resonances approach one another. 

Secondly, the three-photon resonance is not exactly 
a t  w,,= 2w1 - w,, i.e., for x =  -3, but is shifted toward 
the single-photon resonance: x = -3 + (2 + a2)/2A2. 
This shift increases a s  the magnitude of 1 is reduced. 
Similarly, for resonance a t  w, = 2w, - w,, we have x 
= 3 - (1 + 2a2)/2k2. This is also shifted toward the x =  1 
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single photon resonance a s  X is reduced. 

Finally, the shifts of the five-photon resonances a re  
x = -5 + (3 + 2 0 ~ ) / 6 ~ ~  and x = 5 - (2 + 3a2)/6k2. We note 
that, in contrast to the widths, the one-, three-, and 
five-photon resonance shifts a re  of the same order. 

The quantity I Cb(t)12 exhibits characteristic beats a t  
frequencies corresponding to the Raman resonances. 
For  example, fo r  the resonance a t  frequency w, = 2w2 
- w,, we have the following combination of Rabi solu- 
tions for x =  3, which corresponds to exact resonance 
(for simplicity, we again take #I = 0) 

I Cb ( t )  I 2=sin2(aq/4hz) + (az /h2)  sin2hcp+ (l/4A2)sin' 2hcp. 

Since A >> 1, the graph of this expression takes the form 
of rapid oscillations of small amplitude (second and 
third terms) on the background of the slowly-varying 
mean value (first term). The beat frequencies and the 
fundamentals a r e  in the ratio of, roughly, k3/a2. 

Similarly, for the five-photon resonance a t  w,, = 3w2 
- 2w,, we have for x =  5, which corresponds to  exact 
resonance: 

I Cb ( t )  1 2-sin2(aacp/6&') + (a2/&') sin2 2A9+ (1/9hZ) sin2 3hrp. 

The contribution of three-photon terms to this expres- 
sion can be neglected because they a re  of the order of 
1/X6. The beat and fundamental frequencies a r e  now in 
still greater ratio, namely, X5/a3.  

$5. THE CASE OF CLOSE FREQUENCIES 
(h  << 1) 

Consider the situation opposite to that investigated in 
the last section, i.e., the case when X<< 1. The ampli- 
tudes C,, C, can now be obtained in the quasiclassical 
approximation. To show this, let y = h q  and let  us write 
(1) in the following form, assuming $=0,  to be specific: 

idC.,/dy= ( l lh )  fC,, idCb/@y=(l /h)fC*.  (6) 

In this expression: 
f=exp [ - i ( z + l ) y ] + a e x p  [-i(z-l)  yl. 

Eliminating C, from (6) and substituting C, = B$'~, we 
obtain the following expression for B, which is valid in 
the quasiclassical approximation: 

dzB./dy'+(l/h') I f  1 'B.=O, 

where 1 f 1 = 1 + 20 cos2y + a'. The solution of this 
equation for C, and C, is [subject to the initial condi- 
tion C,(O) = 11 

We see that there is no dependence on x for this par- 
ticular range of variation of x 21. Next, when a = 1, 
this yields the results of Sec. 3, a s  expected. Similar- 
ly, when a =0, we obtain the Rabi solution for the 
strong field. 

The mean populations of the upper and lower levels 
a re  close to $, a s  expected, because of the condition 
X << 1. Thus, in this case, the two fields may be looked 
upon a s  one, with the corresponding amplitude (at 
least from the population point of view). 

FIG. 3. Mean upper-level 
population probability w, 
as a function of the dimen- 
sionless detuning from 
resonance, x ,  for the 
intermediate case h - 1. 
In all cases, a = 1 and 
I(i = 0 .  

8 6. THE CASE X - 1 

The solution of (1) for intermediate A - 1 can only be 
found numerically. Figure 3 shows the results of a 
numerical calculation of the mean upper-level popula- 
tion w, a s  a function of x for cr = 1, $=0,  and different 
values of k. It is clear that the oscillating values of 
w, for x = 0 (the origin of coordinates in all the graphs 
of Fig. 3) a r e  in agreement with those shown in Fig. 1. 
Since we have taken cr = 1, the graphs a re  symmetric 
relative to the origin. The graphs show an overall 
tendency toward the "collapse': of one or  more photon 
resonances a s  decreases. For A S  1, we have con- 
firmation of the result given in Sec. 5, namely, that 
the population w, is a slowly-varying function of x for 
1x1 51' 

Numerical calculations of w, for A - 1 have also been 
reported by Guccione-Gush and Gush.' However, be- 
cause of the e r r o r s  mentioned above, these authors 
have concluded that w, c $  always, whereas i t  is clear 
from Figs. 1 and 3 that w, > 3 for certain values of the 
parameters. 

