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A martensitic transformation is assumed to be due to phonon generation by narrow-band electrons. The 
threshold population inversion and amplitude of the generated vibrations are found in the single-mode 
approximation. Two basically different ways of population inversion are considered. In both cases flat 
constant-energy parts of the electron spectra of the transforming phases are of fundamental importance. 
An analysis of the electron spectra with the aim of revealing such parts is made for the specific examples 
of the fcc and bcc modifications of iron. It is pointed out that different martensitic transformations can 
occur for the same type of flat parts of constant-energy surfaces. 

PACS numbers: 64.80.Gd, 8 1.30.Kf 

1. INTRODUCTION. POPULATION INVERSION. ment waves play a leading role in the transformation. 
RESONATOR In an earlier paper2 we suggested a mechanism of genr 

A martensitic transformation is a diffusionless change 
in the lattice structure occurring in steels, many trans- 
ition metals, and their alloys with pronounced features 
of first-order phase transitions.' For example, in the 
case of the Fe-Ni system (0-34% Ni) in which cooling 
(forward transformation, beginning a t  a temperature 
M,) or  heating (reverse transformation) produces fcc - bcc (y- a) or  bcc- fcc (a- y) changes in the lattice," 
the relative change in volume amounts to 2.4%. This 

eration of longitudinal acoustic waves by electrons in 
narrow energy bands in the presence of a temperature 
gradient VT. The aim of the present paper is to give 
a description of a martensitic transformation in the 
theoretical framework developed for  lasers  (see the 
lectures of Haken and Weidlich in Ref. 3). The idea of 
describing a martensitic transformation in the phonon 
maser model without specifying the mechanism of i ts  
action was put forward earlier by ~ a y s e r . ~  

- 
significant change suggests that longitudinal displace- A necessary condition for stimulated emission is a 
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population inversion of the states in the emitting system. in mind the possibility of strong supercooling, we shall 
AS shown in Ref. 2, the maximum population inversion retain the zero lower limit for the frequencies (3), and 
is obtained for  electron states with antiparallel quasi- we shall assume that i t  applies to wavelengths A <  A,,,, 
momenta directed along and against VT: pt4VT and <m. 

p'H VT. For simplicity, we shall assume that VT 2 0 
only in one direction and we shall consider solely phon- 
on generation (specifically, generation of acoustic lon- 
gitudinal phonons) by electron transitions between the 
states with maximum population inversion in one of the 
narrow bands intersected by the Fermi level p .  We 
shall use f p  for the nonequilibrium distribution function 
of electrons of energy cp, when the inversion condition 
is of the form 

o"fp.-f,>O , (1) 

provided the following laws of conversion a re  obeyed:'' 

where w, is the energy of a phonon with a quasimomen- 
tum q; in the second expression in Eq. (2) the zero value 
and the reciprocal lattice vector Q correspond to the 
normal and umklapp (U) scattering processes, respec- 
tively. 

We shall introduce Ap fo r  the mean f ree  path of elec- 
trons assuming that Ap z -App =A; then, in the linear 
approximation in respect of the parameters 

the condition (1) subject to (2) can be conveniently writ- 
ten in the form 

Here, y = -  IT-'; f '(eY + I)-' is the equilibrium Fer- 
mi function; introduction of the modulus 18, - p 1 makes 
i t  possible to use Eq. (1') for electron transitions above 
and below the Fermi level.' 

It should be pointed out that for given values of o, 
(and, consequently, for given - p 1) and VT, the func- 
tion y21af '/ay 1 depends nonmnotonically on y reaching 
a maximum of ~ 0 . 4 4  a t  y =y,=2.4, i.e., there is an op- 
timum generation temperature T, = Y m l ~ p -  p I a t  which 

0-  0 u -amax. At T =  T,, the condition (1') is satisfied for  
phonon energies 

O < o q < 2 y A V T ,  (3) 

where the upper limit is given by the condition uO= 0. 

