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It shown that correct allowance for the surface tension at the phase interface yields a configuration in 
which the shapes of superconducting and normal regions are very different from those used in calculations 
in all the known models of periodic intermediate-state structures. A numerical calculation of the 
equilibrium shape of the layers is carried out for various values of the surface tension. A comparison of 
the calculated and experimental results shows that the structure of the intermediate state is not usually 
periodic but has a dynamic form proposed by Gorter. Periodic structures can apparently only appear in 
samples of very large d i e t e r .  

PACS numbers: 74.30. - e 

There a re  a t  present two basically different models 
of structures of the intermediate state which appear on 
destruction of superconductivity of a cylindrical sample 
by a current. One is the periodic (along the cylinder 
axis) structure of superconducting and normal layers 
(first proposed1 by F. London in 1937), shown in Fig. 
l(a). The other is a dynamic model of the intermediate 
state p r o p ~ s e d ~ - ~  by Gorter in 1957. The Gortor struc- 
ture is in the form of coaxial cylindrical superconduct- 
ing and normal layers, which appear near the surface 
of the sample and collapse on its axis [Fig. l(b)]. In 
spite of the fact that both models were proposed some 
time ago, it is not yet possible to say definitely which 
of these structures occurs in reality. This is basically 
due to the difficulty of carrying out the appropriate ex- 
periments. The nub of the problem is that the destruc- 
tion of superconductivity by a current produces a region 
of the intermediate state covered by a normal metal 
layer s o  that the structure of the intermediate state 
can only be deduced from such indirect data a s  the 
electrical resistivity, etc. 

We carried out a detailed analysis of both models and 
of the available experimental data. A comparsion of 
the calculated and experimental results led us to the 
conclusion that the Gorter structure usually appears in 
practice. Periodic structures can form only in samples 
of very large diameter. 

Only the London structure can be calculated in full. 
In fact, the simple condition that the magnetic field in 
the normal metal has at least the critical value H, gives1 
the radius of a region of the intermediate state r,, in a 
sample carrying a current I: 

rio=ro[i-  ( i 2 - I ) " * ] ,  i==I/IC (1) 

(here, r, is the radius of the sample and I ,  = wJZc/2 is 
the critical current); in this case, the dependence of the 
concentration of the normal phase on the distance to the 
axis of the sample is 

C. ( r )  =r/rz0 

and the resistance of the sample in the intermediate 
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state is given by 

(R, is the resistance in the normal state). In particular, 
for I =I,, we have R =0.5Rn. 

The Gorter structure involves continuous formation of 
new superconducting regions in the bulk of a normal 
metal and this, in its turn, is associated with super- 
cooling effects, i.e., new superconducting regions ap- 
pear after some delay relative to the equilibrium situa- 
tion. The result of this delay is that the radius of the 
intermediate state in the Gorter structure is always less  
than the value given by Eq. (1) and the resistance is 
always greater than that given by Eq. (2). The exact 
values of these two quantities cannot yet be calculated a 
prwri. 

The experimental value of the resistance jump a t  
I=I, is always much greater than the value (J.5Rn pre- 
dicted by the London model; since the Gorter model can, 
in principle, yield any value of the resistance, one 
might be tempted to conclude that the latter model is 
valid. However, two modifications of the London peri- 
odic structure model have recently and a r e  
in satisfactory agreement with the experimental values 
of the resistance. 

It is interesting to note that, although these new mo- 

FIG. 1. Schematic repre- 
sentation of the London 
(a) and Gorter (b) struc- 
tures. 
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dels a r e  based on very different ideas and assumptions, 
and predict quite different structures, they still give 
practically the same values of R/R, for realistic ex- 
periments. The considerable discrepancy between the 
theories of Andreev4 and Bair d and Mukherj ee,5 illustra- 
ted in Fig. 10 in Mukherjee's paper: is due t o  the fact 
that the curve corresponding to the Andreev theory is 
plotted using an incorrect value of the parameter, which 
represents the surface tension a t  the phase interface. 
The dependence A(T) a t  temperatures not too far from 
the critical value is A = A,(l - T/T,)-'"; for indium, we 
have A, =3.3 x cm (Ref. 7) s o  that, at the tempera- 
tures of the experiment in question, we find that A 
=(2.2 - 2.4) x cm and not 3 x  cm a s  assumed 
by Mukherjee. We shall not consider this point any 
further because comparisons of the experimental and 
theoretical results a r e  quite frequently made using the 
value of A,, which is a factor of tens different from the 
value of A a t  the temperature of the appropriate experi- 
ments. 

