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The two-temperature approximation is used to study heat conduction in semiconductors. It is shown that, 
in general, the temperatures of carriers and phonons in anisotropic semiconductors are unequal even in the 
interior of a bulk sample. The effective boundary conditions are formulated for the case when these two 
temperatures are equal. 

PACS numbers: 66.90. + r 

1. Heat is transported in solids by various quasi- 
particles (electrons, holes, phonons, magnons, etc.). 
Frequently the interactions between these quasiparticles 
a r e  such that each of these subsystems can have i ts  
own temperature and the physical conditions a t  the 
boundary of a sample can be formulated separately for 
each temperature. Thus, a boundary is the source of 
"mismatch" of a subsystem temperatures. For example, 
the physical conditions resulting in heat transport by 
electrons and phonons a re  given in Ref. 1 and those for 
the transport by phonons and magnons a r e  given in Ref. 
2, and the appropriate boundary conditions areformulat- 
ed. 

Since energy is exchanged between these subsystems, 
i t  may happen that a steady state of a solid can still be 
described by a single temperature sufficiently far  from 
the boundaries. One of the aims of the present paper 
is to show that this apparent truism is not always valid. 
To be specific, we shall consider asemiconductor whose 
electron T, and phonon T, temperatures can be defined 
separately (Ref. 4)." 

2. We shall begin with the cases when a rigorous 
analysis is not in conflict with intuition. This will help 
us to understand why a single temperature cannot be 
introduced in general. 

We shall consider an isotropic semiconductor with one 
type of carrier.  Heat is carried by electrons and phon- 

I€ there is no electric current across a boundary s 
("pure" heat conduction) and heat fluxes a re  governed by 
the differences between the temperatures T, and T, and 
the ambient temperature To, the boundary conditions a r e  
a s  follows1: 

Here, n is a unit vector along the normal to the surface 
s; rle and TJ, are  the surface electron and phonon com- 
ponents of the thermal conduc t i v i t ~ . ~ '  

We shall assume that our semiconductor is homogen- 
eous and that R e  temperature gradients a re  small. This 
allows us to regard the transport coefficients as indepen- 
dent of the coordinates. It follows from Eqs. (I), (2), 
and (3) that 

and the equations of electrostatics (2), together with Eq. 
(4), allow us to find the distributions of the current j(r) 
and field E(r). 

Instead of T, and T,, we shall introduce the "average" 
temperature 

and the temperature difference 

ons which interact to ensure equalization of the tempera- 
which satisfy the following equations : 

tures T, and T,. Steady-state heat conduction, subject 
to alloukmce fdr the thermoelectric effects, can be de- AT-0, A8=k28, kz=P (x.-'+x,-I).  (9) 
scribed by the following system of equations1: The boundary conditions (5) rewritten in terms of a and 

div Q.=-P(T,-T,),  dir  Q,=P(T,-T, ) ,  (1) T a r e  
curl E=O, dir  j=0. (2) k' k.' 

~ V T  I s  I = - & e ( ~ , - ~ o ) - ~ . - - ~ . .  Here, P is a parameter proportional to the frequency of ka 

phonon-electron collisions and the densities of the elec- k,' k," ~ V T  I s - X - n ~ ~  I = - ~ p ( T . - T o ) + i p ~ ~ i ,  
tric current and heat flux in the electron Q and phonon 
Q, subsystems a re  described by the usual relationships where 
(the transport coefficients a re  labeled in accordance 
with the system adopted in Ref. 5): k.,, z = - P , i . , = - .  r l* .~  

X *  . X .  0 -,r -.r 

It follows directly from the second equation in the 
(4) system (9) that 8 differs from zero only near the boun- 

We a r e  ignoring the drag effect, because i t  contributes daries; a t  distances L -k-' from the boundaries the 
nothing new to our problem. electron and phonon temperatures a r e  identical ( 8  = 0, 
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T, = T, = T) even when they differ in the surface layer be- 
cause of the boundary conditions (10). This surface 
layer is the region that determines the dependence of the 
average temperature T on the coordinates in the bulk of 
the sample (see, for example, Ref. 5). 

