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The polarization operator of an electron-positron gas in a constant external magnetic field is calculated in 
the one-loop approximation, using the Green's function temperature technique to the exact account of the 
field. All the components of the tensor are evaluated separately and the hermiticity in the quantum 
kinetical case and the behavior under charge conjugation and space-time inversion are studied. The 
requirement of four-dimensional transversality, demanded by gauge invariance, is seen to be fulfilled if 
standard renormalization is carried out. Expressions are given for the dielectric constants for wave 
propagation parallel and perpendicular to the external magnetic field. The k , 4  and the e B 4  limits as 
well as the singularities of the polarization operator connected with electromagnetic wave absorption are 
briefly considered in the conclusion. 

PACS numbers: 05.30.Fk 

INTRODUCTION 

In the last two decades there was a great advance in 
quantum statistics after ~ a t s u b a r a '  had introduced 
the temperature Green functions, with which Fradkin 
(see Ref. 2 and earlier papers quoted therein), 
Abrikosov, Gor'kov and ~ z ~ a l o s h i n s k ~ ~  and Martin 
and Schwinger4 built the calculational apparatus for 
the quantum statistics. The formulation given by 
l?radkin2 includes the renormalized set  of equations 
for the temperature Green functions of interacting 
Bose and Fermi fields, which describes both non- 
relativistic and relativistic systems. As the limiting 
case of vanishing temperature pT = 0 and chemical 
potential p =0,  it contains the Euclidean formulation 
of the quantum field t h e ~ r y , ~  which was also found by 
~ c h w i n g e r . ~  By analytical continuation into the domain 
of imaginary values of the Euclidean "momentum" 
k4 - i w  within this method one gets2 (for nonrelativistic 
systems see  also Ref. 3) the time-dependent Green 
functions, which, in turn, a r e  described by a set of 
equations of quantum kinetics7 if p + 0, p' # 0, o r  the 
quantum field theory in Minkowski space-time if p 
=p-1 ,02,5 

A very important place in this theory is occupied by 
the polarization operator tensor, the analog of the 
photon self-energy tensor in quantum electrodynamics, 
which is defined in statistical quantum electrodynamics 
by the expression 

G ( x ,  z )  being the temperature-dependent  ree en's 
function for the electron-positron field. Transformed 
to momentum space, the polarization operator can be 
used to calculate the radiative corrections to the 
thermodynamic potential and to the photon  ree en's 
function. The spatial part of the polarization operator 
tensor i s  simply related to the three-dimensional 
dielectric tensor of the medium. Singularities of the 
polarization operator for some values of the photon 

four-momentum vector a r e  connected in the case of 
quantum kinetics to the elementary absorptive pro- 
cesses  which take place in the medium. 

In the one-loop approximation r, = yV6(z - yt)6@ - y ) ,  
the polarization operator in statistics was first  cal- 
culated by ~radk in , '  by Akhie~er~and  peletrninskir,' 
by ~ s y t o v i c h , ~  and by ~ologodski i . '~  Recently the 
calculations for the Yang-Mills field were also per- 
formed." 

The polarization operator in an external magnetic 
field in quantum field theory has been obtained, by 
the proper time method, by Batalin and ShabadL2 and 
by Tsai,  Bayer et  aZ.,l3 and its analytic properties 
were extensively discussed by Shabad.14 More recently 
Bakshi, Cover, and Kalrnan15 obtained some expres- 
sions for  the spatial components of the polarization 
tensor in an external magnetic field in quantum field 
theory and quantum statistics. In the latter case their 
results may claim to be correct only for zero 
temperature (see the criticism concerning their re- 
sults in Ref. 16 and in the present paper). 

In the previous paper by Shabad and the present 
author,16 which can be regarded a s  the f i rs t  part of 
the present paper, we have considered the general 
structure of the polarization tensor of a relativistic 
plasma in a magnetic field, a structure that can be 
expected from pure kinematical considerations, so  
long as  the microscopic theory underlying i t  (in this 
case-quantum electrodynamics) satisfies the require- 
ments of gauge, charge, P, and T invariance, rela- 
tivistic covariance, unitarity and the Onsager prin- 
ciple of the symmetry of kinetical coefficients. On 
this kinematical level we succeeded in progressing 
quite far in the investigation of the electromagnetic 
eigenmodes in a medium and conclude, in particular, 
that one of the principal axes of the ellipse of polariza- 
tion of the electric field in the eigenmode lies in the 
plane that contains the direction of the external mag- 
netic field and the direction of propagation of the 
wave, while the other axis i s  perpendicular to this 
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plane. 