We shall not carry out a comparative analysis of these 
new structures because all the periodic models suffer 
from very serious shortcomings. In all these models, 
it is assumed that the magnetic field a t  the phase inter- 
face is equal to the critical value. There a r e  no ob- 
jections to this assumption in the case of the flat parts 
of the interface but it is absolutely incorrect a t  the point 
A (Fig. 2), where the concentration of the superconduct- 
ing phase vanishes and the curvature of the interface be- 
comes infinite. Since the interface in type I supercon- 
ductors is characterized by a positive surface tension, 
the existance of a kink is generally impossible so  that, 
in fact, the interface near the paint A should be rounded 
off. The condition for the magnetic field on the rounded 
interface is 

where AH,2/87r is the surface tension and r, is the 
radius of curvature of the interface a t  this point. The 
condition (3) should be satisfied at every point on a 
stable interface. 

We shall now estimate the distortion of the original 
London structure resulting from allowance for this ef- 
fect. The radius of curvature at the point A' (Fig. 2) is 
of the order of 

rcr-ad/2r,o, d-rco-r,, 

where a is the period of the structure; r,, is the radius 
of an intermediate state region in the original London 
structure; Y ,  is t h e  radius of an intermediate state 
region in the rounded structure. Using this value of 

FIG. 2. Schematic dia- 
gram of a superconducting 
layer near the edge of an 
intermediate-state region. 

r,, we can easily find the magnetic field a t  the point A 
from Eq. (3). On the other hand, the magnetic field a t  
A' is related directly to the total current flowing through 
the intermediate-state region and this current is gov- 
erned by the nature of the structure in the region r <  r,. 
For example, in the case of indium at  T =3"K, we have 
A = lom4 cm; if the diameter of the sample is 2r0 =0.5 
mm and a/2r,, =0.3, a reduction in the size of the in- 
termediate-state region by 4% (i.e., d/r,, =0.04) gives 
Hc - H 1 ,  = 0. lHc. Even the roughest estimates indicate 
that the resultant structure is very far from the original. 
In fact, allowance for the redistribution of currents in 
the normal phase increases even further the distortion 
of the original structure. 

Such a qualitative analysis fails to predict even an 
approximate shape of the equilibrium interface. There- 
fore, we had to  carry  out numerical calculations on a 
computer. All these calculations were carried out on a 
Hewlett-Packard 2 1MX computer. 

CALCULATION OF THE SHAPE OF LAYERS IN A 
PERIODIC STRUCTURE 

Our task is to find the shape of an interface such that 
the magnetic field obeys the condition (3) a t  each point. 
We shall use the cylindrical coordinate system ( z ,  r, cp) 
with the z axis coinciding with the axis of the sample 
and the z = O  plane passing through the middle of the 
normal layer. If z =z,(r) is the equation for the inter- 
face, the condition (3) can be rewritten in the form 

(here, the prime denotes differentiation with respect to 
r). We then have 

[here, j(r) is the density of the current flowing into a 
superconducting layer a t  a distance r from the axis of 
the sample]. The value of j(r) can be found by solving 
the Laplace equation for the electric potential u in the 
normal layers with suitable boundary conditions (all the 
calculations a r e  carried out for the case of a local re-  
lationship between the current density and Vu). In view 
of the axial symmetry, we have au/acp = O  and the La- 
place equation becomes 

Thus, using Eqs. (4), (5), and (6), we can, in principle, 
find the equilibrium shape of the interface. However, 
before considering the results of numerical calculations, 
we shall try to determine the type of periodic structure 
which can exist in this case. 