In those cases when the temperatures of the quasipar- 
ticle subsystems participating in heat conduction a r e  
identical in the bulk of the sample, we can formulate the 
boundary-value problem in the one-temperature approxi- 
mation, i.e., we can consider conduction of heat in a 
sample ignoring the existence of several quasiparticle 
subsystems. The solution for  T applies everywhere 
outside the boundary layer which sets  the effective 
boundary conditions for  T. 

It follows from the definition of T given by Eq. (7) 
that in the region where 8 vanishes the value of T is 
identical with the carr ier  and phonon temperatures. 
Therefore, the f i rs t  equation in the system (9) describes 
heat conduction in the one-temperature approximation 
(when the divergence of the total heat flux vanishes). 
Our problem is to formulate the boundary conditions for 
T. 

It follows from A 8  = k28 that nV(3 = k e  a t  the surface of 
the sample, This estimate is valid if the characteristic 
size of a sample 1 is such that kL >>I. Moreover, i t  is 
assumed that the surface bounding our semiconductor is 
smooth. Otherwise, the above estimate is valid a t  dis- 
tances -k-' from surface singularities." 

It follows from the system (10) that 

Eliminating the function 8, from the boundary conditions 
( l l ) ,  we finally obtain the following equations for  T: 

where 

is the effective surface thermal conductivity. 

3. We shall now consider an anisotropic gyrotropic 
semiconductor in the case when the problem can be re-  
garded a s  one-dimensional (all the quantities depend on 
just one coordinate, for example, on x). To be specific, 
we shall consider an infinite plate (0 c x  s 1) of thickness 
L much greater than all the transport lengths, in par- 
ticular, much greater than k-'. 

The material equations (3) and (4) can be replaced 
by the tensor relationship between the fluxes and fields6': 

It follows from the condition curl  E = 0 that E, and E ,  
are  independent of the coordinates and that their values 
a re  governed by the boundary conditions. Since we a r e  
interested in "pure" heat conduction, we can naturally 
assume that E, = E,= 0 [the component of the current j, 
vanishes throughout a sample treated in the one-dimen- 

sional approximation if the boundary condition (5) is ap- 
plied]. However, we must bear in mind that i t  is not 
possible to suppress completely charge transport in a 
truly anisotropic case when the x axis does not coincide 
with one of the principal directions in a crystal: i t  does 
not follow from divj = 0 (j, = 0) that 

d 
- ( a )  = 0 i = y, z. 
dx 

This results in "renormalization" of the thermal con- 
du~t ivi ty .~ '  It follows from Eq. (14) that 

- dZT, div Q.=-x,=- 
&' ' 

where 

It is worth noting that renormalization of % does not 
imply the existence of any restrictions on the values of 
the components of the tensors .%, 6, and 6 ,  because 
the expression for  the formation of the entropy S has i ts  
"initial" form [see Eq. (25.5 in Ref. 51. Renormalization 
is important only in the calculation of VT (see below for 
the boundary conditions). 

Then, the equations for  T, and T, again assume the 
form given by Eq. (6) (if we use A= d2/dx2),  s o  that all 
the conclusions reached in Sec. 2 a r e  still valid. For 
example, the temperature T (naturally a t  distances 
from the boundaries large compared with k-l) satisfies 

d2T/dz'=O , (1 7) 
subject to the boundary condition 

where 5 is described by Eq. (13) and x is replaced with 
z.;". 

Since the linear function T =Ax + B, i.e., the function 
corresponding to V T  = const, is the solution of the prob- 
lem (17)-(19), the bulk current (in the interior of the 
plate) can be compensated by selecting suitable electric 
fields E, and E,. However, we must bear in mind that 
this changes the expression for  the x component of the 
flux Q: 

which alters the boundary conditions a t  x = 0 and L: 

dT "*-I - 
k+EP 

= - T o  I - ,  (20) 
d z  k  (XI=+xp=) + ~ ~ X , = + f ~ x , = =  

4. We shall consider one other situation in which the 
electron and phonon subsystems have the same tempera- 
tures in the interior of a bulk sample. We have in mind 
gyrotropic media in which the densities of the electric 
current and heat fluxes a r e  given by6: 

Q.=-x .VT.+aT, j+L[HXVT.I+NT.[RXj] ,  

QP=-xPVTP,  1 (21) 
i=o (E-aVT. ) -Ro[ HX E l - ( N - R m )  [ H X V T . ~ ,  

where the transport coefficients a re  independent of H. 
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For example, this applies to isotropic semiconductors 
in weak magnetic fields. 