In the present paper we calculate the components 
of the polarization tensor n,, by the temperature 
technique for  an electron-positron gas in a magnetic 
field B with P-'#O and p#O (8' and p a re  the temper- 
ature and chemical potential) and find explicitly, from 
the obtained expressions, that the properties predicted 
by our earlier analysis1' a re  attainable. In particular, 
a s  expected, i t  i s  seen that (unlike in an isotropic 
plasma) terms appear that a r e  antisy mmetric in the 
tensor indices, a re  connected with charge asymmetry, 
and a re  therefore odd in the chemical potential (they 
contain linearly the difference between the Fermi 
distributions of the electrons and positrons). This 
antisymmetric part is  responsible for the elliptical 
polarization of the eigenmodes, and disappears in the 
hot vacuum case (p = 0), when the total charge of the 
electron-positron system is zero. (From the point of 
view of thermodynamic equilibrium, an electron- 
positron gas with zero charge demands only the pres- 
ence of some photon gas; this corresponds to black- 
body radiation a t  very high temperature. If the total 
charge is nonzero ( p  f 0), it i s  required also that some 
additional compensating charge, say an "ion core," 
be present to ensure the charge neutrality of the total 
system. In the present work we do not consider the 
contribution of the ion core to H,.) 

We consider next, by investigating the analyticity 
properties of the calculated expressions, the mechan- 
isms whereby the medium absorbs an electromagnetic 
wave, and establish the transparency regions. We 
present also relatively simpler expressions corres- 
ponding to normal waves propagating across and along 
a magnetic field. The limit of a zero 4-momentum of 
the wave, which gives the Debye radius, and the limit 
of an infinitely strong external field a re  considered. 

1. UNRENORMALIZED COMPONENTS OF THE 
POLARIZATION OPERATOR 

For the calculation of l?,, we take (1) in the one-loop 
approximation with the temperature Green's function 
G ( x ,  y) being the solution of the Dirac equation in a 
constant homogeneous magnetic field A, =Bx,6,, 
directed along x, axis: 

Here a, = a/&,- p, e i s  the modulus of the electron 
charge. Equation (2) determines the temperature-de- 
pendent Green's function G(xy JA) in the interval 
- P<X,</~.  

In the formulas that follow, q denotes the aggregate 
of the quantum numbers (P,,p,,n), and &, = (Pi + m2 
+ 2 e ~ n ) "  i s  the energy of the electron a s  a function of 
i ts  momentum p3 along the external magnetic field and 
of the discrete Landau quantum number n ,  0 <n <a. 
The electron energy i s  degenerate with respect to the 
transverse momentum p2 of the electron momentum. 
In addition, 

where k, i s  the photon momentum component along 
the magnetic field. The symbols z,= ki+ kz and z, =k: 
+ k i  for the relativistically invariant combinations of 
the photon momentum components will also be en- 
countered. 

The expressions for G(xy [A) were written out by 
Shabad and the present author in a preceding paper17 
(where there i s  a misprint: the coefficient p, in the 
definition of D,, must be replaced by p,). 

To calculate the Fourier transform of the polariza- 
tion operator Il,,,(k,, k I A ,  p, 8) from the coordinate 
difference (x, - y .) we must find the trace of the cor- 
responding matrix and sum over the discrete fourth 
component p, = (2s+ l)n/P(s= 0, * 1, *2.. . ) of the elec- 
tron "momentum" in the loop. These operations, a s  
well as  a number of trivial ones, can be carried 
through to conclusion (for details see the author's 
preprint'8), and a s  a result we get expressions con- 
taining sums over the Landau-level numbers n ,nl  
= 0,1,2, .  . . , pertaining to states of the virtual pair 
and integrals over the intermediate momentum com- 
ponents p3 along the magnetic field. A specific fea- 
ture of our problem compared with the case of a 
nongyrotropic plasma i s  the onset of polarization- 
operator terms odd in the chemical potential when 
summed over p,. This summation is effected by in- 
tegrating along a circle of infinite radius with addi- 
tional multiplication by any of the two auxiliary func- 
tions f *  (p,)  =*iS(l+ exp( i  ij3p4))-'. In the expression 
(7) below one can s e e  the structure of the terms ob- 
tained after the summation. From among the elements 
of the matrix C,,, in (?), we shall need hereafter only 
four: 