We shall f i rs t  consider the London structure. It is 
constructed in such a way that the magnetic field is con- 
stant along the interface and equal to the critical value. 
In fact, for the London structure this is only true if the 
structure period a is much less  than the radius of an in- 
termediate-state region r,,. However, we can easily 
show that, near the axis of the sample, the constancy of 
the magnetic field along the interface is satisfied for 
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any relationship between a and r,,. In fact, if r<< r,,, 
the solution of Eq. (6) has the form 

which gives j(r) a l/r. Substituting this dependence j/r 
in Eq. (5) gives H = ~ o n s t . ~  This macroscopic approach 
is applicable a s  long as the distance to the axis of the 
sample and the thickness of the normal layers a r e  both 
much greater than the coherence length 5(T). 

For moderately thin samples, we thus have a range 
of distances to the axis 5 (T) c< rc< r,, in which the mag- 
netic field is constant on the interface of a structure of 
the London type with C, ar. Therefore, it is natural to 
assume that, near the axis of the sample, the shape of 
the layers should be close to the London shape even in 
the case of the rounded structure, i.e., near the axis, 
the dependence of the concentration of the normal 
phase on the distance to the axis should also have the 
form C,(r) =r/r,,. The quantity r,, will be called the 
radius of the original London structure. Its value is 
given by the difference between the potentials on the 
sample and may differ considerably from the value cal- 
culated from Eq. (1). In this structure, the interface 
near the axis has zero curvature and the magnetic field 
is constant and equal to the critical value, i.e., the con- 
dition (4) is satisfied. 

Equating Eqs. (4) and (5) for H and differentiating 
with respect to r, we obtain the ordinary differential 
equation for 2,. In terms of dimensionless variables, 
x=r / r , ,  and y =z/r,,, this equation now becomes 

l-am 1 j(x) Yo"' ~y,yt,~,.wz,, -- +--=O, 
yo" zazu aw j .  

yo" A cH,  (7) 
we------ a=- 

( ~ + y ~ ' ~ ) ~ ~  2rto ',= 4xrl.o 
[in this equation, a prime denotes differentiation with 
respect to x and y =y,(x) is the equation for the inter- 
face in terms of new variables]. 

However, the above equation includes an unknown func- 
tion j(x). As pointed out earlier,  this function can be 
found by solving the Laplace equation (6). In the present 
case, this two-dimensional problem is solved for the 
region in Fig. 3. Line AD represents the middle of a 
normal layer and, because of symmetry, we have ul, 
=const =u,; line AB is the boundary of a superconducting 
layer and BC joins the middle of the superconducting 
layer to the surface of the sample s o  that u I ~ = u ( ~ ~  
=const =u,; line CD is the surface of the sample and, 
on this surface, we have au/an I,=O. 

The Laplace equation was solved by the method of 
networks, in accordance with a program described in 
Ref. 8. This program was modified somewhat for con- 
vience of use in a computer with a relatively small work- 

FIG. 3. Schematic repre- 
sentation of the integration 
domain. 

D r 

' 1  '0 

FIG. 4. General appearance of a periodic intermediate-state 
stmcture (the normal regions are shown shaded) in the case 
I = I , ,  A/2rio=3 ~ 1 0 "  anda/2ri0=0.3. 

ing memory. Calculations could be carried out for 
4000-4500 points and the time required to  obtain a solu- 
tion was about 1 h. 

The equilibrium shape of the interface was found by 
the method of successive approximations. First ,  the 
Laplace equation was solved for some trial  interface. 
The solution was used to find the density of the current 
flowing into the superconducting region j(x). The de- 
pendence j(x) was represented in the form 

(j,, is the density of the current in the normal metal 
outside the intermediate-state region) and substituted in 
Eq. (7), which was then solved subject to the boundary 
conditions 

The Laplace equation was solved again for the new 
shape, the new dependence j(x) was found and the pro- 
cess  was repeated. After 10-20 such iterations, the 
solution converged with satisfactory precision. The re- 
sults of the calculations a re  presented in Fig. 4 and 
Table I. Figures 4 and 5, a s  well a s  Figs. 6(a) and 7 
were plotted by the computer in real  time. 