However, we shall show in 92 that the condition (1) 
applies only to the generation of phonons with infinite 
lifetime. In reality, the population difference u0 should 
exceed a threshold value ath, which limits the upper lim- 
i t  of the interval (3). In accordance with the concept of 
soft phonon modes,' in a first-order structural transi- 
tion the energy o, of a specific phonon mode has (at the 
transition point) a value which decreases with the degree 
of supercooling (or overheating) relative to the phase 
equilibrium temperature To, defined by the equality of 
the free energies of the phases F, (Td =F , (T~ .  At the 
temperature T, corresponding to the absolute loss of the 
stability by a phase (T, > To for the a! phase and T, < To 
for the y phase) the frequency is w, = w,(T,) = 0. Bearing 

The upper limit A = A, can be estimated by assuming 
that phonon generation occurs a t  one of the natural modes 
of a resonator formed by a regular system of defects. 
For example, in the case of a material with an ideal 
bulk structure, these may be the parallel boundaries of 
a sample, whereas in a polycrystalline material these 
might be grain o r  subgrain boundaries. I€ the resonator 
is formed by two parallel plane boundaries (an analog 
of the Fabry-Perot resonator) separated by a distance 
D, the wavelengths h of the natural modes satisfy the 
condition 

D=mhl2, m = l , 2 , 3 .  .. , (4) 

and hence we have A,,,,= 20. However, the condition (4) 
presupposes specular reflection by the boundaries, which 
is valid in the h<<D case for elastic waves: i.e., XmaX 
is a t  least an order of magnitude less than D. 

In the case of nonparallel grain boundaries (which is 
more typical), a resonator may be formed by a disloca- 
tion network. The appearance of additional (apart from 
the lattice constants) periodicity parameter in the form 
of edges of a network cell L, (i = 1,2,3)  results in selec- 
tion of the modes satisfying 22, =mh. Since for grains 
which a re  not too small we have 1, <<D, we may assume 
that Xm,,<O.lD applies once again. 

$2. THRESHOLD POPULATION DIFFERENCE AND 
AMPLITUDE OF GENERATED DISPLACEMENTS 

For simplicity, we shall consider single-mode gen- 
eration and then the Hamiltonian of the problem can be 
regarded, as in Ref. 3, as the sum%=$L +g2, where 

is the Hamiltonian of the electron-phonon system in the 
case of a single phonon mode; b,, b i  and ap,a; a r e  the 
phonon and electron annihilation and creation operators; 
W, is the matrix element of the electron-phonon inter- 
action; the Hamiltonian s2 describes the action of ther- 
mal reservoirs. An approximate expression for W, is 
obtained in the tight-binding approximation by retaining 
only linear (in respect of atomic displacements) terms 
in the expansion of a resonance integral G ,  whose value 
is of the order of the electron band width.' For values 
of q which a r e  small compared with q,,, we find that 
on the Brillouin zone boundary in the case of normal 
and U processes we have 

Wq=iGeqql (2MNo.)  ", (6) 

where M is the atomic mass; N is the number of atoms; 
e, is the phonon polarization vector. 

In the Heisenberg representation, we obtain the follow- 
ing equations of motion for any operator x :  

Applying the commutation 
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[b~+,b,l=8,,,, [bq+,bp+l--[bq,b,l=O 

and anticommutation 

[%+, a,]+-8, ,, [a,+, a,+]+=[%, a,l+=O, 

relationships, we find from Eqs. (7) and (5) that the fol- 
lawing expressions describe the phonon field. operators 
b:, electron polarizaticm operators.d+p,,= asp, and the 
population difference u , , ~ =  a;+ ,ap+ , -a+pap: 

The system (8) is derived ignoring the fluctuating action 
of thermal reservoirs because we are interested only in 
the average values of the operators and we shall allow 
phenomenologically for the dissipative action3 by intro- 
ducing the relaxation times to of electron populations, 
phonon damping x,, and electron damping I?, . The index 
q of r, shows that this damping is exhibited by a pair of 
electron states such that the transition between them re- 
sults in the emission of a phonon with a quasimomentum 
q, i.e., r,= r p + , = r p '  

In the generation (stimulated emission) regime the 
number of quanta of the emitted mode becomes macro- 
scopic and the operators b: and b, are  described satis- 
factorily by the c-number functions of time. Hence, it is 
clear that in the generation regime the equations of the 
system (8) averaged by the density matrix of the system 
are identical with the classical expressions if all the 
operators a re  replaced with their average values. Such 
a replacement will be assumed to be made and the no- 
tation used earlier for the operators will now apply to 
their averages. The oscillatory time dependence can be 
eliminated by adopting the quantities 

and considering the case of exact resonance, 

Qq-o.=eP+,-e,=op, ,. (10) 

Under steady-state conditions, we find that the sys- 
tem (8) subject to 4s .  (9) and (10) yields the following 
system of nonlinear algebraic equations: 

where the initial value o;,, is given by Eqs. (1) and (1'). 

