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A study is made of the reason for the appearance of a nonanalytic linear term in the dispersion law of 
surface plasmons at a metal-vacuum boundary. A model of an unsharp boundary makes it possible to 
calculate explicitly the coefficient in front of the linear term. In this model the unsharp boundary of the 
metal is a transition layer whose thickness is large compared with the Debye screening radius, so that the 
hydrodynamic approximation can be used. The imaginary part of the linear term is associated with 
processes such as the decay of plasmons at the surface into single-particle excitations, which is allowed for 
(in the model employed) by introducing an inelastic reflection coeflicient. 

PACS numbers: 71.45.Gm 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

It is well known (see, for example, the reviews in 
Refs. 1 and 2) that the dispersion law of surface plas- 
mom 

shows nonanalytic behavior manifested by a linear de- 
pendence of the frequency on the modulus of the wave 
vector. (Here, o, is the plasma frequency and k is the 
wave vector in the surface plane. The coefficient B 
represents the usual quadratic dispersion of plasma 
waves, which follows from the continuum theory and 
which we shall not consider here. The coefficientA is 
generally complex and it represents the anomalous lin- 
ear  dispersion.) 

Much work has been done on the origin of the linear 
term and on calculation of the coefficient A. In the ma- 
jority of cases this has been done on the basis of the 
well-known general expression for the polarizability of 
an inhomogeneous electron gas in the random phase ap- 
proximation (see, for example, Kittel's book3). Calcu- 
lation of the coefficientA then requires self-consistent 
computation of the electron density on the boundary, 
which is an important and independent task. In other 
cases the linear plasmon dispersion is calculated for a 
given distribution of the surf ace electron density, which 
makes it possible to complete the numerical calcula- 
tions. We shall not review these investigations but sim- 
ply note that there has been a tendency to lose the phy- 
sical picture in these detailed calculations and that it is 
desirable to elucidate some general aspects of the situa- 
tion using a simpler model. In particular, the follow- 
ing questions are of importance: 

1) the physical and mathematical mechanisms respon- 
sible for the nonanalyticity associated with the linear 
terms; 

2) the factors governing the value of the coefficientA 
and, in particular, 

2a) the physical damping processes represented by 
the imaginary part of the coefficientd . 

We shall point out immediately that the model used 

below is of limited validity and, moreover, the answer 
to the question 2a) obtained in this model can only be 
partial and based on certain assumptions. Nevertheless, 
it seems that the discussion given below is of some in- 
terest because the model employed makes it possible to 
carry out a detailed quantitative analysis and to provide 
a simple physical interpretation, which may be useful 
in dealing with more realistic situations. 

The adopted model is a s  follows. It is assumed that 
the ion masses are infinite and the distribution of the 
positive charge of the ions can be specified arbitrarily 
so that the distribution of the electron density is deduc- 
ed from the solution of self-consistent equations (for 
example, in the random phase approximation). If, a s  is 
the case in a real metal, the ion density terminates 
abruptly, the electron density falls over distances of 
the order of the Debye radius it is difficult to determine 
the nature of this fall. On the other hand, we can imag- 
ine a situation when the ion density falls in a distance d 
much greater than the Debye radius. Then, the scale of 
the inhomogeneity of the electron density distribution is 
of the same order of magnitude, i.e., d>>r,. 

It may be that this model is not without some justifi- 
cation in the case of gaseous plasmas or  inhomogene- 
ously doped semiconductors, but we shall use this mod- 
el only to deal with the questions stated above. 

The model is convenient because it allows us  to use 
the hydrodynamic approximation subject to the condition 

where X=2nk-' is the wavelength along the surface. How 
However, it should be pointed out that the hydrodynam- 
ic approach is unacceptable on an outer boundary of a 
metal in a region of the order of r,, where the velocity 
of sound vanishes. In our model the influence of this 
layer can be allowed for by a single quantity, which is 
the complex reflection coefficient r .  It can be calculat- 
ed by the kinetic approach and we hope to carry out such 
a kinetic analysis later. 