The + and - signs should be taken for the first  and 
second pairs of the indices, respectively. Here 

where Lt (x) a re  generalized Laguerre polynomials, 
and x =z2/2eB. 

Thus, summation over p,  in the loop diagram for 
II,,(k,, k IA, p, p) yields, apart from a factor, 
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where no,,= [I+ exp(c, p)] a r e  respectively the 
mean number of electrons and positrons in the state 
q (P,, n) and n:, and n; have the same meaning for the 
state qr(& +k3mb1). We have indicated by the symbols 
Ev(. . . ) and iOd(. . . ) even and odd parts of functions of 
p; (i.e., in fact the parts even and odd in ir,, and i~ , , ) .  
This notation i s  preferred to the traditional symbols 
Re and iIm because sources of imaginary quantities 
other than the connected with ir,,, appear after the 
transition to quantum kinetics. 

The terms odd in ic, enter the integrands as the co- 
efficients of the differences of the mean numbers of 
the electrons and positrons, they a r e  odd in the 
chemical potential [which enters into (7) only through 
no,,]. These terms vanish for electrically neutral 
systems. If we change the integration variable p, - - (p,+ k,) and the summation index n -nl  in the 
second square bracket in (7) (this leads to the change 
n:,,-no,,), we see  that for some of the C,, com- 
ponents the terms odd in p cancel when the second square 
bracket is summed with the first  one, while for other 
C,, components these terms survive, depending on how 
the C, components behave under the above change. 
For  example, the diagonal components, C, a r e  in- 
variant to such a change the even parts of both halves 
of (7) become identical, and the odd parts cancel. The 
quantities C,, = C,, also give r ise  to terms even in p. 
In n,,, on the contrary, both the Ev and Od parts 
remain. For the components (1,3; 2,3;  1,4;  2,4) 
there a r e  also parts even and odd in p. We can verify 
ultimately in this manner that the calculated polariza- 
tion operator i s  the sum of a symmetric (to the 
interchange of indices v-P) tensor even in p and an 
antisymmetric tensor odd in p, a s  expected from the 
general analysis.16 The Euclidean quantum field theory 
limit is  contained in the symmetrical even part. 

2. THE RENORMALIZED COMPONENTS OF THE 
POLARIZATION OPERATOR. INVERSION AND 
CONJUGATION PROPERTIES 

To eliminate the polarization operator divergences 
by the general procedure of Ref. 2 we must take a s  the 
renormalized polarization operator the quantity 

where the statistical part  is 

and IIk(k IA,o,o) is  the renormalized polarization 
operator in the external field A in vacuum: 

II&(k) is the same without the external field. The only 
divergencies which can remain in (9) [and in (10) be- 
low], a re  gauge noninvariant (i.e. not transverse in 
the indices v and p) .  If the calculations a r e  made in a 
gauge-invariant way, they a r e  absent. We shall see 
below that (9) [together with (10)) a s  calculated by us 
is transverse, i.e., gauge invariant. This guarantees 
its finiteness. 

Formally, the statistical part of (9) can be obviously 
obtained by dropping- 1 from the factors (n,+n,- 1) 
inside the integrals. The field theoretical part  (10) in 
one- loop approximation i s  k n o ~ n ' ~ " ~ * ' ~ .  NOW we a re  
going to write explicit final expressions for the statis- 
tical part  of II:. 

