
we consider the solution that goes through a point of the 
interval 

0'=0, 8, q~', 90; 0<8<n. (A. 1 ) 

From the expression (2.7) for the first integral, we 
find that 

For definiteness, we choose the lower sign in (A.2). 
From points of the interval (A.l) ,  which lies on the lim- 
iting surface 8' =0, we trace solutions of the Landau- 
Lifshitz equations to an intersection with the limiting 
surface. Thus we obtain a curve of first contacts l', for 
the interval (A.l) .  A curve of last contacts r-, for the 
interval (A. 1) is constructed similarly. To a point of 
intersection of the interval (A.l) with the curve of last 
contacts corresponds a break in the curve r, . Let the 
break occur at 8 = 8,(cp0). Then if the hypothesis of co- 
incidence of curves of first and of last contacts is cor- 
rect, the curve r-, must also experience a break at the 
point 8 = 8, . A break point of the curve r, was found 
and localized numerically; that is, values 8 ,  of the po- 
lar  angle were found that lay on opposite sides of the 
break: 

and it was verified that the coordinates cp' of the points 
on the curve r-, corresponding to the values 8, had dif- 
ferent signs. Thus the curve I'-, also experiences a 
break. This procedure was carried out for various val- 
ues of cp, , with 6 - and everywhere the same re- 
sult was obtained. Introduction of a parameter B>O o r  
of an external field leads to the result that the breaks 
in the curves l', and l', occur at different points of the 
interval (A.l); that is, there occurs a disintegration of 
the continuous set of self-localized solutions with a 
single nodal point with respect to the polar angle 8. 
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The motion of a quantum particle in a stochastic timedependent Gaussian potential 4(x,t) is considered. 
Assuming the correlator to be <&t),t(t')>-p and the correlation time T, to be small, the particle 
mobility a(o) and the diffusion coefficient D are calculated and found to satisfy the Einstein relation. It is 
shown that cr a T-2 in the high-temperature limit. 

PACS numbers: 66.30.h 

INTRODUCTION 

The calculation of electron mobility in quasi-one- 
dimensional systems in the presence of impurities is 
a timely problem. The main reason is that violation, 
even slight, of the translational invariance leads in the 
one-dimensional case to strong qualitative changes in 
many properties of the system: the energy spectrum, 
the localization of all the eigenstates,'12 vanishing of 
the static conducti~i ty,~ '~ and others. It was shown in 
a number of  paper^^'^ that the mobility of noninter- 

acting electrons in a random static potential of im- 
purities is equal to zero. On the other hand, it has 
been noted5 that allowance for the electron-phonon inter- 
action leads to a mobility that differs from zero. Di- 
agrams that give a nonzero contribution to the mobility 
of an electron interacting with the lattice phonons were 
obtained and estimated.' The calculation methods used 
in a number of studies4" consist of summing an infinite 
chain of principal diagrams and are  technically quite 
complicated. Interest attaches therefore to methods 
that make it possible to calculate the mobility without 
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using a complicated diagram summation. 

We consider in this paper the motion of an electron 
that interacts with lattice phonons in the case when the 
temperature T of the medium is much higher than the 
Debye frequency 62,. The influence of the electron 
on the phonon field can then be nelgected, so  that this 
field can be regarded as a classical field 5(x1 t )  with 
a correlator in the form 

where 

and the averaging (. . .) is  over all the realizations of 
5(x, t). 

We note that K ( t ) -  26(t) a s  9-=, s o  that the quantity 
7, =52-' plays the role of the correlation time of a 
random process. A correlator of this type occurs, for 
example, in a polar l i q ~ i d , ~  when the relaxation 
processes a r e  due to reorientation of the dipoles. A 
correlator of this type is obtained also when account is 
taken of the anharmonicity of the lattice vibrations in a 
solid. 

When solving this problem, a distinction must be 
made between two cases: 1 )  the energy spectrum is 
bounded, I ~ ( k ) (  < E, (one-band approximation), and 2) 
the energy spectrum extends to infinity (all the bands 
a r e  taken into account, or  f ree  motion in a random 
field). The f i rs t  case was considered by us earlier,' 
and we have shown that a t  K(t) =2b(t) the electron mo- 
bility is  zero a t  all  frequencies of the electric field. 
This is a consequence of the bounded spectrum, a s  a 
result of which the density matrix takes a s  t - the 
form p =const b(k -kt), and consequently the average 
electron velocity vanishes 

