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The phase transition problem is solved in the approximation of a large number of nearest neighbors. A 
phenomenological theory is constructed to find the density of states and the value of the dielectric gap in 
the neighborhood of the critical point. Concrete calculations are made for the BCC and simple cubic 
lattices. A detailed comparison with the results of Hubbard's work [Proc. Roy. Soc. A281, 401 (196411 
shows qualitative but not quantitative agreement. The problem of finding the density of states in a 
metallic phase far from the transition point is discussed. 

PACS numbers: 72.60. + g, 71.20. + c 

INTRODUCTION 

We shall study the Hubbard model under the conditions 
that the number of electrons is equal to the number of 
sites and the density of states is an even function of the 
energy. Simple examples that will be considered are 
the d-dimensional BCC and simple cubic lattices, and 
also a hypothetical model with the density of states giv- 
en by Eq. (7), which is the same in zeroth approxima- 
tion as that used by Hubbard.' In all of these cases at 
T = O  the ground state is nearly antiferrodielectric, for 
any value of the ratio of the energy t for transition of 
an electron to an adjacent cell to the intraatomic ex- 
change energy 1. In papers by Langer, Plischke, and 
Matti# and by the present write? i t  has been shown by 
extrapolation that at the Mott transition point the value 
of the N&l temperature T, is at least an order of mag- 
nitude smaller than the exchange energy I .  Using this 
as an assumption, we shall consider the metal-dielec- 
tric transition (M transition) in a paraphase, regarding 
the termperature as small compared with I but large 
compared with T,. 

For this temperature range an attempt has been made 

to construct a phenomenological theory of the M transi- 
tion appropriately analogous to the theory of gapless 
supercon~luctivity.~ A rigorous calculation can be made 
only in a space of a large number of dimensions. It will 
be shown that this scheme checks qualitatively with al- 
most all of the results of the Hubbard theory1 that are 
correct above the Nee1 temperature. It turns out that 
for the density of states (7) the critical value of the 
ratio t/l is identical with the value found in Ref. 1, but 
otherwise the results are quantitatively different. 

1. THE APPROXIMATION OF LARGE NUMBER OF 
NEAREST NEIGHBORS 

In a nonmagnetic phase, when T, << T <<I, we can take 
the Hubbard solution' a s  a zeroth approximation. The 
corresponding G function will be written in the notation 
of the previous papers by the writerss5: 

( 0 , ~ )  (-a,2) 

o;:(k,- 'O*"' ( -lo,,-ea-'/,t (k), 
( - 6 2 )  -'/Zat (k) , -io,+eo-'/.t(k) -"'atck) ) ' 

' .  
t (k) =t eikr, eo='/J, om- (2n+l)nT. 

G) 
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The occupation numbers for opposite spin values (u 
= *1) are each equal to 3 .  The spectrum of excited 
states calculated by means of Eq. (1) has a gap (even for  
t -I) 

If we assume that the number n of nearest neighbors is 
large (n >>I), n-I" is a small parameter of the self-con- 
sistent field for the problem. As we shall see later, the 
M transition in which we are interested occurs at t 
-l/nl"<<l, where we can use the atomic representation, 
for which diagram methods for calculating Green's func- 
tions have been d e ~ e l o p e d . ~ ~ ~  The first approximation in 
the self-consistent field parameter consists of the set of 
diagrams containing one loop. 

Figure 1 shows the one-loop corrections to the self- 
energy part. We shall concentrate our attention on dia- 
grams of type a, since diagram d is equal to twice dia- 
gram a and the others are equal to zero if we assume 
that all sums D,=Z,f (p) with odd q vanish. (The proof 
is given in Appendix B). 

Using the notations adopted in Ref. 3, we write the 
proper-energy part of diagram a in the following form: 

The indices o! and f i  number the transitions. The matrix 
t_,,(p) is the product of t(p) times the matrix 

for the spin values u=*l. 

In the paramagnetic region the lowest energy level 
contains one electron with either spin up or else with 
spin down, with equal probabilities. The empty and 
two-particle levels are separated from the one-particle 
levels by the energy &,=z/~>>T. For this reason the 
occupation numbers of the upper levels are exponential- 
ly small, and the occupation numbers of the lower level 
are close to a. Using this fact, we can decidedly sim- 
plify the calculation of mean values of products of dia- 
gonal operators by taking into account only the low one- 
particle states. To this accuracy the matrix r,,,, for 
equal spins is of the form 

The result for opposite spins is the same but opposite in 
sign (see Appendix A). 