The imaginary part of the coefficientA differs from 
zero for (r(<l. The nature of the inelastic processes 
responsible for the deviation of the reflection coeffici- 
ent from unity cannot be discussed in the hydrodynamic 
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approximation but-as shown below-the coefficient r 
can be interpreted a s  the reflection coefficient of bulk 
plasrnons from a metal-vacuum boundary. We shall 
assume that the inelastic nature of this reflection is 
associated with the decay of plasmons into electrons 
and holes in collisions with the boundary. In the bulk 
case this process represents the Landau damping and 
occurs only on condition q~o,,/vF, where q i s  the plas- 
mon wave vector and v, is the Fermi velocity, which is 
associated with the need to satisfy the laws of conser- 
vation of energy and momentum simultaneously. How- 
ever, when a plasmon collides with the surface, the 
momentum may not be conserved and the decay describ- 
ed &we may take place. We shall assume that this 
process is the principal contribution to the value of A 
and it is implicitly allowed for in the numerical calcu- 
lations based on the random phase approximation. 

2. PHENOMENOLOGICAL DERIVATION OF THE 
DISPERSION LAW OF SURFACE PLASMONS 

The origin of the nonanalyticity in the spectrum of 
surface plasmons can easily be understood from simple 
physical considerations bearing in mind the different 
nature of the Coulomb forces on both sides of the bound- 
ary. In the metal the Coulomb interaction is weakened 
by the Debye screening but outside the metal (in vac- 
uum) the interaction remains of the long-range type. 
An inhomogeneity of the medium associated with the 
boundary invalidates the usual continuum approach and 
it gives rise to discontinuities of the potential and elec- 
tric induction proportional to the wave vector. 

General considerations of this type were developed by 
Agranovich in connection with a study of surface polari- 
tons.4 We shall use these considerations to show how 
the unsharp nature of the boundary gives rise to non- 
analyticity. We shall consider the behavior of the po- 
tential and induction near the surface transition layer 
and we shall derive the appropriate boundary conditions. 
The umal boundary conditions, specifying continuity of 
the potentials and normal components of the induction, 
are in this case insufficient. The point is that, in the 
presence of a transition layer, additional surface cur - 
rents and polarization of the surface region are observ- 
ed. Allowance for these currents and polarization and 
the corresponding derivation of the boundary conditions 
can be made microscopically but for our purpose it is 
sufficient to obtain the boundary conditions directly by 
integrating the macroscopic equations. 

We shall consider a metal-vacuum boundary charac - 
terized by a decreasing electron density nk), as shown 
in Fig. 1. We shall identify the quantities referring to 
vacuum by the minus subscript and those to the metal 
by the plus subscript. We shall represent the coordi- 
nate dependences of all the quantities in the form 
exp(kz +ik.p), where p is a two-dimensional vector in 
the boundary plane. We shall introduce the electric 
field potential E= -Vcp. In the macroscopic approach 
we shall replace a surface transition layer with an in- 
finitely thin surface located at the origin z =O. 

The potential cp and the function D in vacuum (-) and 
in the metal (+) can be represented in the form 

1171 Sov. Phys. JETP 48(6), Dec. 1978 

FIG. 1. 

The field amplitude in vacuum is selected to be unity 
and allowance is made for the fact that the field in vac- 
uum decreases in the limit z--m; B- and B+ are the 
amplitudes of the field in the metal representing the de- 
creasing and increasing components, respectively. 

The presence of the transition layer can be allowed 
for by the following boundary conditions 

where a, and p are phenomenological coefficients relat- 
ing the distribution of the field E, normal to the layer 
and of the longitudinal induction D, inside the layer with 
the normal component of the induction D, and the tan- 
gential field E,: 

Integration is carried out here over the thickness of the 
transition layer. 

The condition (4) is obtained from (6) by the substitu- 
tion E, = - dcp/dz, whereas the condition (5) is found 
from (6) using the continuity equation 

The following clear interpretation of the conditions (6) 
can be applied: if we introduce the displacement current 
I in accordance with the formula D=I/~u, we find that 
the conditions (6) correspond to the transition layer 
representation in the form of an infinitely thin conduct- 
ing sheet of resistivity PT=a , / i ~  in the normal direction 
and a surface conctuctivity o, =ioS in the tangential direc- 
tion. 