It must be specially emphasized that it is precisely the 
bounded character of the spectrum which causes v ,  to 
vanish, although the density matrix has solutions of the 
form p =const b(k -kt) regardless of the character of 
the spectrum [see Eq. (911. The point is that the only 
solutions with physical meaning a r e  those for which 
the normalization condition 

where the integral is  taken over all  k, is satisfied. 
The solution p(k, k') =const b(k -kt) satisfies this con- 
dition in the case of a bounded spectrum but not i f  the 
spectrum is unbounded. In otherwords, a state in which 
the quasimomentum is localized goes over in the course 
of time into a state with a quasimomentum that is 
uniformly spread over all of k-space. At the same 
time, if the process is 6-correlated, any state localized 
in momentum space will spread out without limit over 
all of p-space. It is clear that in this case the diagonal 
elements of the density matrix p(p,p, t )  tend to zero in 
the course of time, i.e., p(p,p', t) +b(p -PI). 

This difference is distinctly seen if one compares the 
character of the density-matrix asymptotic behavior 

that follows from Eq. (27) of the preceding paper7 with 
that of Eq. (9) of the present paper a t  S2 =a. The form 
of the solution in the latter case and its behavior as 
t - a r e  discussed in the last paragraph of the present 
article. An analogous situation obtains aIso in the 
theory of Brownian motion when diffusion of particles 
is considered on finite or  infinite segments. In the 
latter case there is likewise a solution C(x, t )  =const, 
but it has no physical meaning, since the normaliza- 
tion condition is not satisfied. 

In view of the foregoing it is of interest to consider 
the problem with an unbounded energy spectrum, as 
will in fact be done here. We choose an energy spec- 
trum with a square-law dispersion 

where k is the particle momentum. This model can 
describe the motion of a f ree  electron in a liquid or 
crystal a t  high temperatures when, on the one hand, 
the reaction of the electron on the phonons is negligibility 
small, but on the other hand the Peierls transition is 
suppressed. 

1. DERIVATION OF BASIC EQUATIONS 

To calculate the average particle velocity and its 
spatial moments (x )  and ( x 2 ) ,  etc. it is convenient to 
work with a density matrix p. To determine these 
quantities we use the averaging methods described in 
the review of Klyatskin and ~ a t a r s k i ? . ~  We assume 
hereafter that the parameters p and T, =a'' in (2) a r e  
small  quantities, and we can expand in their terms, 
retaining in the kernel of the equation for the density 
matrix j3 only the smallest nonvanishing powers of p and 
7,. The equations for j3 and its functional derivative 
bp/65(2, T) a r e  (the employed methods call for calcula- 
tion of 6p/65) 

We use in (4) a system of units with ti = 1. 

Averaging the system (4) over a l l  the realizations of 
5(xl t) we obtain, taking (2) into account, the following 
equations for the averaged ( p )  and its functional de- 
rivative b ~ & :  

To deduce (5) from (4) we have used the known 
averaging rule0 
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which is valid if t(x, t )  is  a Gaussian process. We as- 
sume hereafter that the field t(x,t) is Gaussian. In 
addition, we have left out of (5) the terms linear in p, 
since they lead to quadratic terms p2 in the kernel of 
the equation for the averaged matrix (P) (see below). 

Solving (9) by the Laplace method, we obtain the follow- 
ing equation for the Laplace transform of the density 
matrix p(k, 7): 

It is convenient to change over to the momentum rep- 
resentation. We introduce for this purpose new func- 
tions G, f, and p(k, kt) in accord with the formulas 

where p,(k) is the initial value of the function p(k, t). 
In the derivation of (10) we used expression (2) for the 
function K(t - 7). 

To solve (10) we use the smallness of the correlation 
time T,= Q-', i.e., the smallness of the parameter 

where 

?j4 a 12, where I, is the correlation length of the 
process t(x, t). 

f ( k ,  t i q ,  r ) = J ( k ,  k ,  t l q ,  T ) .  

Using (5), we obtain the following system of equa- 
tions for the functions p(k, kt, t )  and (k, k', tlq, 7): 

Taking (11) into account, we expand (10) in powers 
of SZ" and retain the f i rs t  two terms of this expansion. 
As a result we have 

a f  i ---- 
a t  2m [ (k+q)2-k'21f  ( k ,  k', t lq ,  r )  

+ i 6 ( t -T )  [ p ( k + q ,  k '+q ) -  p(k ,  k ' )  1; 
We multiply both halves of (13) by k and integrate with 
respect to k. As a result we obtain after simple trans- 
formations the following equation for the average mo- 
mentum (P(q)):  a t  t < T we have 

Equations (7) will be used to calculate the spatial 
moments (x),  (x2), etc. To calculate the average veloc- 
ity and the momentum of the particle it suffices to 
know the function p(k), which satisfies the equation 

In the case of an external field ~ , e ' ~ '  Eq. (14) takes 
the form 

Hence i 2 =- -(2kq+q2) f+i6 ( t - z )  [ p  (k+q)  -p(k) I ; 
a t  2 m  

a t t < r  we have 

and consequently (p(t)) takes a s  t - the form 

In the next section we use Eqs. (7) and (8) to calculate 
the mobility and the diffusion coefficient of the particle. 