Direct calculation of the sum over indices in Eq. (2) 
gives the following result: 

G:' ( p )  =-2eo/[eo'+o.'-iont(p) I. (4) 

To construct a phenomenological theory it is necessary 
only to assume that the function G that appears in Eqs. 
(2) and (3) is to be replaced with the exact propagator, 

FIG. 1. One-loop self-energy parts 

and to write instead of the matrix r, in Eq. (2) of the 
coefficient in Eq. (3) an exact vertex part, which we 
shall take to be constant. Then instead of Eq. (3) we get 
an equation for determining the self-energy part 

A - + 
l G y ) i o P l  ( P )  - o G . ( O P l ( - . . l )  ( p )  +aGt-n.2)(0..)  " - ( P )  

(-0.2'(-0,2) 

(5) 
-G. (PI l t ( p ) ;  

-io-en-'l,t ( p )  -h.t ( p )  , -'/,at ( p )  -at ( p )  h. 
.-I= ( 1 -'Izot ( p )  +at (p) h., -io+eo-'/at ( p )  +Ad ( p )  ' 

where y is the vertex part, which is 3 when we take into 
account only diagrams a and d in Fig. 1. 

In analogy with the transformation used by Abrikosov 
and Gor'kov" we introduce instead of A, an unknown function 
r3 which depends on the frequency: i 3 = i w -  2&&,. Then 
instead of Eq. (5) we get an equation for 3: 

i ~ = i o ~ + ~ z  eoat (p) 
~ ~ ~ i o , ~ - i B t  ( p )  ' 

(6) 
P 

It is possible to justify a procedure for deriving the 
closed equation (6) only in a space of a large number of 
dimensions; this is discussed in Sec. 3. The complete 
solution of the system of Eqs. (5) and (6) for the special 
case considered in Hubbard' s original paper.,4 for which 

is presented in Appendix C. 

In the next section we shall obtain the solution of Eq. 
(6) in the limit of low frequencies; this is precisely 
where the metal-dielectric transition occurs. 

2. PHENOMENOLOGICAL THEORY OF THE M 
TRANSITION 

To find the density of states it is necessary to know 
the retarded Green's function, which we shall obtain 
from Eqs. (4)-(6) by analytical continuation into the up- 
per half -plane, i w  -&+i6, which corresponds to the re- 
placement i t  4. 

We assume that all of the quantities D,,,, vanish: 

D*+,= ( t  (p))"+*=O. 
P 

Then the densitgr of states v k )  is an even function and 
Eq. (6) always has a solution that goes to zero as ion 
= &-0. The condition that the gap vanish corresponds 
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to the appearance of a second solution. It is natural to 
assume that near this point the second solution is small, 
and therefore after the analtyic continuation we can ex- 
pand Eq. (6) in a power series in 52. The second term of 
the expansion is zero, so that up to terms of third order 
we find 

The expression for ~ , ( k )  in terms of Q is as  follows: 

G, ( p )  = - 2 ~ ~ / [ e ~ ~ + o . ~ - i Q t  ( p )  1, 

Gas(*) = 2 i o . l [ e o z +  o n z - i ~ t  ( p )  1. 
DII 

By means of Eq. (6) we calculate the sum over mo- 
menta that appears in Eq. (12). If we now sum the D 
function over the momentum and use Eq. (6) once more, 
the retarded Green's function summed over spins can 
be expressed in terms of Q.: In the low-frequency region we get the following equation 

Apart from a factor l/r, the density of states i s  the 
imaginary part of the expression (15). For example, 
let u s  calculate the density of states for E=O near the M 
transition point. Using Eq. (9) at &=O, we find Ct=iplh, 
so that in the metallic phase 

A complex solution of Eq. (9) arises for 4p3= - 27q2, 
from which we find the frequency at which a nonvanish- 
ing density of states appears in the system, given by 

For p>O or & i < y ~ ~  there is no gap in the spectrum; this 
corresponds to the metallic state. In the dielectric 
phase p < O  the spectrum of excitations has a gap E,=2cc. 
The condition for the transition into the metallic state is 
of the following form: 

Let us  determine the asymptotic form of the density of 
states in the limiting case & -0, t>>l/nl". For this 
purpose we introduce the one-particle density of states 

( t / I )  . = 1 / 2 ( ~ ) '  since t y p )  =nt2 .  C V ( X )  = C 8 ( z - t  ( p )  l t )  
P 

Accordingly, for a large number n of nearest neighbors 
the M transition occurs with t <<I. A s  has already been 
remarked, according to perturbation theory y = 3, and 
it must be supposed that in the general case this quan- 
tity remains finite and positive. 