FIG. 5. Equilibrium phase interfaces. a) Results obtained for 
a/2ri o = O  .3 and different values of the surface tension: 1) orig- 
inal London structure (A=O);  2) a/2ri 0=1.7x10'5; 3) A/2ri 0 

=3x10-~; 4) ~ / 2 r , ~ = 1 0 ~ ;  5) h/2ri0=3x1o4. b) Results for 
u 2 r i  O =  lo-* and different values of the structure period: 1) 
a/2rio=0.4, 2) a/2rio=0.3; 3) a/2ri 0=0.2. 
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FIG. 6. a) Boundaries of superconducting layers calculated 
for ~ / 2 r * , = 1 0 ~  anda/2rfo=0.3. Curve 1 represents the 
shape of the boundary when the magnetic field at each point is 
less than that given by the condition (4), curve 2 corresponds 
to the equilibrium shape of the boundary, and curve 3 to the 
case when the magnetic field is always greater than the equi- 
librium value. b) Dependence of ( jl- j lo)/ jio on yi , calculated 
for the boundaries in Fig. 6a: 0) curve 1; +) curve 2; 0) 
curve 3. 

We shall now consider in some detail the precision of 
the calculations because this is a subject of very great 
importance in numerical calculations. Figure 6(a) 
shows three different interfaces and Fig. 6(b) gives, for 
the same interfaces, the deviations of j, from j,,, show- 
ing that the condition (4) is satisfied by H. The differ- 
ence between the absolute values of the magnetic field 
at r =r,, for interfaces 1 and 3 is about 0.015Hc. This 
figure allows us to estimate the precision of the calcula- 
tions, which amounts to about 5 x lo-= in respect of r/rio. 
It also follows from Fig. 6(b) that an interface of this 
kind is stable. In fact, since the displacement of the in- 
terface from position 2 to position 3 increases the mag- 
netic field, a force appears which tends to return the 
interface to its equilibrium position. A similar effect 
is observed when the interface is displayed toward curve 
1. 

The shape of superconducting regions obtained a s  a 
result of such calculations corresponds to the case 
when the magnetic field along the phase interface varies 
in accordance with the condition (4). The absolute value 
of the magnetic field satisfies the condition (4) when r,, 
is linked to the difference between the potentials across 

TABLE I. 

Note. The following notation is used above: ro is the radius 
of the sample; ria is the radius of the London structure; tj 
is the radius of the rounded structure; y=H&, where Ho is 
the average magnetic field at the boundary of the intermediate 
state region; hn is the minimum magnetic field in the normal 
state of a metal in units of Hc (see Fig. 8); F is  the free 
energy per unit length of the sample (in units of %/an). 

FIG. 7. Lines of constant electric potential calculated for 
~ / 2 r , ~ = 1 0 ~  anda/2rio=0.4. 

a sample. As pointed out earlier,  Eq. (1) cannot be used 
t o  determine rio in t h e  case of a rounded structure be- 
cause we then no longer have that relationship between 
the current and voltage across the sample which is used 
to derive Eq. (1). 

The voltage across the sample is governed by the cur- 
rent density in the normal metal outside the intermedi- 
ate-state region. The current flowing through this re-  
gion is yIcr,/ro, where I, is the critical current through 
the sample and the value y represents the deviation of 
the average field on the boundary of the intermediate- 
state region from Hc and, in general, we have 0<  1 - y  
cc 1. The voltage across the sample can, consequently, 
be written in the form 

and the value r,, can be related to the voltage across 
the sample (see also Ref. 1) by 

The relationship between r,, and r, is found a s  a result 
of calculations of the shape of the layers and is given in 
Table I. 

The form of the solution generally depends on three 
parameters, which a r e  the surface tension (governed, 
in the present case, by the ratio A/~Y,,), the structure 
period a, and the proximity of the surface of the sample 
to the intermediate-state region. However, i t  is found 
that, for any current through the sample, the radius of 
an intermediate-state region r, is much smaller than ro 
(Table I) and, consequently, the influence of the surface 
of the sample on the shape of the layers can be ignored. 
It follows that the solutions obtained a r e  valid for any 
value of the current through the sample. The resistance 
of the sample in the 1 7 Z c  case can be found by calculat- 
ing simply the value of r,, in accordance with Eq. (8). 
Of the two other parameters, the value of A / ~ Y , ,  is 
governed by the experimental conditions and the struc- 
ture period a is, in principle, a free parameter. If 
such a periodic structure is encountered experimentally, 
the structure period corresponds to the minimum value 
of the f ree  energy of the structure. The value of a can 
be estimated in the h/2riO = 10'' case from the calcula- 
tions carried out for three different values of a/2rio 
(Table I and Fig. 5(a)). The structure with a/2rfO =0.3 
has a somewhat lower free energy but all the measur- 
able parameters of these structures a re  practically 
identical. Therefore, for the other values of the param- 
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eter ~ / 2 r , , ,  the problem was only solved for the a/2riO 
=0.3 case. 