From (17) i t  follows that the mobility ~ ( w )  is given by 
2. CALCULATION OF THE MOBILITY OF A PARTICLE 
I N  A FIELD 

We calculate now the average particle momentum 
(p(t)). To this end we obtain a closed equation for the 
diagonal part of the matrix p(k), using the system (8) 
for this purpose. Solving the second equation of the 
system (8) and substituting the solution in the first  
equation of this system, we obtain the following equa- 
tion for the function p(k, t): 

Similar calculations lead to the following expression 
for the mean squared momentum (p2(t)): 

The deviation of the static mobility a, from zero 
agrees with the results of Ref. 5. It is curious to note 
that if we use formally formula (18) we obtain in the 
case of a static field (7, =a) the value U, = 0 for any 
spatial correlation I,. In the particular case 1, = 0, 
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the equality o, = 0 agrees with the results of Refs. 3-7. 

Formulas (18) and (19) make it possible to de- 
termine the character of the temperature dependence 
of o(T). In fact, from (19) we have (I,/T,)~ a T, where 
T is the temperature of the system. Furthermore, 
p = T and E ,  a T". The former follows from the fact 
that the parameter F is proportional to the square of 
the phonon operators (see also Ref. 7), and the latter 
from the fact that in the one-dimensional case I,= l/nph 
a SZ,/T, where n,h is the phonon-number density. Tak- 
ing the foregoing into account, we find that 

a, (T) W T - ~ .  (20) 

3. CALCULATION OF THE SPATIAL MOMENTS 
k) AND ( x 2 )  AND OF THE DIFFUSION 
COEFFICIENT 

The spatial moments (x) and (x2) a r e  expressed in 
the following manner in terms of the density matrix 
~ ( k ,  kt): 

+- +- 
( ~ ( t )  ) = J t p  dk, ( z Z ( t )  > = t z p  dk,  

- rn -- 
where the operator is defined by the formula 

Applying the operators and i2 to both halves of the 
first  equation of the system (7), we find that the func- 

, - 
tions 

p i (k )=Zp(k ,  k'),  p2(k)  = t z p ( k ,  k') (23) 

satisfy the system of equations 
+- 

-=- "' p ( k ) - i p j ~ ( t - r ) d r  j& ~ ( q )  { f l ( k ,  t lq ,  7 ) - f L ' ( k ,  t lq,  r ) ) ,  
at  m 

0 - w 

where 

The terms linear in p were omitted from the second 
equation of the system (24), since their contribution 
to the spatial moments is of higher order in p. 

The equation for the functionf, is obtained by ap- 
plying the operator 2 to the second equation of the 
system (7). As a result we get 

where the function f (k, tlq, 7) is the solution of the 
second equation of the system (8). 

Solving (26) and substituting the obtained solution 
in (24), we get the following system of equations for 
the functions p,(k) and p2(k): 

It is seen directly from (27) that the average particle 
displacement, accurate to terms "p, is 

as it should be in accord with the general theory. 

We obtain now the quantity 
+- 

( P ,  ( t )  )= J kp i (k )dk .  
-- 

To this end, we multiply both halves of the f i rs t  equa- 
tion of (27) by k and integrate with respect to k from 
-a to +a. We then take the Laplace transform of the 
resultant equation and retain the terms of principal 
order in a". This yields the following equation for the 
Laplace transform (P1(q)): 

where p,, is the initial value of (p,(t)) , and (P2(q)) is 
the Laplace transform of the mean squared momentum 
(PYt)). 

From (30) we get 

Recognizing that (p2(q)) has a pole at q = O  [see (19)], 
we find that (p,(t)) takes as t -  m the form 

It follows from (211, (2'0, and (32), that the mean 
squared displacement (x2(t)) is given as t -  by the 
formula 

2 '  
<x2 ( t )  )=-I ( p ,  ( 7 )  ) d ~  = < p a ( - )  > ~ ' t / p X  

0 I + -  

From (18) and (33) it follows that the diffusion coef- 
ficient is  

Recognizing further that a t  equilibrium the average 
kinetic energy is E,,, =(p2(m))/2m =T/2 (one-dimen- 
sional case), we arrive a t  the Einstein ratio 

We note in conclusion that if the momenta in (9) and 
(27) a r e  taken to be three-dimensional, then the Ein- 
stein equation is also satisfied. We note also that a t  
7, =0, i.e., when the correlator is (((x, t) 5(x1, t')) . 