and rewrite Eq. (6): 
m ( x )  d x  

iB=iu ,+y teo  

If we suppose that the function v(x)  is even and that the 
maximum value of x is approximately n, then the right 
member of Eq. (17) can be expanded in powers of 
cdlxlt : 

The Green's function differs from the G function by 
the presence of end factors, which in general depend on 
the frequency 

In Eq. (18) let us  suppose that I W I G  co; then in zeroth 
approximation a2-y EL and in the next approximation In the self-consistent-field approximation it is sufficient 

to include only the diagrams shown in Fig. 2, a, b, and 
c. Tbe other diagrams d, e, and f give zero, either be- 
cause of the condition D,+,=O, or after being summed 
over the frequencies. As the result of an analytic continuation we get at c=O 

Calculations quite similar to those done in finding the 
self-energy part lead to the following expression, apart 
from dependence on a: After substituting this expansion in Eq. (15) we find for 

t >>z/nlh 

A comparison of Eqs. (19) and (16) shows that as the M 
transition point is approached from the high-pressure 
side (larger values of t/z) the density of states at the 
Fermi surf ace increases in proportion to l / t ,  since 

Near the M transition point the density of states goes 
through a maximum, and then approaches zero accord- 
ing to a law (t - tc)'" [see Eq. (16)]. 

The sum that appears in Eq. (19) depends on the type FIG. 2. End diagrams in the one-loop approximation 
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of crystal lattice. For example, for a simple cubic lat- 
tice 

Jo is a Bessel function, and d is the dimensionality. If 
the sum v(0) turns out to be infinite, then the expansion 
(18) must be carried out again. For example, for the 
bcc lattice the law of decrease of the density of states 
for tnlh>>l turns out to be slower thanI/t: 

In the dielectric phase p(O)= 0, but for I >> & 2 c, the den- 
sity of states can be calculated by means of Eqs. (9) 
and (15): 

The quantity &, is equal to half the dielectric gap and is 
given by Eq. (10). 

Equations (lo), (16), and (22) agree qualitatively with 
the corresponding results of Hubbard.' It must be point- 
ed out, however, that instead of Eq. (9) Ref. 1 gives a 
different and more complicated result, from which one 
can derive the asymptotic expansion (19), if the density 
of states is normalized in precisely the same way. A 
more detailed comparison with Ref. 1 is given in Appen- 
dix C. 

3. THE COND1TIONS FOR APPLICABILITY OF THIS 
METHOD 

The simplest diagrams that have been neglected con- 
tain three Green's functions; see Fig. 3. In the limit 
T << co diagram a gives a much larger contribution than 
diagram b, since it contains a summation over the fre- 
quency, which gives an additional factor E ~ T .  For sim- 
plicity we confine ourselves to the case of small fre- 
quencies lo , , l<<~~ and find the correction to the spectrum 
of excitations 

In calculating the sum over momenta we use the identity 

t ( p ) t ( p + q )  -tt ( q ) ,  
P 

and we replace the sum over frequencies with an inte- 
gral. We thus get a correction [tt(p)]2/2~&L which must 
be small compared with t(p). The maximum value of 
the latter is maxt(p)=nt, so that we finally have the fol- 
lowing restriction on the temperature: 

tan/eot (T~eo.  (23) 
Let us now consider the temperature shift of the M 

FIG. 4. Correlation corrections 

transition line, which arises near the quadrupole point. 
As has already been pointed out, for T <<&, the weakly 
connected diagrams (those which have unconnected parts 
before the averaging of diagonal operators) contain a 
factor ( E ~ T ) ~ ,  where m is the number of weakly con- 
nected parts, which are joined to each other by dashed- 
line ovals. Starting from this, to find the temperature 
corrections to the diagram a of Fig. 3 we must perform 
a summation over the sequence of loops shown in Fig. 
4. The result of this summation must be inserted in the 
diagram a of Fig. 3 instead of the single loop 

where the function &(p) is given by Eq. (13). 

To obtain the equation for the M transition line we have 
only to solve a linear equation for the function 3 on 
which ~ , (p )  depends. Let us therefore expand II (k) in 
powers of 5: 

As will be seen later, the equation for 5 ,  is very com- 
plicated and has no solution independent of the momen- 
tum. Therefore to find the eigenvalues we at once re-  
sort to a variation method, taking 5, to be a constant. 
We have II (k) - tt(k)/2&,,T, since 

and the homogeneous equation for 3, takes the following 
form: 

The variational procedure for finding the eigenvalues 
of Eq. (34) reduces to multiplying the equation by 3, and 
summing over the momentum p. Since in zeroth approx- 
imation up does not depend on the momentum, to good 
approximation it can also be treated a s  a constant in the 
solution of Eq. (24). By simple manipulations we get 

The condition for the denominator to vanish corresponds 
to the appearance of antiferromagnetic ordering 

min ll (k) =-l=-tZn/2eoTs. (25) 

For T >> T, Eq. (24) can be expanded in powers of ll . 
The result is 

FIG. 3. Intersecting diagrams 
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Since Z#t2(p)= nt ', the temperature dependent correction 
is small if the condition (23) holds, but here the correc- 
tion is of second order in n-lh. 