We introduce 

(we recall that z, = + k2,). The diagonal terms and the 
t e rms  II,, = II,, have the following structure 

In more explicit form, the f i rs t  two diagonal terms 
a r e  

where 

We have used here [and in (20) below] the definitions 

(16) 
-nl! N"'; (%)=- 

8," 

x"-n.-tL:;-n,'+l (x)L::n'-' ( X ) e - X '  

(n- 1) ! (17) 

and IQ 1' i s  defined as 

After going to quantum kinetics by the analytical 
continuation k,- iw, the denominator IQ 1' can vanish 
and then it must acquire an infinitesimal imaginary 
increment. The polarization operator should be 
Hermitean only a s  long a s  the absorption processes 
due to the vanishing of (Q 1' a r e  taken into account, 
i.e., only s o  long a s  the complexity coming from this 
infinitesimal increment i s  disregarded. Therefore, 
once we make sure below that the polarization operator 
calculated by us i s  Hermitean in this sense, we con- 
sider ic, and k, a s  the only sources of the complexity. 
In other words, we must check the hermiticity of Eqs. 
(7) with the zeros  of the denominators (IQ 1') integrated 
in the principal value sense or, alternatively, the 
hermiticity in the domain of the momentum variables 
k,, where I Q  1' f 0. (It can be shown that in our case 
such a transparency region does exist for every pair 
of values n ,nl see the last section of the article.) 

All five terms in (12) a r e  real  for the temperature 
case (i.e., at rea l  k,). After the analytic continuation 
k,-iw, the diagonal terms remain real ,  but II:: 
= ll:: = - IIi:* becomes antihermitean, while II:: = II$ 

3 Sov. Phys. JETP 49( 11, January 1979 H. Perez-Rojas 



= II$* i s  Hermitean, as it should. In the same way 
we get 

n,l't=-f+2k,kag, IIa,"=f+2kikag, 

where 

and F : )  is given by (16). After the analytical contin- 
uation g and h a re  real ,  while f i s  pure imaginary. 
Equations (13) and (14) can be represented jointly as a 
Hermitean tensor in the subspace i,j = 1 , 2  

IIi,"=-feij+ (h-  (k:+k,L)g) 6,.+2kikjg, 

where e f j  i s  the unit antisymmetrical (2 x 2) tensor 
F,,= -c,,= l ,~ , ,  =&,=0, and the functions f ,  g, h ,  (14), 
(15), (20) depend only on the combination k: +ki ,  which 
remains invariant under rotations in the (1,2) plane. 
The components k, and k, and the external magnetic 
field B a re  not affected by these rotations and this 
i s  why the results of the calculations admit of such 
an explicit tensor structure. The tensor &,, stems 
from the electromagnetic-field intensity tensor F ,  
which i s  different from zero only in the sector (1,2), 
where i t  i s  equal to Fi j=Bcfj .  According to Ref. 16, 
the antisymmetrical part of the (4 x 4) tensor II$ is 
formed by the two matrices 

$$' = (uk )  [ k,(Fk),-k,  (Fk )  .+kaF,], 

9:' =u. (Fk),-u,(Fk) ,+ (uk )  P,, (21) 

where u, is the 4-velocity vector of the medium and 
has in t h e r e s t  fra&*owhich the calculations 
pertain) only one nonvanishing component uo= 1. It i s  
seen therefore that at v, p= i , j  = 1 ,2  the antisymmetri- 
ca l  part takes the form 

where II,, a re  the purely imaginary coefficients that 
a r e  even with respect to k, of the matrices $Zp6 ) that 
enter into the expansion of II$ In full agreement with 
this formula, the function f (20) contains the factor k4 
raised to an odd power. 

To write the other components of II,,, we introduce 
the notation 

and 

n'l 
n! (XI 

where m = 3 , 4  andp,'=p,,p:=p,+ip. Then 

It i s  seen from (23) that at k4=iw the quantities a, 
and b, a re  real  and a, and b, are  imaginary, s o  that 
in Minkowski metric the matrices (28) a r e  Hermitean: 
II;:= II$*, s = 3,O. This completes the establishing of 
the hermiticity of the entire tensor II: calculated in 
the one-loop approximation in the transparency region. 