The steady-state value of the population difference o 
corresponding to the compensation of the gain by the 
losses is the threshold value oth. Assuming the exis- 
tence of the solution b:+ 0, we find from the first  two 
equations of the system (8') that 

It follows from Eq. (1 1) that oth decreases when r;' 
(the quasiparticle lifetime), q-', the electron-phonon 
interaction, or the number of inverted states with the 
quasimomentum p is increased. This number is large 
if the constant-energy electron surfaces have flat re- 
gions perpendicular to the quasimomentum q of the 
generated phonons. The reason for the formation of such 
regions (because of the equality tzp= E - ~ ,  they always 
appear in pairs) may be the anisotropy of the spatial 
distribution of electrons.' For example, in the case of 
a strong overlap of the spatial wave functions of elec- 
trons along one axis ( z ) ,  nearly flat regions are per- 
pendicular to the quasimomentum in the direction z .  
If the generation involves the U processes with electron 
transitions between states of quasimomenta close to the 
limiting values, then large flat parts of the constant- 
energy surface may appear only parallel to the flat parts 
of the Brillouin zone. 

In the presence of flat constant-energy regions, we 
have 

where aih is the threshold population difference between 
any pair of electron states associated with the flat re- 
gions such that the transition between these states re- 
sults in the emission of a phonon with a quasimomentum 
q; n, is the number of such pairs. 

Using the last three expressions in the system (8') to 
express %,, in terms of and 8, and substituting the re- 
sult in the first equation in the system (8'), we obtain 
with the aid of Eq. (11') 

Equation (12) has two solutions 

5,+=0 for IJ,~<UJ~, (13) 
r . 6,+6,-- 41.1 WqI. ( -- xt: I )  for oq0>aqt! 

showing that theSamplitude of the displacements 

vanishes below the generation threshold and is finite 
above this threshold, which indicates that displacements 
are classical. Jn fact, i t  is clear from Eqs. (14) and 
(6) that for o: > uih the number of phonons bq+ b,s  b i  
- I w , I - ~ - N  becomes macroscopic and, therefore, the 
energy of the mode in question is comparable with the 
total energy of all other noncoherent phonons. 

$3. DISCUSSION OF RESULTS IN THE CASE OF A 
POPULATlOlVlNVERSlON DUE TO AT 

A martensitic transformation may begin in regions 
whose local temperature T is lower (to be specific, 
we shall consider only the forward transformation) than 
the phase equilibrium temperature To and that the gen- 
eration condition o: > ut is satisfied. 

The population inversion can be found if we know 
VT and o, In estimating VT, we must distinguish two 
situations. Firstly, VT can be created by strong cool- 
ing of the surface of the sample. Then, (vT), on the 
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surface can be estimated fromQ VT = X 8 ' h ~ ,  where x 
is the heat transfer coefficient, 8 is the thermal con- 
ductivity, and AT is the difference between the tempera- 
ture of the surface of the sample and the cooling medi- 
um. For example, in the case of quenching of steel in 
water, we can assume that A T  = 10a-10S "K, 8 = 5x lo6 
erg.~ec-'.cm-l.%-~, x = xmu= 5x lo7 erg.se~-~.crn-~."K-~ 
under bubble boiling conditions and we than obtain VT 
= 10,-lo4 "K/cm. 

Secondly, if T <  To, then VT appears a s  a result of the 
usual fluctuation-induced nucleation of a new phase. In 
fact, under thermodynamic instability conditions the 
heat evoked increases the temperature of a sample and 
this reflects the tendency of the system ta approach the 
equilibrium temperature To, so  that a temperature dif- 
ference AT appears between a nucleus and the old phase 
and this difference increases with the supercooling To 
- T (To - T =200 "K for Fe-Ni and Fe-C systems1). 
Clearly, AT = 0 applies when T = To because the specific 
heat becomes infinite. The value of AT can be deduced 
from the change in the temperature of the sample if a 
considerable amount of martensite forms in a short 
time. This occurs in Fe-3% Ni alloys where up to 
25O/0 of all the martensite appears simultaneously1 and 
the rise of the temperature of the sample reaches tens 
of degrees. Therefore, we find that AT = 10-100 "K. 
Since over distances of the order of the mean free path 
A the local temperature is, by definition, the same, it 
follows that for VT near a martensite nucleus is VT 
=AT(IOA)-~, i.e., VA -10-6-10-7 cm the maximum val- 
ues of VT may reach lo7-lo8 %/cm. 

