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The hydrodynamics of an arbitrary quantum fluid is considered. The complete set of Poisson brackets for 
quantities describing the state of a quantum fluid in the presence of vortices (solitons) is found by 
generalizing the relations for vortex-free motion. The hydrodynamic equations of motion are written down, 
as well as the ensuing conservation laws for the momentum energy and the quantities connected with the 
intrinsic symmetry group of the system. The degrees of freedom connected with the normal motion are 
taken into account. The hydrodynamics of superfluid He are considered as an example. The complete set 
of equations and the conservation laws for rotating He4 are found. The anisotropic superfluid He3-A is 
considered. The variables required for describing the hydrodynamic motion in the presence of continuousiy 
distributed solitons, the nondissipative hydrodynamics laws, and the conservation laws are presented. 

PACS numbers: 67.40.Vs, 67.50.Fi 

The Hamiltonian f ~ r m a l i s m " ~  for the description of Then the density of the quantity corresponding to the 
the hydrodynamics of a quantum superfluid He3-A and generator 6. has the form 
the Hamiltonian formalism for the description of the 

Go=-icp6.q. 
hydrodynamics of rotating He4, i.e., in the presence of 
a continuous distribution of v o r t i ~ e s , ~  have been de- From this definition, we find the relations for the 
veloped in our earlier papers. In the present work, Poisson brackets: 
this formalism i s  generalized to the case of an arbitrary 

{Ga(r,) ,  Gb(r2)} =itdcGc6(ri-r2), 
quantum fluid; in particular, the equations of the hydro- 

{Go(rl) ,  $(r2)]  =-iG,,@(ri-rz). 
dynamics of He3-A in the presence of a continuous dis- 
tribution of vortices (solitons) a r e  described. A similar With account of (3, we find the following from the 
ideology has been developed by ~zyaloshinskil  and definition (2): 
Volovik,' who considered the hydrodynamics of spin 
glasses in the presence of dissipation. {G. (pi) ,  wb(r2))  =babV6 (r~-rr) 

-ite:wc6(r,-rz). 
We denote by 6, the se t  of generators which charac- 

(6) 

terize the intrinsic symmetry group of the system. The Similarly, we have j = - (pVJ, for the momentum density. 

following relations hold: We then find 

ae,-~~e.-t,~e.. (1) c i ( r , ) ,  ~ ~ ( r : ) }  - ~ * ( r , )  vi6(r,-rl) ,  (7) 
h ( r l ) ,  j i(rJ}=jS(ri)  Vb8(rs-rz)+Vi(j,6(r,-r2)), 

Here tC,, a r e  structural constant groups satisfying the (8) 
{jh(ri), $(rd}--V~$6(rt-rA. 

Jacobi identity. (9) 
With account of (8) and wa = 0, we find the following 

We assume the system to be a quantum fluid, i.e., 
relation from the definition (2): 

we assume the presence of an order parameter +. If 
we disregard the variation of the modulus, then 6 t ( r l ) ,  ~ ~ ( r l ) } = ~ , ( w ~ 6 ( r , - r ~ ) )  -v,w;6(r,-r,). ( 10) 

b$=-i8aS&$ The state of the quantum fluid i s  characterized by the 
order parameter only in the absence of vortices (soli- 

always. Correspondingly, we can introduce w by the tons). In their presence, the 66potentials,9 w a  (which 
definition: a r e  the generalization of the superfluid velocity to the - 

VA=ilc,"C;,P. (2) case of an arbitrary symmetry group) a re  no longer - .  .-r 

connected by the relation (2) with the order parameter 
The Of the left side Of (2) is equal to setting and must be considered independently. Correspondingly, 
the curl of the right side equal to zero, we find the "intensities" wa which characterize the vortex state 

0;-0, 

where 
of the system a r e  not equal to zero. Thus the energy 
density of the system has the form 

on=[v x a ~ ] - ~ / , i t ~ ~ [ w ~ x  we]. (3) E=E(G., j, wa, ma, q ) .  

Let p be the canonical conjugate of the variable JI. We shall write i ts  differential in the form 
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In order to formulate the equations of motion, we must 
know the expressions for the mutual Poisson brackets 
of the quantities on which E  depends. In the absence 
of wa, they are given by the expressions (4)-(10). The 
relations (4), (5), (7)-(9) are  directly generalized to 
the case oa # 0. The relations (6) and (10) should also 
be transformed to the case wa # 0, since it i s  precisely 
this generalization that leads to a set of Poisson brac- 
kets satisfying the Jacobi identity even at wa # 0. For 
o' we can find from (6) and (10) 

The equations of motion are  formulated with the help 
of the Hamiltonian 

They have the form 

aGJat= {a, c.)==-v,(vn;.+tl,) 
+i ( p b t ' ~ . + q e t , b w c + ~ t a ~ ~ o + g ~ . ~ ) ,  (1 41 

a$lat= {a, $1 -- (VV $-ip0e.g, (15) 
aw,vat- {a, wp) = - ~ , ~ ~ - i ~ * t , : ~ :  

- W , ~ V , ~ ~ - V ~ V ~ W ~ ,  (16) 
aj,/at- (a, j,) =- v ~ ( v J . , + I ~ ~ w I . - o ~ ~ L , )  

-(G.V,@+jV,v+oaVh.-f V,$-%Viw"). (17) 

From (16), we find 

The second term in (17) can be incorporated in the 
gradient of the pressure 

so  that we arrive a t  the law of momentum conservation. 