At f i rs t  sight, it may seem surprising that the sur- 
face tension a t  the phase interface, which-generally 
speaking-is small, can alter the structure s o  con- 
siderably. A point to remember is that the surface ten- 
sion, no matter how small, rounds off a corner of a 
superconducting layer (Fig. 3). This gives r i s e  to a part 
of the interface which is parallel to the surface of the 
sample and the condition of continuity of the tangential 
component of the electric field on the interface results 
in a redistribution of the currents in the normal phase 
in such a way that there is an increase in the current 
flowing into this region. This is illustrated in Fig. 7, 
which shows-for one of the calculated cases-the lines 
of constant electric potential. Thus, i t  is the need to 
satisfy simultaneously the condition (4) for the magnetic 
field and the Laplace equation for the electric field that 
is responsible for such a considerable difference be- 
tween the equilibrium and London structures. On the 
other hand, it is clear that, a s  the parameter A/2ri0 
tends to zero, the equilibrium structure tends to the 
London form although calculations indicate that even 
when the diameter of the sample is tens of centimeters, 
the difference between the equilibrium and London struc- 
tures is still considerable. 

DISCUSSION OF RESULTS 

It is d e a r  from Figs. 4 and 5 and Table I that the 
radius of the region occupied by the intermediate state 
in a rounded structure is considerably less than that 
given by Eq. (1). This means that in the normal metal 
with r>r,, there is, as in the Gorter structure, a re- 
gion where the magnetic field is less than the critical 
value (Fig. 8). It follows that, in principle, the periodic 
structure is unstable in the case of nucleation of new 
superconducting layers in the region where H< €I,. On 
the other hand, it is known that the normal state of type 
I superconductor can be fairly strongly supercooled. In 
this case, the important factor is the relationship be- 
tween the frequency v of nucleation of new superconduc- 
ting layers and their lifetime T in the sample. If vr << 1, 
the structure can be regarded a s  purely periodic and 
all the above results apply. However, if vr > 1, i.e., 
when several cylindrical superconducting layers coexist 
in the sample, the structure is of the Gorter type. We 
can also have a combined structure if VT 5 1. In the 
latter case, the central part of the sample has a region 
occupied by a periodic structure whose parameters a r e  

FIG. 8. Schematic distribution of the magnetic field in a nor- 
mal metal outside the intermediate-state region. 

FIG. 9. Dependence of a resistance jump Z=Z, on the surface 
tension. The continuous curve is calculated. The points repre- 
sent various experimental data: +) Ref. 9; 0)  ReE 10; A) Ref. 
11; O) Ref. 12; x)  Ref. 13; 0) Ref. 14. 

close to  those calculated above but new superconducting 
layers which a r e  from time to time nucleated in the 
region r > r, may reduce the resistance of the sample 
quite considerably. 

Figure 9 shows the dependence of R/R, on A/2rO, cal- 
culated for a periodic structure carrying a current I = I , ;  
the points in this figure a re  the experimental data. It 
should be mentioned that t h e  approximate linearity of 
the calculated dependence is purely accidental. Clearly, 
a t  high values of h/2rO, the calculated curves should 
tend asymptotically to unity and, at low values, it should 
tend to  0.5. We can see  from Fig. 9 that the experi- 
mental ratios R/R, a r e  much smaller than the calculated 
values. This means that the real  structure is either of 
the pure Gorter type or a combination of the Gorter and 
periodic structures with LJT - 1. A calculation of the re -  
sistance of such a combined structure for various values 
of VT is very difficult and, therefore, i t  was not attemp- 
ted. 