The quantity N in the system (21) represents the tran- 
sverse Nernst-Ettingshausen effect,' R-the Hall e f f e ~ t , ~  
and L-the Righi-Leduc effect.' Substituting Eq. (21) in- 
to Eq. (I), we find that the balance equations have the 
form (6), i.e., in the interior of a sample the electron 
and phonon temperatures are indeed identical: Te = T,, 
= T. In contrast to the abwe cases, the heat conduction 
and electrodynamic problems are  not separated. If E 
is sought in the form 

E=aVT,- Vcp, (22) 

,the system (1)-(2) reduces to 

It follows from the third equation of the system (23) 
that in the case of bulk sample (kl >>l), we have 

8, nVf3I.=ke.>[nx ve] ,  = -. 
1 

Subject to the above expression, we find that the second 
boundary condition of Eq. (5) expressed in terms of 8 
and T allows us to find easily 8, in terms of To, T, and 
n. VT. The above estimate and the knowledge of 8, 
can be used to find [nxve],. Substituting the above ex- 
pressions in the first  and third boundary conditions (5), 
we can eliminate 8, and obtain the boundary conditions 
for the potential cp and common temperature T in the 
first  two equations d the system (23). These conditions 
a re  of the second order relative to the operator V. 

It follows from the equation for T in the system (23) 
that the characteristic length of variation of T is I. 
Therefore (since Hn. VT -H .[n x VT]) inone of theboun- 
dary conditions the term with the second derivative is 
of the order of 

k.' LR-PT' T 
-H 

k ' + 6 , k . z + ~ p k p ~ x .  l2 

(T* is the average temperature of the sample). 

The term with the first derivative is not smaller than 
T/l and 

k 
k,'+k&, LR-PT' T - 

k'+&.k.'+~k,' Rx. I ' 

If the dimensions d the sample are such that 

k.' k.' LR-PT' 
kl>max[-;  -- 

k P = k P 2  Rx. 

we can ignore the term with the second derivative of T 
with respect to the coordinate in the boundary conditions 
in question. 

In the second boundary condition the term with the 
second derivative can be ignored if kl >>k:/k: 

Therefore, if the dimensions of a sample are suffi- 
ciently large to satisfy the conditions (24), the boundary 
conditions for T and cp become 

kpz+kep LR-NZT 
nVTl,+k -H[n  X V T ] .  

k3+b.k2+b,kd Rx.  
k,'(k+&,) NT' + -nVqls=-k 

kJ+&.k.'+&,kpa Rx,  k5+E,k.f +Epkpz 

nVql,+RoH[nXVq],-k 

It must be stressed that the first  two equations in the 
system (23) and the boundary conditions (25) represent 
a complete formulation of the macroscopic problem of 
determination of the temperature T and potential cp of a 
body whosedimensions a r e  greater than all the transport 
characteristics X, with the dimensions of length. We 
must bear in mind that all the coefficients X i  are  essen- 
tially various mean free paths. Therefore, the condi- 
tions (24) imply that the dimensions of the investigated 
body are large compared with the mean free paths of 
quasiparticles. 

5. We shall now consider the general situation of an 
anisotropic (and gyrotropic) semiconductor of arbitrary 
shape when the heat conduction problem is three-dimen- 
sional. Substituting the expressions for the electric 
current and heat fluxes (14) in Eqs. (1) and (2), we ob- 
tain 

E=-Vcp, 
azT. 

(26) 
8% (x.'k+T'(mla,na,k)- + T'a,kac, - = P(T.-T,),  

a t ,  a t ,  a t ,  azk 
a2T* aZT, + arkor,  - = 0, x p 4 -  = - u- P(T.-T,).  a t ,  az, a z ,  at,  a t ,  az, 

It follows from the form of the system (27) that i t  
admits the solution Te = T,,= T only if T is a linear func- 
tion of the coordinates. Such a situation arises only 
under special conditions. 

