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The calculation of the spin-wave spectrum in a 4-sublattice antiferromagnet UOQ, is calculated. In.
accordance with the general premises of exchange symmetry [see, e.g., Halperin and Saslow, Phys. Rev.
B16, 2154 (1977)], there are three zero-gap modes. In the paired Heisenberg interaction approximation,
however, there appears a fourth zero-gap mode with quadratic dependence on the momentum. The gap in
this mode is due only to biquadratic exchange. The corresponding heat capacity and magnetic

susceptibility are determined.
PACS numbers: 75.30.Ds, 75.30.Et, 75.10.Jm, 75.50.Ee

The antiferromagnet UO, is the first known substance
consisting of four noncollinear sublattices. From the
point of view of symmetry (see, e.g., Ref. 1), such a
system is three zero-gap Goldstone modes with a linear
dispersion law—spin waves. We shall show, however,
that in the simplest form of exchange interaction—Heis-
enberg quadratic exchange--there is a fourth zero-gap
mode with an energy that depends quadratically on the
momentum. The gap appears in this mode only because
of biquadratic exchange.

The magnetic structure of UO, was recently deter-
mined experimentally by Faber, Lander, and Cooper?
(for its description see also Ref. 3). Within the frame-
work of the Landau theory, the question of the possible
types of magnetic structures in UO, was considered by
Man’ko and one of us.? The first-order phase transition
in UO, was subsequently attributed to the influence of
fluctuations in the vicinity of the phase-transition
point.>? In these theories*” the magnetic structure of
UO, was determined by the spins

§1(000), S0%.'/s), S°(Y/0.), S(Y.'/:0)

of the four uranium ions in the cubic cell of the crystal
or by their linear combinations

M=S'+8*+8°+8",
L,=S'-8§*+8'—8*,
Both in the Landau theory and in the theory where ac-
count is taken of the fluctuations, two types of magnetic
structure turned out to be possible*”: a collinear two-
sublattice structure

L,=S'+8'—8*-8¢,
L,=S'—§'—§'+S".

L#0, Ly=L,=M=0 (n
and a noncollinear four-sublattice structure
Li=L,=Ls, L,lL;iL, M=0. (1)

For the magnetic structure of type (II) we calculate be-
low the spin-wave spectrum at T =0 and obtain expres-

sions for the heat capacity and for the magnetic suscep-
tibility in the limit of large ion spins (S>1). .

In the classical limit, the exchange decreases expo-
nentially with distance, and we confine ourselves there-
fore in the Hamiltonian to the following terms:
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x— %5_“ T(SIS,/+S 35248 18+8,S)
3 T (U888 8,5, 48 88,5, +5.55,)
= Y 0 (B SIS, 8,8, 48,8, 445, 15,445,78,.)
o T LSS0 (8/8)+ (S78)+ (828)+ (875, + (55,71

+ Y Ko {(S/57) (875 +(S:57) (878 +(SS)) (875.))
+Z Em{(siisuz) (Silsl’) + (S,‘S,"‘) (slist.)"" (Si‘snl) (siisl‘)

T(878) (578°) +(578)) (878,')+(8/8,%) (8,8,)
+(S78)) (88:7) +(8:8,) (S:28.,4) +(S:°8:2) (845.9)
(S8 (S¢8.5)+(8:°5,') (8:48,") +(8,'8,%) (5,8, }

—gu,HZ (S/+8,+5,.+84). (1)

Here J,, and J,; are the exchange integrals; a,, are the
anistropy constants; I,;, K,,,;, and E,,, are the biquad-
ratic exchange integrals; H is the magnetic field; g is
the gyromagnetic ratio; uy is the Bohr magneton. All
the sums in the Hamiltonian are taken over the nearest
neighbors.

In the nearest-neighbor approximation, the Fourier
components of the exchange integrals are given by
k,tk k,~k ktk, k.—k,
12 v i 5 LRI A
J 2J(cos 5 “+cos 5 ), J ZJ(cos 3 + cos 5 ),
@)
k. t+k, k.—k,
h__ % v £ v
J -—-21(005 —5— +cos ),
where the indices 7j and J designate the numbers of the
sublattices,
J=27 (cos k«+cos k,+cos k.);

k is measured in units of the reciprocal length of the
crystallographic cell.