It is interesting to note that the formula (26) agrees 
qualitatively with experiment, since the critical value 
(dl), increases with rising temperature. It is clear, 
however, that the main temperature dependence comes 
from the interaction with phonons, which requires 
separate consideration. 

4. CONCLUSION 
Accordingly, in the approximation of large number of 

nearest neighbors the M transition i s  governed by a 
function a(&) which satisfies the equation (9). The tran- 
sition from the metallic phase to the dielectric phase 
corresponds to a change of sign of the coefficient of SZ 
(as in the theory of phase transitions of the second kind). 
The free coefficient depends on the frequency and is 
proportional to the deviation from the Fermi level. In 
the neighborhood of the transition point the imaginary 
part of S2(c) determines the density of states. 

I€ we assume that an expansion of Eq. (9) exists also 
with correlation effects included, we can generalize 
the theory of the M transition by expanding the coeffi- 
cients p and q in fractional powers: p -(t - tJ2, qd&". 
Then instead of the three-halves power law (10) we get 
E,-(t, -t)3Vh", and instead of Eq. (16) we have o(O) 
-(t - tc)vh. 

The asymptotic form (19) of the density of states does 
not depend on the interaction energy I and is the density 
of states at the Fermi surface for free electrons. This 
fact points to a possibility of using Eq. (6) and the result 
(15) for all values of c, and for arbitrary lattices with 
D2,+,=0, if the constant y is properly chosen. The ques- 
tion of the influence of the M transition on magnetic and 
structural phase transitions deserves special investiga- 
tion. 

The writer is deeply grateful to E. F. Shender for 
helpful discussions. 

APPENDIX A 

In Fig. 2, a little circle represents the mean value of 
the anticommutator of two f -type adjoint operators 
X(% O )  or  X ( O * ~ ) .  Since in our problem the energies of 
the empty and the two-particle states are equal, and are 
separated from that of the one-particle state by an a 
amount zo independent of the spin, we can write 

({X(O. ~lX(~,~~))- ({X(d.  2)X(f, a))) 

If/2<(X(o. O)+X(+. +)+X(-. -)+X(Z. 2)) )-I/*. 
(A.1) 

Two circles mirrounded by an oval represent the mean 
square fluctuation of the product of the anticommutators: 

< {x,, x-,) {x,, x-P) ) - ( {x,x-.) ) ( {X~X-~} ). (A.2) 
Direct calculation shows that if a and B correspond to 
transitions with the same spin change the average of the 
product of the anticommutators is a unit matrix multi- 
plied by $. If, on the other hand, a and 6 correspond 
to transitions with opposite spin changes, then the ma- 
trix elements depend on the temperature, but can differ 

only in their signs. 

The matrix (A.2) is symmetric in the indices ( c u , ~ )  
and does not change when the sign of either of them is 
changed. For this reason we write out (A.2) only for 
four independent transitions: 

where f = -+ t -gh(cd2~) .  In the limit with which we are 
concerned, T,<.T<<&, for  which f = -+, the matrix ele- 
ment changes sign when there is a change of sign of the 
spin component in one of the two transitions (a or 6). 

APPENDIX B 

The simplest diagram of the type of Fig. 1, a is a s  
shown in Fig. 5. In analytic form the sum of all four 
of these cases can be expressed as the sum over fre- 
quencies of the functions 

here w, =2nnT, and 

In the paramagnetic phase &+ -E_, so that the D function 
in (B.l) is nonzero only for w, =0: 

Substitution of (B.3) into Eq. (B.2) gives a correction 
which is twice the contribution from the diagram shown 
inFig. 1, a. The same result can also be obtained for 
any other incoming and outgoing indices. 

