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Accidental degeneracy of self-localized solutions of the 
Landau-Lifshitz equations 
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(Submitted 26 May 1978) 
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It is shown that the self-localized solutions of the Landau-Lishitz equations for a uniaxial fernmagnet 
with anisotropy energy K sin2B are degenerate. Specifically, for an arbitrary velocity of an isolated 
magnetic-moment wave there exists a continuous set of self-localized solutions, which correspond to a 
definite type of magnetic solitons. If one goes over to a more general expression for the uniaxial- 
anisotropy energy, such as ~ ( s i n ~ B  + flsin4B (v > 0), or if one allows for an external field, the accidental 
degeneracy is removed; this leads to disintegration of the continous set of solutions of the soliton type and 
to formation of a countable set of self-localized solutions of the isolated-wave type, with a d e f ~ t e  internal 
structure. 

PACS numbers: 75.10.Jm, 75.30.G~ 

1. Investigations of nonlinear magnetic-moment state,2 have made  it possible  to de te rmine  characteris- 
waves, c a r r i e d  out both by t h e  method of analyt ic  con- tic l imit ing veloci t ies  of "slow" and  "fast" nonlinear 

tinuation of t h e  spin-wave s p e c t r u m  into t h e  region of waves, and  also to s e p a r a t e  t h e  regions of existence of 

complex wave vectors' and by  d i rec t  ana lys i s  of t h e  definite types of s ta t ionary-profi le  waves; f o r  example, 

asymptotic behavior of t h e  magnetic-moment dis t r ibu-  t h e  moving-domain-wall type or the  isolated-wave type 

tion in t h e  region of establ ishment  of a homogeneous (magnetic soliton). 
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In the present paper, in the example of a uniaxial fer- 
romagnet and of stationary-profile waves propagated 
normal to the anisotropy axis, it is shown that a classi- 
fication of types of magnetic-moment wave on the basis 
of analytic continuation of the spin-wave spectrum o r  of 
analysis of the asymptotic behavior of the solutions in 
the vicinity of singular points, without introduction of 
the results of qualitative and numerical analysis, is 
incomplete. Furthermore, when one goes over from a 
ferromagnet characterized by uniaxial anisotropy ener- 
gY 

8 = K  sin" (1.1) 

to a ferromagnet with a more general expression for 
the uniaxial anisotropy, 

8=K(sin2e+B sin' e ) ,  p - 0 ,  (1.2) 

there occurs a complete change of the structure of the 
self-localized solutions and of the types of stationary- 
profile waves. The essence of the problem consists in 
fact that the limiting velocities of slow and fast mag- 
netic-moment waves, as  determined by the asymptotic 
behavior of the solutions in the region of establishment 
of a homogeneous state, a re  independent of the second 
uniaxial-anisotropy constant /3K. This result i s  correct; 
for when one goes over to the more general expression 
(1.2) for the uniaxial-anisotropy energy, the singular 
points of the Landau-Lifshitz equation, which corre- 
spond to a state with homogeneous magnetization, do 
not change their type. 

But the system of Landau-Lifshitz equations for a fer- 
romagnetic medium with the simplest uniaxial aniso- 
tropy (1.1) is highly degenerate. Specifically, for a 
given velocity of the wave there i s  a continuous set of 
solutions of a definite type of isolated waves. When one 
goes aver to a ferromagnet characterized by the more 
general expression (1.2) for the uniaxial-anisotropy en- 
ergy, the accidental degeneracy i s  removed, and to a 
given velocity of a simple wave there corresponds a 
countable set of solutions of a definite type of isolated 
waves. The solutions discussed earlier,3 of the station- 
ary isolated magnetic domain type with a turning of the 
phne of rotation of the magnetic moment, for a ferro- 
magnet with the uniaxial-anisotropy energy (1.1), point 
to another possible cause of removal of accidental de- 
generacy, resulting from allowance for an external 
magnetic field. 