In general, the electron and phonon temperatures 
a re  nonlinear functions d the coordinates and, con- 
sequently, these temperatures are not identical in any 
finite region of a sample, no matter how large is the 
sample. In other words, the total heat flux in aniso- 
tropic and gyrotropic samples of arbitrary shape can- 
not be described by a gradient of a single scalar func- 
tion even in the interior of a bulk sample. 

We can easily demonstrate the physical meaning of 
this conclusion. Let us assume that in a certain region 
the temperatures Te and T, a re  identical. Then, the 
heat fluxes along the x axis give rise to heat fluxes 
along the y and z axes, which are related by 

The inequalities (28) mean that in a finite region the 
values of divQe and divQ, differ from zero, i.e., there 
should be a redistribution of heat between the electron 
and phonon subsystems. This is why Te begins to differ 
from T,. 

If the anisotropy is  such that rotation of the coordinate 
axes and their compression or stretching makes i t  pos- 
sible to reduce simultaneously all the quadratic forms 
in the system (27) to yeATe, y+T, and chp (ye,,, and c 
are certain combinations of the transport coefficients), 
the temperatures Te and T,, in the interior of a bulk 
sample a re  identical and all the conclusions drawn in 
the earlier sections still spply. 
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It should be stressed that simultaneous reduction of 
the tensors A,, ic,, 6, etc. in J3q. (27) to the principal 
axes is insufficient for  a macroscopic description of 
heat conduction. 

It frequency happens (this applies to isotropic gyro- 
tropic semiconductors in a magnetic field H =H,) that, 
instead of the inequalities (28), we have 

In this case the electron and phonon temperatures a r e  
not equal anywhere in a three-dimensional body. How- 
ever, if the problem is two-dimensional (if all the quan- 
tities depend on x and y only), the temperatures Te and 
T, a re  identical in the interior of a bulk 

We shall conclude by drawing attention to the follow- 
ing point. Our analysis has revealed two circumstances 
which complicate the standard macroscopic description 
of heat conduction: f i r s t  of all, the thermoelectric ef- 
fects may make i t  necessary to solve a coupled system 
of heat conduction and electrostatics equations, i.e., 
the heat flux may depend strongly on the distribution of 
electric fields in a  ample'^, secondly, in general the 
difference between the quasiparticle temperatures does 
not tend to zero as we go away from the boundaries of a 
body which a r e  the sources of the mismatch between 
these temperatures. Naturally, indetermining the trans- 
port coefficients we can always artificially create con- 
ditions permitting a simplified description (see Sec. 3). 
Therefore, the results given here apply to the problems 
whose formulation is dictated by some special need. In 
particular, this applies to the nonlinear galvanomagnetic 
effects in bounded semiconductors'L~'2 and to the ther- 
momagnetic effects,' since i t  is shown in Ref. 13 that ~i, 
(if no special measures a re  taken) differs from zero on 
all the walls (we usually find that qe - 03). 

The authyors a r e  grateful to A. F. Andreev and M. Ya. 
Granovskii for  valuable discussions. 

Note added in proof (1Vovember 15, 1978). It should be 
stressed that the possibility introducing of a single tem- 
perature implies, a s  shown in Secs. 2-4, that Te = T, 
with exponential precision, i.e., T, - T, = T exp(-AC/l). 
In general, (Sec. 5) we have T, - T, = T(Ac /l)=, where 
A, is the energy relaxation length (A, << 1). 

lJln some cases one of the quasiparticle subsystems partici- 
pating in heat conduction consists of electrons and long- 
wavelength phonons which have the same temperature Te 
and the other subsystem comprises short-wavelength pho- 
nons of temperature T, (Ref. 3). 

2 ) ~ t  should be noted that the temperature To depends on the 
coordinates of the surface s. Moreover, the values of 
qe,@ may depend on the coordinates. 

3 ) ~ h e  replacement of n.00 with ke corresponds to averaging 
of Eq. (9) in an interval large compared with k-'but small 
compared with I .  

4 ' ~ h i s  situation is considered in Refs. 7 and 8 for isotropic 
gyrotropic semiconductors. 
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