We shall now consider the Gorter structure in some- 
what greater detail. In general, this structure should 
be absolutely unstable in the presence of a longitudinal 
magnetic field if several cylindrical super conducting 
layers moving toward the axis a re  present simultaneous- 
ly in the sample. In fact, a magnetic field (which may 
be negligible) should, in this case, be creaked by the 
successive motion of superconducting layers. As shown 
earlier,'= this process should produce a region in the 
central part of the sample where the intensity of a longi- 
tudinal magnetic field is much higher than the external 
value. This region is surrounded by a layer of the two- 
dimensional mixed state in type I superconductors. One 
should s t ress  that the external longitudinal magnetic 
field influences only the time taken to establish an equil- 
ibrium configuration, i.e., if the Gorter structure ap- 
pears in a sample on switching on the current, i t  nec- 
essarily results in the penetration of a longitudinal mag- 
netic field into the sample and produces a structure 
discussed in detail earlier.13 

It is interesting to note that the processes occurring 
in a sample have much in common in the Gorter and 
combined structure cases. Although the structures 
which exist in the central part  of the sample a re  differ- 
ent in these two cases, outside this region new super- 
conducting layers a re  nucleated from time to time and 
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move toward the center of the sample. 

The experimental data on the jump in the resistance 
a t  I = I ,  thus indicate that either the Gorter o r  combined 
structure is formed in reality. It would be possible to 
determine which of these two structures does form by, 
for example, measuring the longitudinal magnetic field 
inside the sample. The existence of the paramagnetic 
effect and the tendency of the external longitudinal mag- 
netic field to approach zero would support the Gorter 
structure. Among the published data, one should men- 
tion the work of Hejnowicz and Makiej '' reporting a 
discovery of the paramagnetic effect in tin samples for 
H~/H,< 0.006. Their measurements were carried out 
using a bismuth magnetic-field sensor, which could be 
moved in a special aperture a t  right-angles to the axis 
of the sample. 

Interesting data on the nature of the intermediate- 
state structures can be obtained by measuring the alter- 
nating component of the voltage across a sample whose 
superconductivity is destroyed by a constant current. 
Such measurements were recently carried out by Watson 
and HuebenerI4 on indium wires of various diameters. 
In the case of samples 0.17 mm in diameter, they found 
an alternating component of the voltage and recorded its 
spectrum in the frequency range from 20 Hz to 10 kHz. 
In general, the voltage across the sample could fluctuate 
also in the presence of a periodic structure moving 
along the axis. However, in such a case, the amplitude 
of the alternating voltage V ,  would be of the order of 
av./I (here, V= is the dc voltage across the sample, a 
is the structure period, and I is the distance between the 
potential contacts). However, Watson and Huebener14 
discovered that the ratio v,/v, did not change when I 
was varied by a factor of 20, which was evidence of the 
Gorter nature of the structure. One should point out 
here that the pure Gorter and combined structures 
should give practically the same results because the 
rate of contraction of the central region (appearing in 
the Gorter structure) could be slow compared with the 
velocity of superconducting regions. 

The low value of V- may also be due to the poor qual- 
ity of the samples (the samples used were prepared by 
die extrusion). On the other hand, the small value of V, 
may indicate that the nucleation of new superconducting 
layers is hindered by some factor o r  other and that, for 
a long time, the sample consists only of a system of 
layers of the two-dimensional mixed state (in the Gorter 
structure case) or only of a region of the periodic struc- 
ture (in the combined case). The voltage across the 
sample is then practically constant or r ises  slowly for 
most of the time and drops suddenly at the moment of 
nucleation of a new superconducting layer. The time 
dependence of the voltage across a sample in this case 
is shown schematically in Fig. 10. Here, T I  can be con- 
siderably greater than T,. These assumptions allow us 
to  ascertain quite easily the nature of the dependence of 
V- on the frequency f. In fact, if T I  +T,> l/Af (Af is 
the pass band of the measuring amplifier), the frequency 
dependence of V,  can be found simply by spectral expan- 
sion of a rectangular pulse of duration T, averaging over 
the various values of T,. If T, has a Gaussian distribu- 

FIG. 10. Schematic rep- 
resentation of the time 
dependence of the voltage. 

t 

[the quantity n ( ~ )  represents the probability that a given 
pulse is of duration T], we then obtain 

where w = 27rf. Figure 11 gives, on a double logarithmic 
scale, the experimental results of Watson and Huebe- 
ner14 a s  well a s  a curve which calculated from Eq. (10) 
assuming that T,, =3.5 msec and u/T,, =0.23 and which 
represents the dependence of the power (proportional 
to I?,) on the measurement frequency. It should be 
noted that variation in the values of T,, and A in Eq. (10) 
results, in the case of double logarithmic coordinates, 
in a parallel transfer of the calculated curve without 
change in its shape. The good agreement between the 
calculated and experimental results confirms the valid- 
ity of the assumptions made but the value T,, =3.5 msec 
seems to be too large for the sample in question. 