The wavelengths of the displacements responsible for 
a martensitic transformation can be deduced most con- 
veniently from the influence of temperature on the phon- 
on dispersion law right up to the temperature M ,  
throughout the full range of wave vectors. However, 
the available data are far from complete. For example, 
in the case of the Fe-3% Ni system this influence has 
been investigated in the short-wavelength range1' by the 
method of inelastic neutron scattering and a t  relatively 
long wavelengths11112 by measuring the velocity of sound 
at lo7  Hz; however, the wide intermediate range has 
not been studied. It i s  characteristic that in the long- 
wavelength range, lowering of T from 500 "K to M, 
= 248 "K results in "softening' of the elastic moduli c,, 
by about 21% and of the moduli c~ by 12%. Although this 
is evidence of lattice instability, it does not include the 
possibility of even stronger softening in the intermediate 
range. 

Direct information on the wavelength X can be deduced 
from metallographic investigations by assuming the 
validity of the mechanism of formation of an elemen- 
tary martensite platelet,= according to which the thick- 
ness of the platelet should be of the order of ~ / 2 .  In the 
Fe-Ni and Fe-C systems the platelet thickness is with- 
in the range (0.25-2.25)~ cm (Ref. I), which corre- 
sponds to wavelengths between three and four orders of 
magnitude greater than the minimum value &,= 2a =lo-' 
cm. If the softening does not alter the order of magni- 
tude of the frequencies, a martensitic transformation 
generates phonons of frequencies w, = 10Q-lO1O rad/sec. 

It follows from Eq. (1') that even in the case of weak 
softening the value of u: > 0 for VT associated with the 
fluctuation-induced nucleation may reach 0.1 when the 
temperature is optimal for phonon generation (ep- 1 
=2.4T) and fairly low (T 10-loa%). 

The existence of flat constant-energy surfaces in the 
electron spectrum is of fundamental importance. The 
electron spectra a re  usually calculated for several sym- 
metric directions of the reciprocal lattice and along 
lines joining the points of intersection of these direc- 
tions with the boundaries of the first  Brillouin zone. 
Continuing our discussion of the fcc-bcc transforma- 
tion for illustrative purposes, we recall that the boun- 
daries of the Brillouin zone of the fcc lattice a re  hexa- 
gons and squares perpendicular to the three- and four- 
fold symmetry axes and that the centers and vertices of 
these boundaries are denoted by the pairs of points 
(L, W) and (X, W). Calculations of the energy b d  struc- 
ture of the fcc modification of Ni (Ref. 14) showed that 
the energies of the branch X5Wl and of a considerable 
part of the branch L,W; differ slightly from the values 
at the points X, and L,. This provides an argument in 
favor of the existence of constant-energy flat regions 
parallel to the Brillouin zone boundaries whose areas 
are comparable with the areas of these boundaries 
(faces). Calculations of the energy band spectrum of 
the fcc modification of Fe (Ref. 15) give the same pic- 
ture a s  for Ni along the symmetry directions and, al- 
though the calculations for the X,W', and L,W', directions 
are not given, we may expect the existence of similar 
flat constant-energy regions. 