Substituting now the expressions (2) and (3) in the 
boundary conditions (4) and (5) and using also the rela- 
tionship E, = - @/&= - ik, we obtain 

The dispersion equation of surface plasmons is obtained 
by equating to zero the amplitude B+ of the field compo- 
nent which increases with depth in the metal: 

If the permittivity of vacuum is &-= 1 and that of the 
metal is &+= 1- oVo2, the final expression for the spec- 
trum of surface plasmons is 
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where A = (cr+0)/4 and we have allowed for the fact that 
the permittivity of the metal at the surface plasmon fre- 
quency is minus unity. 

It thus follows that the linear term in the plasmon 
spectrum can be obtained even from the phenomenologi- 
cal equations if the existence of the transition layer is 
allowed for in the long-wavelength approximation. How- 
ever, the boundary conditions give nothing more and the 
quantityA is defined only in respect of its order of mag- 
magnitude. Further analysis requires consistent solu- 
tion of the appropriate equations in vacuum, in the tran- 
sition layer, and in the metal; the solutions then have 
to be matched. The hydrodynamic equations are em- 
ployed to describe the transition layer because of the 
assumption that the dimensions of this layer are large 
compared with the Debye radius. We shall assume that 
the transition layer is thin compared with the plasmon 
wavelength, so that all the quantities can be expanded in 
terms of the small parameter kd. This method has been 
used earlier to investigate potential surface waves in a 
plasma5 and surface plasmons considered here are a 
special case of this. A calculation is made of the damp- 
ing decrement of surface waves proportional to kd  and 
associated either with total reflection of the wave at the 
point E(W, r)= 0 or with allowance for collisions. 

We shall now consider in greater detail the quantity A 
and we shall calculate it. 

3. EQUATIONS IN THE PRESENCE OF A TRANSITION 
LAYER AND SURFACE PLASMON SPECTRUM 

The complete system of equations for our problem , 

consists of the Poisson equation 

the continuity equation 

and the equation of motion 

supplemented by a linearized equation of the state of 
the electron gas, which we shall take in the form p 
=ms2n, where s=s(z) is the velocity of sound in the 
electron gas (it is of the order of the Fermi velocity). 

Eliminating the quantities j and n from Eqs. (10)-(12) 
and assuming that cp(r)=cp (z) exp(ik.p), we obtain gen- 
erally a fourth-order equation for the potential cp (z): 

where &(z)=l  -4ne2n(z)/mu2 is the permittivity of the 
transition layer. We recall that in vacuum we have &, 

= &(-a)=l  (in the limit z --m), whereas for the metal 
(in the limit z -+a) we obtain 

We shall now consider the three consecutive regions 
z <z , (vacuum), z, cz <z+ (transition layer), and z >z+ 
(metal), defined by the fact that at z >z+ we can assume 

that n(z)=%, whereas for z <z-, we have n(z)=O. More- 
over, we shall postulate that the condition d ~ l z +  -2-1 

c k-I is satisfied. In other respects the quantities z , 
are, arbitrary and drop out from the final formulas. 

~n these three regions, Eq. (13) becomes 

1) in vacuum, 

2) in the metal, 

where the ratio of the second. to f ie  first term is of the 
order of (ks/wJ2= (kr,)' 6~ 1, because s-v, and r, - v,/w 
"V,/W,. 

It follows that the equation for the potential in the 
metal retains the same form as in vacuum 

and we find that 

3) in the transition region 

acp sZ d'q ~ ( 2 ) -  -k2e(z)q+--=O Z( d z )  o2 dz' 

the ratio of the second to the first term is of the order 
of (s/w, d)Z-(rdd)2 51 (we recall that r , / d  cl is a small 
parameter of the model). 

Thus, everywhere with the exception of the vicinity of 
the point z ,  where &(.z o)= 0, we can ignore the second 
term. For the time being, we shall not consider this 
point and confine our attention to the equation 

We shall seek the solution in the transition region as a 
series in powers of k, 

q = q a + k q , + k z ~ + .  . . , (19) 

and find the coefficient cp, by matching Eq. (19) to the 
potential in vacuum and in the metal. 