We shall also consider the experimental evidence on 
the influence of a transverse magnetic field on the pro- 
cesses occurring during the destruction of supercon- 
ductivity by a current. As pointed out, such destruction 
produces an intermediate-state region covered by a 
normal metal layer of finite thickness. However, the 
application of a transverse magnetic field makes it 
possible to displace the intermediate-state region to 
that surface of the sample where the external magnetic 
field and the magnetic field created by the current 

FIG. 11. Dependence of the logarithm of the power (in relative 
units) on the logarithm of the frequency in hertz. The continu- 
ous curve i s  calculated using Eq. (10) and the points are the 
results taken from Ref. 14. 
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have opposite directions. We can easily show that, a s  
long a s  the intermediate-state region is inside the 
sample, there a r e  no distortions of the structure and i t  
is displaced as a whole a distance 

(H, is the external transverse magnetic field). The in- 
termediate-state region should emerge on the surface 
of the sample for 

The quantity r ,  in the above formula represents the 
radius of the intermediate-state region in the pure per- 
iodic case, whereas, for the Gorter o r  combined struc- 
tures, the value of r ,  is the maximum radius of the in- 
termediate-state region. 

Investigations of the influence of a transverse mag- 
netic field on the destruction of superconductivity by an 
electric current have been carried out by a number of 
workers (see, for example, Refs. 15-18). In particular, 
it has been found that the emergence of the intermediate 
state on the surface of a sample occurs in transverse 
fields much higher than those predicted by simple 
periodic structure models. For example, for Z =I ,, 
the external field required is H, > 0. 12Hc (Ref. 18). 
Using this value of H, and assuming that R/R,  =O. 7 
(which is a typical ratio), we find from Eqs. (11) and 
(12) that r,  /ro =0.8, which represents a reasonable 
value for the maximum radius of a Gorter-type struc- 
ture. 

The fact that a periodic structure appears on the 
surface of a sample subjected to a transverse magnetic 

is in no way a conflict with the ideas put for- 
ward above because a Gorter-type structure should 
naturally be converted to periodic under the action of a 
transverse field. It follows that the emergence of a 
structure on the surface of a sample should be accom- 
panied by a radical change in this structure. Hence, it 
follows that the emergence of the intermediate state on 
the surface of a sample under the influence of a trans- 
verse field should be accompanied by considerable 
hysteresis.') Clearly, the resistance of a sample should 
also change somewhat a t  the moment when such a struc- 
ture emerges on the surface. 

Among other experimental data, we may mention here 
the absence of the intermediate state in a hollow cylin- 
drical sample, investigated by the present author.lg Use 
was made1' of a single-crystal hollow cylinder with an 
outer diameter of 8 mm and an inner diameter of 4 mm. 
The current-voltage characteristics showed that the in- 
termediate state did not even appear a t  Z=Z, This ap- 
parently strange behavior can be explained naturally on 
the basis of the above analysis. In fact, for an indium 
sample of diameter 8 mm, the relevant parameter is 
h/2r0 =5 x 10'' even a t  the lowest temperatures so  that 
the diameter of the intermediate-state region (Table I) 
is about 3 mm, ie., i t  is considerably less  than the 
radius of the internal cavity of the cylinder. 

We can summarize the situation as follows. 

periodic structure appearing on destruction of super- 
conductivity by a current, calculated above, represent 
the upper limit. Other possible intermediate-state 
structures should be characterized by lower resistances. 

