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The calculation of the spin-wave spectrum in a Csublattice antiferromagnet UO, is calculated. In 
accordance with the general premises of exchange symmetry [see, e.g., Halperin and Saslow, Phys. Rev. 
B16, 2154 (197711, there are three zero-gap modes. In the paired Heisenberg interaction approximation, 
however, there appears a fourth m g a p  mode with quadratic dependence on the momentum. The gap in 
this mode is due only to biquadratic exchange. The corresponding heat capacity and magnetic 
susceptibility are determined. 

PACS numbers: 75.30.Ds, 75.30.Et, 75.10.Jm, 75.50.Ee 

The antiferromagnet UO, is the f i rs t  known substance 1 w= ,r( Pfj(s,1s,l+s:s~+si3s~+s,'s;) 
consisting of four noncollinear sublattices. From the 
point of view of symmetry (see, e.g., Ref. I), such a 
system is three zero-gap Goldstone modes with a linear 
dispersion law-spin waves. We shall show, however, 
that in the simplest form of exchange interaction-Heis- 
enberg quadratic exchange-there is a fourth zero-gap 
mode with an energy that depends quadratically on the 
momentum. The gap appears in this mode only because 
of biquadratic exchange. 

The magnetic structure of UO, was recently deter- 
mined experimentally by Faber, Lander, and Coope? 
(for i t s  description see also Ref. 3). Within the frame- 
work of the Landau theory, the question of the possible 
types of magnetic structures in UO, was considered by 
Man'ko and one of us.4 The first-order phase transition 
in UO, was subsequently attributed to the influence of 
fluctuations in the vicinity of the phase-transition 
point."7 In these theories4" the magnetic structure of 
UO, was determined by the spins 

of the four uranium ions in the cubic cell of the crystal 
o r  by their linear combinations 

Both in the Landau theory and in the theory where ac- 
I count is taken of the fluctuations, two types of magnetic 

structure turned out to be possibleb7: a collinear two- 
sublattice structure 

and a noncollinear four-sublattice structure 

Ll-L2-La, L , l L I L , ,  M-0. (a 
For  the magnetic structure of type (11) we calculate be- 
low the spin-wave spectrum at T = 0 and obtain expres- 
sions for  the heat capacity and for the magnetic s u s c e p  
tibility in the limit of large ion spins (S >> 1). 

In the classical limit, the exchange decreases expo- 
nentially with distance, and we confine ourselves there- 
fore in the Hamiltonian to the following terms: 

Here ItU and J,, a re  the exchange integrals; a,, a re  the 
a n i s t I - 0 ~ ~  constants; I,,, K,,,,, and E,,, are the biquad- 
ratic exchange integrals; H is the magnetic field; g is 
the gyromagnetic ratio; p, is the Bohr magneton. All 
the sums in the Hamiltonian a r e  taken over the nearest 
neighbors. 

In the nearest-neighbor approximation, the Fourier 
components of the exchange integrals a re  given by 

where the indices ij and J designate the numbers of the 
sublattices, 

fk-2.7 (cos k.+cos k,+coa k.); 

k is measured in units of the reciprocal length of the 
crystallographic cell. 

We assume throughout that a, I, K, E << J ,  17 I and 
neglect therefore the dependence of the Fourier compo- 
nents a U ,  I,,, K ,,,, E,, on k. At H =0, the condition 
that the energy of the magnetic structure (11) be less  
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than the energy of the structure (I) takes the form I +  2K 
-4E >O. We assume also that a >O. Then the equilibri- 
um state takes the form 

In the limit S >> 1, the spin-wave spectrum is deter- 
mined from the linearized classical equations of motion 
fo r  the spin, which a re  conveniently written for  1, and 
m, (1 and m a re  the deviations of L and M from equilib- 
rium). At H = 0 the equations of motion break up into 
four independent groups: the equations fo r  1 ,,l,m,, 
lJ,m,, 12,13,m, and 1,1,1,,. The spectrum branches 
w, = w,(kf, i =  l ,2 ,3 ,  corresponding to the vibrations 
l,l,m,, I,,l,m, and l,l,m,, form a three-dimensional 
representation of the cubic group. The frequency of the 
l,l,m, vibration is 

At small k, the expression for  the frequency w, takes 
the form 

In the exchange approximation (a = 0) the modes of of the 
spectrum turn out to have zero gap and have the linear 
dependence on k usually possessed by antiferromagnets. 
The absence of a gap for the modes w ,  at a =  0 is due to 
the fact that the oscillations ll,,l,m,, l,,l,m, and 12,13,m, 
at k=O correspond to rotation of the spin system as a 
whole. In the absence of anisotropy, such a rotation is 
free. 

From (4) follows the condition for the stability of the 
magnetic structure, namely 5< 0. 