In Eq. (28) one can also plainly see the tensor struc- 
ture of II;; under rotations in the (1,2) plane. From 
(23) it also follows that in Eq. (24) the part a, which is 
symmetrical under the inversion m -i is even with 
respect to the chemical potential, while the antisym- 
metrical part  b, is odd. An analogous property i s  
possessed also by the components (12) and (23): the 
components (12) a re  even in p and symmetrical under 
the inversion v- p. The only antisymmetrical part in 
(19) is c f  f and it  is odd in'the chemical potential 
according to (20) since it contains the difference (n, 
- n,). As for the functions g and h, which form the 
symmetrical parts of (20) and (23), they include only 
the sum (n, + nJ. Therefore the calculated polarization 
operator i s  indeed invariant, a s  predicted in Ref. 16, 
to simultaneous reversal of the sign of the chemical 
potential and the indices v- p, v,p= 0,1,2,3:  

This equation incorporates the Furry theorem a s  well 
a s  the Onsager relations (see below). 

It i s  also readily seen from (12), (19) and (24), that 
the property 

holds. This property follows in the general case from 
the representation of II,, as the second variational 
derivative of a certain effective action," and i s  a 
direct consequence of (1) in the one-loop approxima- 
tion. Unfortunately our results do not make it possible 
to verify the relations connected with the reversal  of 
the sign of the external field, inasmuch as in the for- 
mulas presented above, in accord with the manner of 
their derivation, B i s  essentially a positive quantity 
(B= 1 ~ 1 ) .  We have in mind the formula 

which i s  the generalized Furry theorem2 or  an ex- 
pression of the invariance of the polarization operator 
to total charge conjugation. In conjunction with (25) 
this means that the asymmetrical part of II: i s  odd in 
the external field, i.e., the Onsager relation1': 

3. FOUR DIMENSIONAL TRANSVERSALITY OF 
THE POLARIZATION 

Using the relations written in the Appendix, it i s  
possible to verify that our polarization operator sat- 

(23) isfies the transversality condition demanded by gauge 
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invariance n,kV = k e n p ,  = 0. It i s  easy to see that the 
transversality condition must be satisfied separately by 
the symmetrical and antisymmetrical parts of g;. For 
the antisymmetrical part, the last two rows and two 
columns of the matrix II& satisfy the relations 

a s  can be seen by direct substitution from (24). The 
first  two pairs of rows and columns give, after sub- 
stituting (14)- (19) and (23), (24) and gathering like 
terms in a common integral 

because the numerator inside the curly bracket 
vanishes identically by virtue of the relations (A. 1) 
in the Appendix. 

For the last pair of rows and columns of the sym- 
metrical part KS, we get, writing 

and making some simplifications, 

[where the relations (A.4) of the Appendix were used]. 
In the same way, for  the third row and column we 
use the form 

The common integrd gives 

e3B " dp ,  
II,/k,-krII,.,'=- -2 I - ~ v { p ~ + ~ , [ z ~  (~t1,'. +M,,? ) 

2na ,,*. -- eq 

The first  term in the curly bracket gives a vanishing 
contribution after integration because it i s  odd in p,, 
and the numerator in the second term is zero by virtue 
of the relation (A.4). For  the f i rs t  two rows and 
columns of the symmetrical part we have 

where (A.2)-(A.5) and (A.7) were used. This com- 
pletes the proof of the transversality. 

sality do not involve the factor (n,+n,) inside the in- 
tegrals. If this term is replaced by - 1, we find that 
transversality is formally fulfilled by the unre- 
normalized polarization operators in vacuum in a 
magnetic field. This means that in the assumed calcu- 
lation method this quantity contains only a gauge-in- 
variant (i.e. logarithmic) divergence. 

In concluding this section, we must refer to the work 
by Bakshi, Cover and ~ a l m a n , ' ~  where the calculations 
were made in a magnetic field a t  ,9'= 0 and p #0. 
Since they calculated only the spatial components at 
k ,  = 0, i t  i s  not possible to check the transversality o r  
the tensor properties with respect to rotations in the 
(1,2) plane. Although the hermiticity of their results 
seems to hold [apart from a possible misprint (?)], 
the equivalence of the interchange of the tensor indices 
p -- v of the 4-momentum inversion k, -- - k, (25) i s  
violated. As  for the attempt of the authors of Ref. 15 
to extend results of their calculations at 8-' = 0 to non- 
zero temperature by introducing the Fermi distribu- 
tion into the integrand, i t  i s  absolutely untenable, 
since they apparently did not know that the antisym- 
metrical part  of lI$ contains the difference of Fermi- 
distributions of the electrons and positrons. 