It follows from Eqs. (15) and (16) that in vacuum 

qV=eh', 

whereas in the metal 

'pm=Bde-kz+B,eka 

or, expanding the exponential functions and amplitudes 
B in Eqs. (20) and (21) in powers of b, we obtain 

I 
qm= (B;" +kB;' +k2B:' ) ( l-kz + l ( k z ) l )  

where the subscripts d and i refer to the decreasing and 
rising components. Equating the terms with the same 
powers of k in Eqs. (20), (22), and (23), we obtain the 
values of the coefficients cp, near the matching points in 
vacuum 
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i 
TO(-") -i; (pi (--I =z, ( p a ( - 0 )  = -z' 

2 '  
(24) 

and in the metal 

( p o ( + - ) = = ~ , ' O ' + ~ : O ' ,  ( p l ( + m ) - B . f i t )  +B;') + ( - B : ) + B ; ) ) ~ ,  
1 ~P~(+~)-BB)+B:I)+(-B;~)+B:'))~+-(B;)+B:.))Z~. 
2 

} (25) 
- 

We shall seek the solution in the transition region em- 
ploying, as  the boundary conditions, the continuity of 
the potential and its derivatives at the matching points. 
This can be done by substituting Eq. (19) into Eq. (18) 
and then the various approximations with respect to k 
give the following results. 

1) In the zeroth approximation, we obtain 

Assuming that the upper limit of z i s  z-, we obtain c'= 1 
from the first of the two conditions in Eq. (24). The 
continuity of the derivatives at z=z+ gives C = O  and, 
therefore, we obtain 

2) In the first  approximation, the same procedure 
gives 

The _second of the boundary conditions (25) at z =z_ gives 
Cr=z- and if the derivatives &/dz are equated at this 
point, then C = c-. Thus, we have 

At z =z+, we find from the second condition in Eq. (18) 

and equating of the derivatives gives 

e - / e+=-B~)+B, (" .  

We finally have 

3) In the second approximation, still following the 
same procedure, we obtain 

dcp = 
z 

e  ( ~ 1 2  = e  dz+C= j e  (a)  dz+e.z- 

and at z=z+, 
=+ 

e+ (-B;"+B:" +e+z+= J e  (z)dz+e-Z-. (30) 

From Eqs. (29) and (30) we obtain BI1), which i s  the 
amplitude of the solution that increases in the limit z 
-a: 

The quantity B:" is found from Eqs. (26) and (28) and its 
value i s  

The total amplitude B, obtained in the approximation 
linear i nk  is B i = ~ j 0 ) + k ~ j 1 ) ,  whearas the spectrum of 
surface plasmons i s  found by equating this amplitude to 
zero, i.e., 

Assuming that w=w,+kA, we find (in the first approxi- 
mation) the eigenfrequency of surface plasmons from 
the condition 

and hence, as  expected, w,=2-lhw,. The quantityA i s  
deduced from Eq. (32) and defined by 

where B:')(W,) i s  found from Eq. (31) by substituting w 
- -us. 

The limits of integration in Eq. (31) are infinite be- 
cause f =c(z)/c++c/c(z) vanishes between the limits of 
z+ and +m and from -a to z-. In fact, for z>z+ (z <z_) 
we have c(z)= E,[E(z)= E-] and f = 1+ cJc+=O (and corre- 
spondingly f = cf c++ 1=0) on the strength of Eq. (33). 

In this way the final expression for the coefficientA 
becomes 

It i s  clear from the above formula that the main con- 
tribution to the coefficientA i s  due to the transition lay- 
er .  In vacuum (in the limit z - -a ), we find that E(w)= 1 
and in the metal at the surface plasmon frequency w, 
= 2-ll'w, (in the limit z -+a)  we have &(we)= - 1 and the 
integral considered without allowance for the transition 
layer vanishes identically. The integral (35) diverges 
in the vicinity of the point where c(z)=O and it should be 
additionally defined in this region by the more complete 
equation (17). Thus, the integral in Eq. (35) should be 
understood as the principal value; its value at a pole 
will be obtained below. 