If the energy density E is  invariant relative to 6, 
(here G,, wa and wa transform according to an assoc- 
iated representation), then the second term on the 
right side of (14) vanishes and we arrive a s  we should, 
at the pure law for the conservation of G,. From the set 
of Eqs. (14)-(18), we obtain the law of energy conser- 
vation 

where the energy flux density is 

If the symmetry group of the system breaks up into 
the direct product of subgroups, then, generally speak- 
ing, it i s  necessary to take into account the dependence 
of the energy density E  on the densities of the momenta 
that pertain to each subgroup. The rules for the 
(4)-(10) Poisson brackets and the equations of motion 
(14)-(18) that follow from them, a re  taken here to per- 
tain to each subgroup. Moreover, zero temperature 
was assumed. At non-zero temperature, it is  neces- 
sary to take into account the dependence of the energy 
density E  on the entropy density s and on the normal 
momentum density p .  They are taken to pertain to a 

one-parameter subgroup and, in correspondence with 
(14) and (I?), we have the following equations for them: 

where v(") = 8 ~ / a p  is  the normal velocity and T = 8  E / a s  
is  the temperature. 

We consider the case of superfluid He4. In this case, 
the intrinsic symmetry group of the system i s  a one- 
parameter group of gauge transformations; the role of 
conserved quantity which corresponds to the generator 
of the gauge transformations i s  played here by the mass 
density p. In the presence of vortices, i.e., in ro- 
tating He4, w has the meaning of the local angular ve- 
locity of the rotation. The energy density E  is  the 
function 

By virtue of the Galilean invariance, the total momen- 
tum density i s  

Thus v has the meaning of the mean mass velocity. 

In correspondence with (14), (17), and (18), we have 

As is  seen from (24) and (25), the mass flux density 
i s  identical with the momentum density, a s  it should be. 

Equations (22), (23), (25)-(27) form a complete set of 
equations describing the hydrodynamics of rotating He4 
and obtained previously by the  author^.^ The law of 
momentum conservation, 

agiiat+vnrI,=o, (28) 

corresponds to these equations. Here the stress ten- 
sor is  

and the pressure is  determined by the expression (19). 
The law of energy conservation (20) also holds, with 
the energy flux density 

- - 
We now proceed to consideration of the anisotropic 
phase of superfluid He3.= In this phase, the structure 
of the order parameter is  more complicated than in 
He4; in addition to the gauge transformations, it is  
necessary to take into account rotations in orbital and 
spin space. The generators of these transformations 
are the densities of the orbital and spin angular mo- 
menta L and S. In the absence of vortices, the energy 
density E  depends on the orbital 1 and spin n anistropy 
vectors and their derivatives, in place of which, in the 
presence of vortices, it is  necessary to take into ac- 
count the potentials w ( ~  and w('). 

The energy depends explicitly on the order parameter 
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through the anisotropy vectors, which we denote by 
f ('I =yE/81 and 6'") = aE/am. The equations corres- 
ponding to the expressions (14)-(17) have the form (for 
the orbital variables) 

where c ( ( ~ )  = ~ E / O  L. The equations for the orbital sub- 
system a r e  obtained from (31)-(32) by the substitutions 
1- n and L- S. For completeness of the system, it i s  
necessary to add (22), (23), (25), and (27) to these 
equations, and also the equation for the superfluid mo- 
mentum 

In consideration of real processes, it i s  necessary 
to keep in mind the kinetic terms that must be added 
to the right side of the foregoing equations. In par- 
ticular, the kinetic term proportional to c ( ( ~ )  plays a 
significant role on the right side of (32), since it plays 
the principal role a t  hydrodynamic f r e q u e n ~ i e s . ~  

The hydrodynamic equations of He3-A lead to the 
laws of conservation of momentum and energy. The 
law of momentum conservation has the form (28) with 
the s t ress  tensor 

where the pressure, in correspondence with (19), i s  

The law of energy conservation has the form (29) with 
the energy flux density 

Thus, the developed Hamiltonian approach enables us 
to obtain nondissipative equations of hydrodynamics of a 
quantum fluid, which automatically lead to the laws of 
conservation energy and momentum a s  well as of the 
quantities connected with the invariance to the intrinsic 
symmetry group. 
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