4. THE DIELECTRIC CONSTANTS FOR PARALLEL 
AND PERPENDICULAR PROPAGATION 

For  wave propagation parallel to the external mag- 
netic field B, the polarization operator has two eigen- 
values corresponding to the transverse circularly 
polarized Faraday normal modes16 and one eigenvalue 
x , corresponding to a longitudinal C o u l o m b ~ e .  The 
dielectric tensor t i ,  =6 , ,  + Ilc /d, i ,  j = 1,2,  also turns 
out to be diagonalized, two of i t s  eigenvalues being the 
transverse dielectric constants 

The quantity 

corresponds to the longitudinal dielectric constant, 
because c,, coincides in our case k ,=  k ,=  0 with the 
definition 

We can then write therefore 

For  (32) and (35) we get 

We see that the calculations for the test of transver- 
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where 

D=IQI'IhP,m, an=2-80n, z,=k,Z-02, 

and Po and so a r e  the corresponding values a t  p = B1 
= 0. 

For  propagation perpendicular to the magnetic field, 
k, =0, there is an eigenvalue related to the ordinary 
wave with i ts  electric vector polarized linearly, 
parallel to the external magnetic field B. 

ei-en=l-IIsslkrt (38) 

There a re  also two normal waves elliptically polarized 
in a plane perpendicular to B. The dielectric constrants 
for these (extraordinary) waves a re  

where f ,  g, and h must be taken from (14), (15), and 
(20) with k, = 0 and k,= - iw, while Po and to a re  the 
corresponding values a t  p = j3- = 0. 

5. THE LIMITS k,, + 0 AND eB + 

We consider briefly these two limits for our polar- 
ization operator. The f i rs t  limit i s  meaningful only 
in the order k,< lkl - 0 in the temperature case.2 
Taking into account the properties of the functions 
F, G ,  and N given in (A. 8) i t  is  not difficult to obtain 

except for the component v =  p= 4, for which 

eJB d 
= lim II.,(klA, p, p-') -- 

hcltl-0 
,, d p  d; ( n e - n ) .  (41) 

" -- 

where X is the Debye radius of the electron-positron 
plasma. 

In the eB -00 limit, i t  can be proved that the dominant 
terms a re  II,,, II,,= II,,, II,,, to which only the term 
n = n l =  0 in the sums over and n 1  contributes. The do- 
minant scalar is s = - a,Q'&,a,Q': 

where 

so,,= lim SO. 
,B+- 

F o r  a vacuum with a magnetic field this limit was con- 
sidered in Ref. 20. The scalar s i s  a t  the same time 
an eigenvalue of the polarization operator with eigen- 
vector a ': 

where F A  is a tensor dual to the external field inten- 
sity tensor. The corresponding normal wave i s  a 
longitudinal Coulomb wave when propagating parallel 
to the external field and an ordinary transverse wave 

polarized along B when propagating perpendicular to 
B. 

6. ABSORPTION MECHANISMS AND TRANSPARENCY 
REGIONS 

To study the mechanisms of propagation of a n  elec- 
tromagnetic wave by a plasma it  i s  sufficient to con- 
sider the regions where the calculated expressions 
for the polarization operator a r e  analytic in z, = k: 
- w2 at fixed real  variables z2=  3 + ki and k,. These 
analyticity regions a re  independent of z2 and k, be- 
cause of the degeneracy of the electronic levels in 
the magnetic field (so long a s  T t 0, see below). 