4. REGION OF TURNING POINT c(z,) = 0 

In the vicinity of a turning point, the complete equa- 
tion is1) 

If we assume that the velocity of sound varies little 
near the point z=zo  and apply the second of the condi- 
tions in Eq. (251, we obtain the first integral 

Near the point z=zo  we can expand the function ~ ( z )  as  a 
series, retaining the linear term, 

z-zo 
a '  

(38) 
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is a quantity of the dimensions of length and of the same 
order a s  the thickness of the transition layer. 

It is now convenient to modify Eq. (37) by replacing 
the potential with the field E = - @/dz and by introduc - 
ing a dimensionless variable P= (z -2 ,)/a. Then, Eq. 
(3 7) becomes 

where a dimensionless parameter C( represents 

Finally, assuming that 5= €.p2/5, we can reduce the 
above equation to a form convenient for solution: 

The solution of Eq. (36) (in terms of the corresponding 
potential) should be added to the expression E - / E ( z )  in 
the formula for cp ,(z ), noting that this is important only 
near the point 2,. 

The expression (40) is the inhomogeneous equation for 
the Airy function. The inhomogeneous term on the 
right-hand side makes the asymptotes of i ts  solution 
differ from the usual asymptotic behavior of the Airy 
functions. Therefore, we shall solve i t  anew by the La- 
place method. Assuming that 

where the arrow at the upper limit denotes an arbitrary 
selection of the integration path in the complex plane on 
condition that the integral converges at an infinitely dis- 
tant point, we obtain the particular solution of the in- 
homogeneous equation (40) in the form - - 

E ,, =x j exp(~t- ta13)dt .  
0 

As usual, the integration path should lie within sectors 
of the complex plane t defined by the condition Ret3>0 
(Fig. 2). It is convenient to take one of the particular 
solutions in the form of an integral along the imaginary 
axis in the upper half-plane 

The general solution of Eq. (40) should consist of the 
solution (41) and two particular solutions of the homo- 

geneous equation, which are  the Airy functions Ai(0 
and Ai(- 5). Let u s  assume that Ai(0 is the Airy func- 
tion oscillating at 5 <O and decreasing exponentially for 
5 >0. Then, Ai(- 5) has an asymptote which r ises  ex- 
ponentially in the range 5 >0. Since our solution is fi- 
nite for all values of t, the function Ai(- t) should be 
absent from the general solution. Thus, the general 
solution of Eq. (40) finite for all values of 5 represents 
a linear combination of two functions F( t )  and Ai(t). . 

On the other hand, we can easily show that the func- 
tion Ai(5) is the difference between two linearly inde- 
pendent particular solutions F (5) and F * (t)  (the asterisk 
denotes complex conjugacy): 

and, therefore, in deriving the general solutions we can 
confine ourselves to the two linearly independent parti- 
cular solutions of the inhomogeneous equation. 

Finally, we shall obtain the general solution of the in- 
homogeneous equation (40) in the form 

where the constants C, and C2 are related by 

and the function F(E) is given by Eq. (41). We shall now 
obtain asymptotic expressions for F(5) in the range of 
large values of E. We shall rotate the integration con- 
tour by the angle n/2  in the clockwise direction. Then, 

m 

F ( g ) =  i x j e x p [ i ( e u +  uS/3) ]du .  (44) 
a 

If 5>0, the function f ( c ) =  5u+u3/3 rises monotonically 
and the end point makes the principal contribution to the 
integral. If 5 <0, the most important contribution is 
made by the saddle point, and this contribution i s  oscil- 
latory; the contribution of the end point is asymptotical- 
ly small although it decreases monotonically. A calcu- 
lation of these contributions gives, for 1 1, 

-%IS, E>O, 
x  1 g ~ - " ' n ' ~ ' e x ~  (- iPI3 1 rk + 4 4  ni) - xfg, 5  < 0. (45) 

Since, in view of Eq. (38), in the vicinity of the point z, 
we have & - ' ( Z ) = - U / ( Z - Z ~ ) = - U / C / S ,  it follows thatF(c) in 
the range (>>I  reduces to c-'(z)-&(z) and, therefore, 
the integrand in Eq. (35) is replaced withF(e) in the 
vicinity of the point z,. 