We shall show that the contributions from diagrams 
of the types of Fig. 1, b and e are equal to zero. If we 
fix the incoming and outgoing indices, we get three dif- 
ferent cases [see Fig. 6, where for definiteness the fi- 
nal and initial indices correspond to the transition (0, +) 
(0, +)I. Since there is to be summation over the indices 
a', P I ,  y', we get six diagrams, two of which give zero 
because the commutators [ x ( ~ ~ + ' { x ~ ~ * + ) x ~ + ~ ~ ) ~  and 
[x( -*~){x(+-~x~~,+)) ]  are equal to zero. The commutators 
[xi4 -),x(-,+I ] and [x(~.+),x(~.' '] differ in sign, but the 
coefficients of the operators X:-,O)X>O*-) and X~* ' )X~?*+)  

FIG, 5. Diagrams of the type represented by Fig. 1, d 
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FIG. 6. Diagrams of the type represented by Fig. 1, e 

in the Hamiltonian have opposite signs, so that finally 
we have the following: 

*s.'".'."+) (k) =T C (k,) (Gm!+'"O'-' (k') -G.!O'-;o'-' (k') -G!:.+:~,+' (k') 
u 'k '  

+Gt;.0;2,+) ( k t ) ) - T x  (kt) (G~.+'z;O'-' (k') -G.'P.-'O'-) (k') 
w'k' 

The second equality can be obtained if we use the rela- 
tion connecting f -type Green's functions with opposite 
root vectors: 

After making the change wl--wl in the last two sums 
and substituting the G functions from Eqs. (5) and (7) 
we find 

This sum is equal to zero, since (3 is an odd function of 
the frequency and the sum aver momenta of any odd 
power of t(p) is zero by hypothesis. 

It is not hard to show that finding the contribution from 
the diagrams of Fig. 1, c and d and Fig. 2, d, e, and f 
reduces to the calculation of the same sum (B.5), inde- 
pendently of the spin direction. 

APPENDIX C 

For comparison with the results of Hubbard1 we shall 
make all of the calculations by means of the density of 
states (7). Direct calculation of the integral on the right 
side of Eq. (17) leads to an equation for determining the 
function q = 3/w:  

Here and hereafter we set y =  1, which corresponds to 
perturbation theory and leads to the same condition for 
the M transition as in Ref. 1. This equation can be 
solved for w2: 

In the limit q -1 we have w2-a/(q -1)' h. In the dielectric 

phase, witha<l, the ratio q varies from unity to 
(1 -a2)-'. In the limit 1 -a<<l, we have q so,-+6 -I)-' 
>> 1. In the metallic phase, with a > 1, q varies from 1 to 
m . For large q , 

We find the equation for the gap as a function of the pa- 
rameter a from the condition that a branch point d the 
function appears on the analytic continuation i w  -E+i8. 

After making this change in Eq. ((2.2) we get the 
branch point from the condition a &/aq= 0. After an ele- 
mentary differentiation we find 

Combining this with Eq. (C.2), we find the value of the 
gap E, in parametric form (E,=I&): 

The interval 1< q < qmin corresponds to the upper bound- 
ary of the allowed zone. 

The maximum value E,=l of the gap is reached for 
t/z -0, when q=qmh. If, on the other hand, q >> 1, we 
have a-1 - 3/%, so that the gap goes to zero according 
to a three-halves power law: 

The dependence of the dielectric gap on the parameter 
t/l is shown in Fig. 7 and agrees qualitatively with the 
corresponding curve in Ref. 1. 

Let us  calculate the density of states in the metallic 
phase on the Fermi surface (&= 0). For this purpose we 
set hZ= ~q in Eq. (C. 1) and then go to the limit E -0. The 
result for a > l  is 

By means of the general relation (15) we get 

FIG. 7. Dependence of the 
dielectric constant on the 
parameter t / Z  
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In our case v(0)=2/n, so that in the limit a >> 1 Eq. ((2.7) 
goes over into (19). On the other hand, if \a  - 1) <<I, we 
get Eq. (C.7) from Eq, (16), where we must set y = 3, 
~,=t'/4, and ~ ,=t , /8 .  At a=$  the quantity (C.6) has its 
maximum value 8/3n=0.85. 

In Ref. 1 a different normalization of the density of 
states was used, not our present one with the factor t. 
If we do use our normalization, we can get from Ref. 1 
the following relation instead of Eq. (C.7): 

This curve has its maximum at a=2'I2, where its value 
is 2. 3"2/n. In the limit A >> 1 Eqs. ((2.7) and ((2.8) give 
the same value. Near the M transition point the two val- 
ues differ by a factor 21h. 

For small frequencies we can get from (C.l) an ex- 
pansion of the form of Eq. (9) with the coefficients 

As was already pointed out, the equation derived in Hub- 
bard's paper' is- more complicated and cannot be re- 
duced to Eq. (9). 
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