= 2 ~ 6 ( t  - t'), then Eq. (9) for the density matrix p(k, k)  
is exact [see (4), (5), and (?)I. In this case, as 
follows from (8), particle diffusion takes place in p- 
space, and the average particle momentum ( ~ ( t ) )  obeys 
the law (p(t)) = F(t) ,  where P(t) is the external force, 
and the mean squared momentum (p2(t )) increases 
without limit like (pa(t)) = ( p a  +2pq2r. This character 
of the motion leads to a mobility corresponding to the 
free mobility o=l /zmo of the particle. This is  pre- 
cisely the relation that follows from (18) when T, = 0. 
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Antiferromagnet-ferromagnet and semiconductor-metal phase 
transitions in gadolinium sesquisulfide 
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An investigation was made of the magnetic and electrical properties of Gd,S, crystals in the temperature 
range 4.2-300°K and magnetic fields up to 70 kOe. It was found that stoichiometric Gd2S, crystals are 
antiferromagnetic and semiconducting. Excess gadolinium increases the electrical conductivity and gives 
rise to indirect exchange via the conduction electrons. Increase in the excess gadolinium concentration in 
Gd2S3 crystals produces first an inhomogeneous magnetic state (a mixture of antiferromagnetic and 
ferromagnetic phases) and then a homogeneous ferromagnetic state. Localized ferron states of the 
conduction electrons appear in the doped crystals: this is equivalent to introduction of a compensating 
impurity. Such compensation delays the Mott transition from the semiconducting to the metallic state. An 
analysis is made of possible low-temperature mechanisms of conduction in magnetic semiconductors. 

PACS numbers: 72.60. + g, 72.80.Jc, 75.30.Kz, 75.50.Dd 

1. INTRODUCTION 

The indirect exchange interaction between magnetic 
ions via the conduction electrons in antiferromagnetic 
semiconductors tends to establish and maintain ferro- 
magnetic ordering in a crystal.' Consequently, when 
the carrier density n exceeds a certain value n,, such a 
semiconductor becomes ferromagnetic. A distinguish- 
ing feature of antiferromagnetic semiconductors is that 
the carrier-density-dependent magnetic transition does 
not occur abruptly at the point n=n,. As shown by 
Nagaev,' there is a certain range of ca r r i e r  densities 
[n,, n,] in which a canted antiferromagnetic order is 
preferred (for energy reasons) to ferromagnetic and 
collinear antiferromagnetic orders. However, in the 
range n >  4nA this canted order is unstable if short- 
wavelength magnons a r e  generated.' Therefore, at 
least in the range 4nA < n < n, and possibly even at lower 
ca r r i e r  densities the magnetic structure of a crystal 
should be different and have a lower energy. This 
structure may correspond to inhomogeneous magnetiza- 
tion of a crystal  within the framework of a single crystal  
lattice which becomes split into antiferromagnetic re-  
gions with n < nA and ferromagnetic regions with n > n, 
(Ref. 4). The conduction electrons collect in the ferro- 
magnetic part of the crystal and this gives rise to 

special features of the semiconductor-metal phase 
transition in antiferromagnetic semiconductors. 

An inhomogeneous magnetic state has  been observed 
earlier in europium mono~e len ide ,~  europium monotel- 
l ~ r i d e , ~  and gadolinium sulfides.? The present paper 
reports an investigation of the characteristics of the 
magnetic and semiconductor-metal phase transitions 
in gadolinium sesquisulfide crystals. 

2. EXPERIMENTAL METHOD 

Gadolinium sesquisulfide Gd,S, (or, equivalently, 
GdS,.,,) is a wide-gap semiconductor with a high elec- 
trical resistivity. One of the modifications of this com- 
pound is known as the high-temperature phase and has 
the Th,P,-type structure in which of the sites in the 
metal sublattice a r e  unoccupied, i.e., are stoichiomet- 
r i c  vacancies. The presence of such vacancies makes 
it possible to dissolve considerable amounts of gado- 
linium in excess of the stoichiometric formula. The 
outer-shell electrons of the excess atoms do not form 
valence bonds but their ionization energy decreases 
under the influence of the dielectric properties of the 
medium and they can easily be transferred to the con- 
duction band. Therefore, introduction of excess gado- 
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