The presence of anisotropy does not influence the os- 
cillation of the order parameter l,12,E3,. The oscillation 
1,1,13, corresponds to the frequency 

o'=A2+YsAS(3(f r-Jofo) + 3Jo-JLz-I"-I") 

+'/ySZ{3(Jt-70) '+2(Jk-JO) (31p-112-J1S-114) + (Ii2-Jo) ' 
- ( I - I )  + ( - I )  = ( I - )  + ( I - I )  ( I - )  (5) 

We have put here 

This branch of the spectrum has an exchange gap A de- 
termined only by the biquadratic exchange. The relation 
w = o(k) has cubic symmetry. 

At small k, the expression for the frequency takes the 
form 

At A = 0 we have W -  k2, i.e., the oscillation of the order 
parameter corresponds to a spectrum mode with a quad- 
ratic dispersion law. 

In a magnetic field Hll z, the magnetic structure (11) 
acquires magnet ic  moment M I1 z, the vector L, ac- 
quires a y component L,, = -M/2, while the vector L, 
acquires an x component L, = -M/2. Recognizing that 
a ,  I, K, E <<J, the expression for  the magnetic moment 
takes the form M,=~F~H/J , .  In this state the 1,1,,1, 

oscillation is connected with the l,l,m, oscillation, 
while l,,l,m, is connected with l,l,m,. The expression 
for  the frequencies D,,, at small k becomes (6, is the 
frequency corresponding to w, in a magnetic field) 

where 

a re  the oscillation frequencies l,,l,m, and l,l,m,, re- 
spectively, a t  H = 0; h =gpBH. 

At k=O formula (8) yields an expression for the two 
antiferromagnetic- resonance frequencies 

The expressions for Gz and Df contain terms -Hz 
which have an additional smallness (a/J)', (Z/J)', and 
a re  too cumbersome to be written out here. 

We present now an expression for  the heat capacity C 
at the temperatures (UJ)'/~, A << T << J, H = 0. By virtue 
of the linear character of the dispersion, the contribu- 
tion to the heat capacity from the branches w,(k) 
(i = 1,2,3) is proportional to T3. The spectrum branch 
w(k) has a quadratic dispersion, so  that i t s  contribution 
to the heat capacity is 

b (x) is a Riemann function. 

Z,(ff)= 1/33/4a3/2 at ff a 5. The values of Z,(a) a t  a <  5 
are  listed in the table. Jus t  a s  the heat capacity C, the 
susceptibility x ( H )  contains at (UJ)~/~ and A<< T <<J two 
terms that have different dependences on the tempera- 
ture. Since Dh3-k, a t  T >> (UJ)'/~ the contribution to the 
susceptibility from the branches 3,, is aTZ. The inte- 
grals corresponding to the contribution made to the sus- 
ceptibility by the branches ;(k) and 3,(k) a t  T >> A and 
( U J ) ' / ~  are  determined by the values k2-A/J and a /J ,  
and turn out to be a T .  At arbitrary ratio of the con- 
stants A and a ,  we obtain very cumbersome expres- 
sions, and we present the answer for only two limiting 
cases, a << A and A << a: 

where 

TABLE 1. 
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FIG. 1. 

+{1+3a- [ 1-3 (n,h,'+n:n,'+n,'n,') ]")")-$. 

Asymptotically at a! a 5 we have 

1?(0~)*214(2)'a', Z3(a)=1/80;'. 

The values of I,(a!) and 13 (a )  at a! < 5 are  given in the ta- 
ble. The contribution from the branches G(k)  and Gi,(k), 
besides the term given above, contain also a term 
~ T A ~ / ~ / J ~ / ~ ,  which i s  small compared with the term 
aT2 /J3  in the susceptibility for the temperatures A << T 
<< J .  

2) a>> A. In this case the branches G(k)  and G,(k) 
make a magnetic- susceptibility contribution ~ T ~ ~ ~ ~ / J ' / ~ .  
This contribution is small compared with the contribu- 
tion from the branches G,(k) and G,(k) at temperatures 
( d ) l f Z < <  T << J and 
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By virtue of the cubic symmetry of the magnetic struc- 
ture (II), the expressions obtained for the susceptibility 
do not depend on the direction of the magnetic field. 

A qualitative plot of the function AX = x(T)  - ~ ( 0 )  is 
shown in the figure. The case a>> A corresponds to the 
curve A. In the case a << A, the form of the curve de- 
pends on the ratio between the quantities I K  - E 1 and 
A. In the case I K  - E I << ( J A ) ' / ~  the qualitative plot of 
AX = Ax(T) is curve A. The case I K  - E I >> ( 5 ~ ) ' ~ ~  cor- 
responds to curve B i f  K - E < O  and to curve C if K - E 
> 0 .  
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