The analytic properties with respect to z, a r e  deter- 
mined by the zeros of expression (la),  which enters 
a s  a denominator in the integrands of (12), (14), (15), 
(20), and (23). It i s  easy to show that the denominator 
(18) vanishes only a t  real  z, when P, i s  varied along 
the integration path - <p3 <a. Therefore the integrals 
with respect to p,, being convergent, a r e  analytic 
functions in the z, plane, with the possible exception 
of singularities located on the real  axis. To deter- 
mine their location, we obtain the roots of the deno- 
minator (18). There a r e  two of them: 

and the frequency a t  fixed k, is o = (k: - z,)'~. There- 
fore the denominator can be expressed in the form 

In the 2,-plane region where the roots P ( ' * ~ '  a r e  com- 
plex, they do not lie on the integration paths and the 
integrals a r e  analytic in z,. Whenp(ln2) a r e  real, the 
integrals a r e  not uniquely defined-the corresponding 
real values of z, belong to a cut. The branch points 
correspond to those values of z, for which the imagin- 
ary  parts of p'lv2' f irst  vanish. In this case the poles 
P ,=P" '~ )  of the integrand pinch the integration path 
(the only possible exception i s  a t  a temperature T = 0 
in some regions of the variable k,, for  in this case 
the Fermi distribution makes the region of integration 
with respect top, bounded), causing a singular thres- 
hold-dependent behavior of the reciprocal square root 
type (2, - (z,),,,)-'~, which i s  characteristic of systems 
with magnetic fields. In region where the real  axis of 
the z, plane i s  analytic the roots P " * ~ '  a r e  complex 
and mutually conjugate, p " '=p '2'*; therefore the 
denominator (44) is  real  and the calculated tensor 
II,, as shown in Sec. 3, i s  Hermitean. Thus, the non- 
Hermitean part of II,, exists only on the cut due to the 
imaginary increment of the denominator (44), when 
the latter vanishes, and assumes a value jumpwise 
on the cut. This statement i s  the relaization of the 
optical theorem in our case. The jump on the cut, a s  
usual, i s  formed by absorption of an electromagnetic 
wave. We shall therefore call the region occupied 
by the cut the absorption region, and the region free 
of the cut will be called the transparency region. It 
follows from (43) that pa"' a re  complex if k:>zl, a, 
+ 4(m2+ 2eBn)zl<0 o r  k;<z,, a2+4(m2+2eBn)z,>0. 
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Thus, representing the discriminant of n2 in the form 

where 

we see that the transparency region for each pair n,  n1 
is located between branch points z: and z;'(z:<z, <z:'), 
and also in the region z,>k:. The last inequality i s  
simply the condition under which the frequency w is  
real. The inequality z; <zil may be violated if z; and 
2;' a r e  taken for different n and nl, s o  that there i s  
no universal transparency region on the real  w axis. 

A purely kinematic analysis based on the laws of 
conservation of the energy and of the momentum com- 
ponent along the magnetic field makes it possible to 
identify the region of the cut zit 6 2 ,  s @ with the region 
in which a (virtual or  real) process takes place where- 
in the incident photon excites an electron o r  positron 
of the medium on the level n1 with momentum p j  
=pa+  k,. (At z,>O it i s  also possible to have excita- 
tion with transition from a higher Landau level to a 
lower one n > nl, ID,' 1 > jp3 1, E*, > E..) In other words, 
i t  can be shown that this i s  the region of zl in which 
the inequalities 

can be satisfied for all real p, and p;. The value z, 
= zit corresponds to 

This is the value of the electron (positron) momentum 
that serves a s  the threshold for the excitation process. 
Apart from the sign1' this expression agrees with 
(43) at z, =Z;I(A =O). At n =n l  (the particle changes i t s  
momentum under the influence of the wave, but re-  
mains on the same Landau level), Eq. (45) becomes 

. infinite. Since the Fermi distribution has no particle 
with infinite momentum, the process of excitation a t  
the threshold i s  suppressed. As  a result the threshold 
value z i t =  0 i s  not subject to the aforementioned root 
singularity, a s  can be seen directly by substituting 
n =n l  and 2,  = 0 in TI,,: they a re  finite. 

It can be analogously established that the cut region 
z, <zi  corresponds to virtual or real production of an 
electron-positron pair by a photon. This process 
exists even in vacuum. Therefore the sign between the 
two radicals in the denominator in the formula 
analogous to (45) is  plus, p, i s  finite, and all  the 
thresholds a re  singular, with exception of the degen- 
erate case T =  0, when the integral with respect to p, 
is  cut off by the Fermi distribution. The singularity 
of the threshold behavior exerts a substantial influence 
on the dispersion curvesL4*" and leads to peaks on the 
absorption curves in the threshold regions. 