We shall now return to the potential and calculate the 
contribution to the integral (35) originating from the vi- 
vicinity of the point 2,. We shall do this by integrating 
Eq. (44) within the limits lz-zd<6, which reduces to the 
integration of the function F(e): 

b 8 0 u' 
- iu' sin6u 

~ - ~ ~ ( ~ ) ~ = i x ~ d ~ ~ e x ~ [ i ( & u + - ) ]  3 d u = 2 i x ~ e x p ( - j - )  - du. 
-0 -1 0 0 

Here, 6 is the dimensionless thickness of the transition 
layer, which is of the order of 6 -CLq13-(s/w,a)-2" 
~ ( r d d ) - ~ ~ > >  1. Going to the limit 6 -.o, we obtain 
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The solution (44) now becomes 

This expression should be added to the integral (35) 
which i s  understood to be the principal value. We shall 
now find the constants Cl and C,. They are related by 
Eq. (431, and obtained, in fact, from the condition that 
there is  no solution which increases with depth in the 
metal. The other relationship between C, and C, can be 
obtained by writing down the quasiclassical solution of 
the equation for the transition layer and matching it 
with the exact expression (45). 

Turning back to Eq. (37), we shall rewrite it in the 
form 

d'E + o' - u p z  ( z )  - 
dzz s 2 ( z )  

Bearing in mind the smallness of the differential term, 
we can write the quasiclassical solution of the inhomo- 
geneous equation in the form 

where 

is, as  usual, a smoothly varying function. The quasi- 
classical solution (49) is  applicable to the transition 
layer in the interval z, < z < z ,  to the left of the turning 
point and up to the point z l  on the outer boundary of the 
metal corresponding to the vanishing of the velocity of 
sound. 

The second and third terms in Eq. (49) thus describe 
two surface plasmon waves traveling in the transition 
layer parallel to the positive and negative directions of 
the z axis. The ratio of their amplitudes at the point z 
=z ,  i s  governed by the surface reflection coefficient of 
plasmons 

Here, Irl i s  the modulus of the reflection coefficient and 
cp, i s  the phase of the reflected wave (taken at the point 
21). 

Matching of the solutions (49) and (42) subject to Eq. 
(45) gives 

C,' exp - r p ( 2 )  dz - Clean"', I'! 1 

which gives 

CI I 3n 
-=lrlet*, po='p i -2  p ( z ) d z - - .  c, 2 

(52) 

Solving Eqs. (43) and (52) simultaneously and substitut- 
ing the resultant values of the constants in Eq. (47), we 
find that 

lrleiw- 1 7 E ( z )  dz = inae- 
-dl2 

lrle'w-kl ' 

or, separating the real and imaginary parts, 

~E(z)dz=-mu-[i(1-1rl~)+21r1~n~] 
- d / Z  

~ [ ( i  + I r l c ~ s ' p ~ ) ~  +IrlzsinZcpo]-'. (54) 

Thus, combining Eqs. (54) and (35), we shall write 
the final expression for the coefficient in front of the 
linear term 

where 
1 

~ ~ = , o . {  r(-&-E(z) 1 d z -  4naIrIsinw 1, 1 
- rn 

R 
(55) 

naw, A"=- 
2R 

(i  - I l 2 ) ,  R=(L+lr l  c o a p . ) ' + l r l l s i n z ~ .  

We can see that the imaginary correction to the plas- 
mon spectrum i s  associated with the coefficient repre- 
senting the reflection of plasmons by the boundary. If 
the reflection is  elastic, i.e., if Irl= 1, the imaginary 
part of Eq. (54) vanishes and there i s  no plasmon damp- 
ing. The inelastic nature of the plasmon scattering at 
the boundary results in finite damping. The coefficient 
of inelasticity should, as mentioned above, be found 
either experimentally or by a microscopic calculation. 

It should be stressed that the final expression (55) for 
the imaginary part of the coefficientA i s  meaningful 
only within the framework of our model, but we shall 
assume that the conclusion about the relationship be- 
tween the imaginary part A and the decay processes 
near the surface remains valid also in the kinetic ap- 
proach, to which we hope to return. 
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