We assume throughout that a, I, K, E<J, [J| and
neglect therefore the dependence of the Fourier compo-
nents ay, Iy, Ky, Egonk. At H=0, the condition
that the energy of the magnetic structure (II) be less
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than the energy of the structure (I) takes the form I+ 2K
—4E>0. We assume also that a >0. Then the equilibri-
um state takes the form

L,=Lx, L.=Ly, L,=Lz, L=4S/3"%.

In the limit $>>1, the spin-wave spectrum is deter-
mined from the linearized classical equations of motion
for the spin, which are conveniently written for 1, and
m, (1 and m are the deviations of L and M from equilib-
rium). At H=0 the equations of motion break up into
four independent groups: the equations for 1,1, m,,
Lidsemy, lyliym, and 1,.1,1,. The spectrum branches
wy;=w,(k), i=1,2,3, corresponding to the vibrations
Lylam,, 1l m, and 1,,l.,;m,, form a three-dimensional
representation of the cubic group. The frequency of the
1, l,ym, vibration is

o="/S*{(Ja—T o +1,—1*+8a)— (J:—J*)*
+2(Te—T o+ 1o—T"+8a) (FamT oI+ +I5+1%) ). 3)

At small k, the expression for the frequency w, takes
the form

0 ="/,8T[8a—Tk*+' /] (ki+k})]. (4)

In the exchange approximation (a=0) the modes w, of the
spectrum turn out to have zero gap and have the linear
dependence on % usually possessed by antiferromagnets.
The absence of a gap for the modes w, at a=0 is due to
the fact that the oscillations I,,l,,m,, 1, l.,m, and 1,,l,,m,
at k=0 correspond to rotation of the spin system as a
whole. In the absence of anisotropy, such a rotation is
free.

From (4) follows the condition for the stability of the
magnetic structure, namely J<0.

The presence of anisotropy does not influence the os-
cillation of the order parameter [,.l,,l,,. The oscillation
1, loyls, corresponds to the frequency

@*'=A+*/sAS{3(Tx—T,) +37,—J2—J* -]}
+ /8B (Tx—To)*+2 (Jx—Jo) (31— =T =J) + (J*2~,)*
— (BT (1] ) 2= (JHE—] ) 2 (J8=T5) 2= (J2=J1)1}, (5)

We have put here
A="/,S (I+2K—~4E), To=Fums, Jo=liza’™ (6)

This branch of the spectrum has an exchange gap A de-
termined only by the biquadratic exchange. The relation
w=w(k) has cubic symmetry.

At small k, the expression for the frequency takes the
form

o'=A+AS(J+3|T|) R
S (BTH2| T | T s+ I (k2 2h ke 2) ). m

At A=0 we have w~F?, i.e., the oscillation of the order
parameter corresponds to a spectrum mode with a quad-
ratic dispersion law.

In a magnetic field Hll z, the magnetic structure (II)
acquires amagnetic moment M|l z, the vector L, ac-
quires ay component L, = -M/2, while the vector L,
acquires an x component L, = —-M/2. Recognizing that
a, I, K, E<J, the expression for the magnetic moment
takes the form M,=gugH/J,. In this state the l,,l,)l,,
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oscillation is connected with the I,,l,.m, oscillation,
while [,,l,,m, is connected with 1,,l.,m,. The expression
for the frequencies @, , at small k becomes (@, is the
frequency corresponding to w; in a magnetic field)

@2, ="/, [0 F0s +h* ]+ {[ 022t +h?] '-4(0:’0)3’} LS (8)
where

0 ="/,8% (8a+|T | k+/s] (ki+k?),
05" ="/sS% (8a++ | T | k*+*/xJ (k2 +h.?))

are the oscillation frequencies I,,l,,m, and I,l,,m,, re-
spectively, at H=0; h=gugH.