The author thanks E. S. Fradkin and A. E. Shabad 
for guidance and general advice and discussions, and 
M. A. Braun for a discussion. 

APPENDIX 

We state here the relations between the functions 
of the Laguerre polynomials introduced in the body of 
the paper. These relations can be obtained by using 
trivial recurrence relations as well a s  the complete- 
ness propertiess of the Hermite functions, whose 
integration leads to the combinations of Laguerre 
polynomials in our problem. The relations we need 
a r e  

n' 131 - F:;., M::,'. = F n n . ;  
n-n' n-n' 

111 (1) (3) (1) nF,,,-- (nn') '"G.,, nF,.,-2xNnm. , M::. = = 
X n-n' ' 

(A. 1) 

M ~ " . ' . - M ~ ~ . = F $  = , (n+nl) ~ : , - 2  (nn') "G,!:! 
X 

(A.3) 

n1F,!:!- (nn') HG:~:'. n ' ~ ? ~ , - 2 ~ ~ ~ : ' -  
M::', - - =--. 

X n-n' ' (A. 5 

"'-0 n-a 

"he sign in (43) has in itself no meaning, since it is always 
possible to make the change of variable p3- -p3. i.e., reverse 
the electron direction in the loop. 
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Kinetics of infrared absorption spectra of SF, molecules 
vibrationally excited by a high-power CO, laser pulse 
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The infrared linear absorption spectra of the SF6 molecule is studied experimentally with time resolution 
after multiphoton excitation in the strong field of a CO, laser. A comparison is made with SF, spectra in 
equilibrium heating and the existence is shown of two ensembles of molecules-Id molecules which do 
not interact with the field and hot, vibrationally excited molecules. Measurements are made of the 
fraction of molecules interacting with the field q,  the average level of excitation (n,), and the time of 
establishment of vibrational equilibrium as a function of the level of excitation. 

PACS numbers: 33.20.Ea 33.80.Kn 

1. INTRODUCTION tribution function ,V(E,,) a r e  known. 

In recent years a large number of studies have been 
devoted to the multiphoton excitation and istotopically 
selective dissociation of polyatomic molecules in strong 
infrared laser fields (see the review by Ambarkmian 
and Letokhov'). The molecule most studied in this area 
is SF,, for which detailed investigations have been made 
of the characteristics of multiphoton absorption, dis- 
sociation, and laser isotope separation and for which a 
real  possibility has been shown of isotope separation 
in large quantities., An important refinement of the 
process is the use of the two-frequency method,' in 
which the f i rs t  field excites a significant fraction of the 
molecules and the second, with some delay in time and 
detuning in frequency, dissociates the vibrationally ex- 
cited molecules. 

At the same time there remain unanswered many 
questions relating both to the excitation of the lower 
and higher vibrational levels and to the dissociation 
process. 

The interpretation is particularly difficult in the case 
of two-frequency excitation. While the absorption spec- 
trum and distribution of molecules in vibrational levels 
a re  known for single-frequency excitation, in two-fre- 
quency excitation the second field interacts already 
with a substantially nonequilibrium system, for which 
neither the absorption spectrum nor the vibrational dis- 

Of exceptional importance is the question of the frac- 
tion of molecules q which interact with the field and of 
the average level of excitation of the molecules (nu), and 
also the dependence of these quantities on the conditions 
of excitation. In experiments on measurement of ab- 
sorption in a strong field4s5 one usually determines (n)- 
the average number of absorbed photons for all mole- 
cules in the region of the strong field, i.e., the quantity 

However, obtaining information individually on q and 
(nu) from experiments on dissociation of molecules is 
extremely difficult a s  a consequence of possible pro- 
cesses of successive excitation of dissociation products, 
and also possible recombination of dissociation products 
with formation of the initial molecules. 

Another important question is the lifetime of mole- 
cules excited in a strong field to high vibrational slates, 
i.e., the time of their de-excitation in collisions with un- 
excited molecules. 

The present work is devoted to investigation with time 
resolution of the linear absorption spectra of SF, mole- 
cules after their multiphoton excitation in the strong in- 
frared field of a CO, laser. This permits determination 
of important characteristics both of the multiphoton ex- 
citation process itself, and of the molecules excited to 
high vibrational states. 
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