According to Wood,15 the difference between the ener- 
gies a t  the points X, and L, is 0.02 Ry and the Fermi 
level (measured from the Fermi level of the paramag- 
netic bcc modification of Fe) lies below the energy of the 
point L, and the difference is  the same. A martensitic 
transformation of the fcc form of Fe begins a t  M, 
= 1000 %, which is close to the optimal temperature of 
generation of phonons by electron states of energies 
close to that of the point L,. The constant-energy re- 
gion parallel to the square face may play an important 
role either when the Fermi level rises significantly (for 
example, in Cu-Ni alloys) or when magnetic ordering 
precedes a martensitic transformation so that the ex- 
change splitting reduces the energy of electrons with 
spins of one of the orientations (Fe-Ni system, with 
30-34% Ni). Moreover, there is a flat constant-energy 
surface of smaller area and parallel to the square face; 
the energy is close to that of the point X,, which is prac- 
tically identical with the energy a t  the point L,. Thus, 
in the simplest single-mode case described by the Ham- 
iltonian (5) we may expect, under the conditions as- 
sumed above, generation of phonons with wave vectors 
along the fourfold and threefold axes because of the um- 
klapp processes. Clearly, the gradient VT which ap- 
pears in the course of fluctuation-induced nucleation is 
more likely to be isotropic than unidirectional, a s  as- 
sumed initially in order to identify the electron states 
with the maximum population inversion. However, the 
real reason for the selection of specific electron 
states is the anisotropy of the electron energy 
spectrum. 
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In estimating the value of a t  we must bear in mind 
that the finite width rq (for rq > w d  of the electron ener- 
gy levels makes it possible to describe the maximum 
number of the electron states n, without conflict with the 
laws of conservation of energy and quasimomentum: 

(n,) ,r~ZqS6-', N6 = (2nla) ' - q:, 

Here, 6 is the volume in the reciprical space per unit 
quasimomentum; the factor of 2 allows for  the two spin 
orientations; S is  the area of one of a packet of flat con- 
stant-energy regions parallel to a Brillouin zone face 
and separated from it by no more than a quasimomentum 
q of an emitted phonon, which ensures electron transfer 
from a volume Sq of states with quasimomenta plt+ V T  
to the same volume with p'4 WT. Assuming that r, =w,,  
~ ~ = ( 1 0 - ' - 1 0 - ~ ) ~ ~ ,  nq= (nd,,,,, S = 10'' cm-', M= g, 
q -lo-' q,, G r loi5 rad/sec, we find that in the absence 
of softening Eqs. (11')" and (6) give $!= 10-2-10-' for wq 
= 101° rad/sec. Lowering of the frequency to lo0 rad/ 
sec for a constant q (lattice softening) gives o t  = 
lo-, and the generation condition a:> o$ is easily satis- 
fied. This estimate i s  clearly illustrative and does not 
allow us to draw definite conclusions because the values 
of r,, x,, W,, and o, are  not know exactly at the transi- 
tion point Ms. 

$4. MECHANISM OF PHONON GENERATION IN 
y cr ELECTRON TRANSITIONS 

The above mechanism of a martensitic transformation 
presupposes establishment of a population inversion be- 
tween states belonging to a phase of given symmetry. 
However, there is another possibility of phonon genera- 
tion because of electron transitions between states be- 
longing to phases of different symmetry. In fact, in the 
range T < To the temperature dependence of the electron 
energy spectrum may give rise to a situation when the 
energy of at least one of the electron bands of the y 
phase is  close to the energy of an electron band of the 
(Y phase. Clearly, this case i s  ideal from the point of 
view of a population inversion because the electron 
levels of the y phase are filled and the potential levels 
of the a, phase are empty. Then, the initial inversion 
o0 is identical with the Fermi function for the y-phase 
electrons. The conclusions relating to the threshold 
inversion in 02 a re  completely general. In particular, 
it is  clear that generation of phonons of one frequency 
is  effective if electron transitions occur between exten- 
sive flat parts of the constant-energy surfaces of the y 
and a phases. 

The Brillouin zone of the bcc phase i s  a dodecahed- 
ron; the center and two types of vertices of rhombic 
faces are denoted by the points N, P, and H. The cal- 
culation of the energy band structure of electrons in the 
bcc phase of Fe (Ref. 15) shows that the smallest change 
in the energy along the NP direction is exhibited by the 
N,P, branch and that the energy a t  the point N, is  iden- 
tical with the energy a t  the point L, of the y phase. 
Moreover, the energy remains constant between P, and 
the point F,, which is approximately half-way between 
P, and Ha,,. However, in the direction from N to H the 
energy of the N4H15 band varies rapidly. This means 
that there is a constant-energy surface of area more 

than half the area of the Brillouin zone face (four times 
the area of the triangle NF,H). It follows that the con- 
ditions necessary for phonon generation exist in the 
case of y-a, electron transitions. 