At k=0 formula (8) yields an expression for the two
antiferromagnetic-resonance frequencies

h hl 2! l/,
=t —+ | —+ —JaS? 9
as,..:t2+[4+3 JaS]. ©)

The expressions for @? and @ contain terms ~H?
which have an additional smallness (a/J)?, (I/J)?, and
are too cumbersome to be written out here.

We present now an expression for the heat capacity C
at the temperatures (aJ)'/?, A< T «J, H=0. By virtue
of the linear character of the dispersion, the contribu-
tion to the heat capacity from the branches w,(k)
(i=1,2,3) is proportional to T. The spectrum branch
w(k) has a quadratic dispersion, so that its contribution
to the heat capacity is <T%/2:
C= ] 3','xnsz

160(2)*S*(I71) 7= (J+2171)

7

5(3)" G (/) T™ ‘( M ) . (10)

- I
2(sSn)* .

¢(x) is a Riemann function.
do ,
Ii(a)= j'-— [a(3a+2) + (n.ln2+n 0240, 02) 1%,
4n ’

I,(a)=1/3%%a*/? at @> 5. The values of I,(a) at a<5
are listed in the table. Just as the heat capacity C, the
susceptibility x(H) contains at (aJ)*/2? and A < T «J two
terms that have different dependences on the tempera-
ture. Since &, ,~k, at T > (aJ)!/? the contribution to the
susceptibility from the branches ‘."’z.s is T2, The inte-
grals corresponding to the contribution made to the sus-
ceptibility by the branches ®(k) and @,(k) at T > A and
(aJ)/? are determined by the values k*~A/J and a/J,
and turn out to be «<T. At arbitrary ratio of the con-
stants A and a, we obtain very cumbersome expres-
sions, and we present the answer for only two limiting
cases, a<<A and A <a:

1) a< A
3" (gus)?T* ¢ IJ 2"SA“(K—E) . (1T
~ e T (V1) g (g 2EEE) (1) gy
M= 5@ I( J) (ue) ——r L\ 1)
where
TABLE 1.
(-3
0 0,04 0,05 0.4 0.2 0.5 0,7 1 2 5
I, () 471 3.64 254 190 | 128 | 060 | 043 | 029 | 0.07 | 0.04
I; (@) 1.24 1.09 091 078 | 058 | 030 | 0.22 | 0.45 | 0.06 | 0.02
Is (@) 1.57 1.27 0.92 070 | 048 | 023 |-0.16 | 0.11 | O. 0.01
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FIG. 1.

I(a)= j_Z_: {(2a+1_n::)-/. (2at+1—-n,?) ] (Zo'c+i— 2)%
+(20+1—n,%) "1},

d
L(@)= [ = [2(2+3a) + (v, tnint i) |

X{{1+3a+[1-3(n 0, +nln +n, n2) )"
+{1+3a—~[1-3(n’n, +n 0 +n,n.?) ] ") 1)1,

Asymptotically at @> 5 we have

L(@)=1/4(2)%¥,  I(a)=1/6d".

The values of I,(a) and I,(a) at <5 are given in the ta-
ble. The contribution from the branches &(k) and @, (k),
besides the term given above, contain also a term
«Ta3/2/J7/2  which is small compared with the term
«T?/J® in the susceptibility for the temperatures A< T
<< J.

2) a> A, In this case the branches @(k) and @, (k)
make a magnetic-susceptibility contribution «<Ta®/2/J7/2,
This contribution is small compared with the contribu-
tion from the branches @,(k) and @,(k) at temperatures
(@) 2«< T <«J and
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sy =T8T, (1) (12)

28(8))* J

By virtue of the cubic symmetry of the magnetic struc-
ture (II), the expressions obtained for the susceptibility
do not depend on the direction of the magnetic field.

A qualitative plot of the function Ax=x(T) - x(0) is
shown in the figure. The case a> A corresponds to the
curve A. In the case a<< 4, the form of the curve de-
pends on the ratio between the quantities |K —E| and
A. In the case |K —E| <« (JA)*2 the qualitative plot of
Ax=Ax(T) is curve A. The case |K - E|> (JA)*/2 cor-
responds to curve B if K - E<0 and to curve C if K- E
>0.
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