2 .  The experimental values of R/R,  indicate that 
either a pure Gorter-type structure or a combination of 
the Gorter and periodic structures appears in reality. 
This conclusion is in agreement with measurements of 
the alternating component of the voltage across a sam- 
ple.14 The paramagnetic effect in very high external 
longitudinal magnetic fields15 also supports the Gorter 
structure explanation. On the other hand, in samples 
of much larger diameter, there may be rounded periodic 
structures. 

3. The influence of a transverse magnetic field on the 
destruction of superconductivity by a current, which is 
difficult to explain by the existence of a London-type 
periodic structure, can be accounted for very naturally 
if we assume the existence of a Gorter-type structure. 

4. There a r e  apparently no experimental results 
which would conflict directly o r  indirectly with the ideas 
put forward above. 

The author is grateful to Yu. V. Sharvin for numerous 
fruitful discussions and continuous interest, to A. F. 
Andreev for discussing the question considered above, 
and to all the members of the Computing Center of our 
Institute, whose goodwill has been a great help in com- 
pleting this investigation. 

' ) ~ r o m  this point of view, it seems to be completely incorrect 
to state5 that, in the London structure, the magnetic field at  
the phase interface i s  weak in the central part of the sample 
and vanishes on the axis (see Fig. 1 in Ref. 5). Since there 
are no explanations of Fig. 1 in Ref. 5, i t  is not clear what 
the authors have in mind. 

2 ) ~ t  should be pointed out that such hysteresis was observed 
experimentally'7wis but no special significance was attached 
to the results and they were not included in the text of the 
papers. 
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Optothermodynamic method of diagnostics of the critical 
point and of the investigation of the equation of state of 
absorbing liquids 
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A new method for the diagnostics of the critical point and for the investigation of the equation of state of 
an absorbing dielectric liquid is indicated. 

PACS numbers: 07.20. - n, 64.30. + t 

A method d optothermodynamic action of a laser pulse 
with a programmed waveform on an absorbing liquid, to 
bring a liquid is close to the critical point in the focal 
volume was indicated in Ref. 1. The main shortcomings 
of this method are the following: 

1) the stringent requirements imposed on the wave- 
form of the laser pulse; 

2) the short (-rdc, w b r e  r, is the radius of the focal 
spot and c is the speed of sound in the liquid) lifetime of 
the near-critical state; 

3) the inapplicability of the method when working with 
liquids whose critical parameters are unknown. 

In the present paper we propose for the investigation 
of liquids an optothermodynamic method free of these 
shortcomings. It permits diagnostics of the critical 
point and investigation of the equation of state of the 
liquid. 

The main difference from Ref. 1 is that now the in- 
vestigated liquid is placed in a hermetically sealed cell, 
on the end face of which is incident a homogeneous light 
beam d intensity ~ ( t )  ( I  = 0 at t SO), so that the problem 
of the reaction of the liquid to the action of the radiation 
is one-dimensional (see Fig. I).'' If the laser-pulse 
duration 7 satisfies the condition CT >> 15 (6 is the length 
of the cell), then the pressure profile established in the 
liquid on account of the absorption of the laser radiation 
turns out to be independent of x (the x axis coincides 
with the propagation direction of the radiation), i.e., it 

depends only on the time: p=p(t). On the other hand, if 
X ~ @  <<I, where K is the absorption coefficient of the 
radiation and x is the thermal diffusivity of the liquid, 
then the profiles of the temperature T, of the density p, 
of the specific enthalpy w, etc. will depend significantly 
on x. Thus, on the (p, x) planes, where X= p, T, w.. ., 
the state of the liquid at each instant of time is describ- 
ed by a segment corresponding to a fixed value of p(t) 
and to a continuum of values of X from a certain inter- 
val x,(P) SX sxU(p).  During the entire time of action 
of the radiation pulse the aggregate of the state in which 
the liquid is situated will occupy on the (p,X) plane a 
certain two-dimensional region (phase space) bounded 
by the phase curves x=x,,,(P),x=x,(P) and by the seg- 
ment p =p,  corresponding to the maximum pressure 
produced in the liquid at the end of the flash. 

In the case Kg >> 1 the problem has an analytic solution 

FIG. 1. Schematic profile of the density and temperature of 
the liquid a t  a fixed instant of time: L-probing laser,  D- 
detector; the thick line represents the cell. 
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