The genetic link between the flat regions of the con- 
stant-energy surfaces of the y and a phases which are 
parallel to the {ill}, and {110}, planes, respectively, 
can be understood if we bear in mind that the fcc lattice 
can be regarded a s  the body-centered tetragonal (bct) 
and that the (ill}, planes expressed in the bct coordin- 
ates are  described by (110) (see Fig. 52 in Ref. 1). 
Moreover, experimental evidence shows that in the co- 
existing y and cy phases these planes are always paral- 
lel' (this ensures the smoothest change in the electron 
density) and, therefore, in the single-mode approxima- 
tion we can expect generation of phonons with wave vec- 
tors along the threefold axis of the y phase. 

It should be noted that in the case of generation of two 
and three modes we can expect electron transitions ac- 
companied by a change in the momentum along a three- 
fold axis to produce two or three phonons with wave vec- 
tors along the perpendicular twofold and fourfold axes or 
along three fourfold axes. Such phonon combinations 
correspond to the Bain deformation1' which causes a 
transformation from the fcc to the bcc lattice. 

Generation of longitudinal displacement waves along a 
threefold axis i s  important in transformations modeled 
by shear or sliding of the {llljy planes parallel to one 
another. Such shear or sliding may occur if a t  a given 
moment a longitudinal mode expands the lattice and acts 
a s  the driving force of shear modes. This transforma- 
tion mechanism is most effective a t  low stacking-fault 
energies (Fe-Mn systems) and may result in the y-(Y 
(fcc-bcc) structural changes in the lattice in accordance 
with the Kurdyumov- Sachs crystal-geometry scheme' 
or in y-(Y (fcc-hcp) and y-6' transformations. 

We shall not compare in detail the mechanisms of 
phonon generation as  a result of y-y and y-a electron 
transitions but we shall stress that the second case 
differs from the first  because i t  admits the possibility 
of vanishingly narrow electron levels ( r -  0) a t  a fixed 
frequency wq without a reduction in the number of the 
electron states participating in the generation process. 
Therefore, in the case of generation by y-cy transitions 
the threshold inversion may be considerably less, in 
agreement with Eq. (11). In general, separate and com- 
bined action of both generation mechanisms is possible. 

$ 5. CONCLUSIONS 

Although the proposed martensitic transformation . 

mechanism may occur in any first-order structural 
transitions in conducting systems, i t  should play a lead- 
ing role only in reconstructive transformations without 
the imposed limitation (in contrast to distortional trans- 
formations) that the symmetries of the old and new 
phases be in subordinate relationship. This limitation 
gives a clear description of a distortional transforma- 
tion (analogous to second-order transitions (as the re- 
sult of freezing of a soft mode which lowers the sym- 
metry of the high-temperature phase. It is, therefore, 
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no accident that distortional transformations have less 
pronounced characteristics of first-order transitions 
that a re  almost of second order. 

However, in the case of reconstructive transforma- 
tions, which usually have clear characteristics of first- 
order transitions and which include, for example, the 
diffusionless fcc-bcc, fcc-hcp, and hcp-bcc transi- 
tions, we cannot apply the existing theory of soft modes. 
Hence, it follows naturally that a transformation can be 
described in a different way and in this description a 
new phase appears as a result of propagation of gen- 
erated waves in a crystal.'' Naturally, the two approach- 
es  share the common concept of lattice instability within 
whose framework any structural transition is associated 
with the Bose condensation of some phonon modes. 

At present the theory of distortional martensitic 
transformations in conducting systems is developed 
furthest for the A-15 compounds1s (see also Ref. 17). 
The relationship between a martensitic transformation 
and a singularity of the density of electron states is the 
main assumption of the theory which makes i t  possible 
to explain the anomalous properties in the case of a 
singularity near the bottom of the d band1' and near its 
top.19120 The general nature of this assumption is re- 
flected also m the maser model of a martensitic trans- 
formation because the efficiency of generation (stimulat- 
ed emission) is governed by the presence of flat regions 
of constant-energy surfaces which give rise, according 
to Weger,' to the strongest density-of-states singular- 
ities. 

The authors are grateful to Yu. A. Izyumov and M. V. 
Sadovskii for discussing the results obtained. 

"We shall use y and a for the high- and low-temperature 
phases. 

2, We shall employ a system of units in which the Planck f and 
Boltzmann k constants obey I= k = 1. 

3, In substituting these quantities the denominator of Eq. (11') 
should be multiplied by I. 
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