We may thus conclude that, i n  contrast to the mono- 
chromatic field, the bichromatic resonance field can 
produce population inversion in the two-level system if 
the parameters a re  suitably chosen. We note in this 
connection that there is no population inversion when 
two resonance fields act  on two different transitions in 
the three-level system.1° 

The authors a re  indebted to N. B. Delone, M. V. 
Fedorov, and V. P. Yakovlev for  useful suggestions 
and discussions. 
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A multimode theory of superradiance in Raman scattering (SRRS) of light in atomic and molecular 
systems is developed. The process of formation of the superradiant state from an initially incoherent state 
via exchange of spontaneously emitted photons between the atoms is considered in explicit form. The time 
dynamics of the populations in the waveform of SRRS pulse as well as the angular structure of the 
radiation are investigated. The influence of the depletion of the pump is estimated and an additional 
condition is derived for the density of the number of scattering atoms, namely, n has an upper bound 
besides the lower bound, n,,, < n  <n,,. It is noted that, as a result, the observation of SRRS is most 
probable in gaseous media. 

PACS numbers: 42.50. + q, 42.65.Cq 

1. INTRODUCTION 

The  effect of collective spontaneous emiss ion  of a 
s u m  of two-level a t o m s  (the Dicke superradiance') 
w a s  by now investigated qui te  fully both theoretically1-6 
and e ~ p e r i m e n t a l l y . ~ ~ ~  Much l e s s  investigated is the 
analog of this  effect in Raman (RS) of light in molecular  
and atomic systems-the effect of superradiant  Raman 
scat ter ing (SRRS). T h e  paper  devoted t o  th i s  question 
c a n  be divided into two classes .  

The  f i r s t  includes dealing with RS in a 
medium excited beforehand by a coherent  field. T h e  
macroscopic polarization induced by th i s  field leads to 
the onset  of a nonstationary IS, whose intensity i s  
proportional to  the  square  of the number N of the 
scat ter ing part ic les .  T h e  interatomic interact ions 
due to  the  radiation field of the a toms  themselves a r e  
not important in this case .  An effect of this type w a s  
observed in experiment  in  Ref. 11. 

In a study belonging t o  the second class'2 a single- 
mode model  was used to consider  the onset  of SRRS in 
a n  initially incoherent sys tem of a t o m s  via spontaneous 
induction of interatomic correlat ions.  T h e  analysis  
in Ref. 2 i s  in the given-pump-field approximation. 
In this  approximation, the problem t u r n s  out to be 
s imi la r  to that of superradiance of a sys tem of two- 
level   atom^."^ The  SRRS takes  in  this  c a s e  the  f o r m  
of a pulse of duration rp, whose maximum i s  observed 

a t  the instant t, (delay time). T h e  SRRS intensity at 
t h e  instant t ,  i s  proportional to N'. Just as in the 
c a s e  of resonant  super rad iance ,  t h e  condition f o r  the 
observat ion of t h e  SRRS i s  of t h e  f o r m  t,- l/n < T, (T, 
i s  the t ransverse-relaxat ion t i m e  and, n i s  the density 
of the number of the sca t te r ing  atoms).  T h i s  means  
that  a t  a given pump intensity I, t h e r e  i s  a lower 
bound of t h e  density of the medium, n >n,,,(l,). 

T h e  single-mode model used in Ref. 12 d o e s  not 
make  i t  possible to consider  a l a r g e  number of impor- 
tant charac te r i s t i cs  of SRRS (including the very  con- 
dition of t h e  applicability of the single-mode approxi- 
mation). In the  p resen t  paper ,  using the given-pump- 
field approximation, w e  develop a mult imode theory 
of SRRS f o r  a medium of a r b i t r a r y  geomet r ic  shape. 
T h i s  makes  i t  possible to consider  in explicit f o r m  the 
p r o c e s s  of formation of t h e  super rad ian t  s ta te  f r o m  an 
initially incoherent s t a t e  via  exchange of spontaneously 
emitted Stokes phonons by t h e  atoms.  T h i s  p rocess  
de te rmines  t h e  delay t i m e  t,, which depends substan- 
tially on  t h e  geometry of the medium. W e  investigate 
the  angular direct ivi ty  of the radiation i n  SRRS. The 
resu l t s  of the p resen t  paper  are applicable a l so  to t h e  
c a s e  of resonant  super rad iance  in a sys tem of initially 
inverted two- level  a toms.  

The  express ion  obtained f o r  t, differs  f r o m  the 
corresponding f o r m u l a s  of Refs. 3 and 12. The  reason 
i s  that in  Refs. 3 and 12 t h e  dynamics of the popula- 
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