The analysis made led us to the supposition that the 
reason for such peculiar behavior of the solutions of 
the Landau-Lifshitz equations is the following fact. 

For a ferromagnet with the uniaxial-anisotropy ener- 
gy (1.1) all  solutions both of the isolated-wave (mag- 
netic-soliton) type and of the moving-domain-wall type, 
for all allowable values of the velocities, a r e  arranged 
on a two-dimensional surface embedded in some three- 
dimensional space. When one goes over to the more 
general expression (1.2) for the uniaxial-anisotropy 
energy or  allows for an external field directed along the 
anisotropy axis, and also for a whole series of other 
changes of the system, there occurs a disintegration of 
the two-dimensional surface, and the carrier of the so- 
lutions of the type considered i s  a three-dimensional 

manifold. Since the problem of separating solutions of 
the isolated-wave type (separatrix solutions) can be re -  
duced to the problem of finding the intersections of cer- 
tain curves on the first-integral surface,' it is to be ex- 
pected that going over from the case of a two-dimen- 
sional surface to a three-dimensional will lead to  a de- 
crease of the degeneracy of the solutions. By way of an 
analog, we point to the important difference between the 
probabilities of intersection of two random straight lines 
on a plane and in space. 

We note that in the presence of accidental degeneracy, 
the continuous set of solutions of the isolated-wave type 
is characterized by a comparatively simple internal 
structure. On removal of the degeneracy, of the previ- 
ously existing solutions there remain only symmetrical 
solutions with a simple internal structure, and new 
symmetrical solutions of the isolated-wave type, with a 
more complicated internal structure, a r e  generated. 

Thus the problem of self-localized states (magnetic 
solitons) for a uniaxial ferromagnet with the anisotropy 
energy (1.1) is structurally unstable, since perturbation 
of the uniaxial-anisotropy energy leads to disintegration 
of the complicated spectrum of soliton states and to the 
appearance of new types of nonlinear stationary -profile 
spin waves. 

The physical importance of investigations of nonlinear 
stationary-profile waves in magnetic media i s  due, 
first, to the important practical problem of finding the 
limiting velocity of motion of domain walls and, second, 
to the search for fast carriers of information (magnetic 
solitons). The appearance of a possibility of existence 
of isolated waves (magnetic solitons) with a diverse in- 
ternal structure may have independent practical value. 

2. For nonlinear stationary-profile spin waves prop- 
agating orthogonally to the anisotropy axis, the depen- 
dence of the polar and azimuthal angles of the vector 
magnetic moment on the spatial and time variables has 
the form 

(the polar axis is directed along the anisotropy axis). 
Here u is the velocity of the wave divided by the char- 
acteristic velocity 2 ( y ((AK)~'/M, (y is the gyromagnet- 
ic  ratio, A and K a r e  the exchange- and anisotropy- 
energy constants, M, i s  the saturation magnetization). 
To the Landau-Lifshitz equations corresponds a system 
of Lagrangian equations, in the space of the angular co- 
ordinates and velocities (8 ,  cp, o', cp'), 

0"- (l+cptz+e cos2 cp+$ sin2 @)sin 0 cos 0=ucprsin 0 ,  

(cp' sinz 0 )  'f e cos cp sin cp sin' 0=-uB' sin 0. 
(2.2) 

Here OK is  the second anisotropy-energy constant, and 
the differentiations a r e  carried out with respect to the 
argument of the functions (2.1). 

We transform from the angular variable 0 to the gen- 
eralized coordinate 

to which corresponds the generalized velocity 
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The Landau-Lifshitz equations take the form 

Here the Lagrangian function for 61 0 is determined by 
the relation 

The first integral of the system (2.5), 

with a choice of the integration constant that corre- 
sponds to the asymptotic boundary conditions necessary 
for isolated waves, shows that all solutions of the sep- 
aratrix type (solitons and domain walls) a r e  located on 
the surface of the corrugated cylinder 

in three-dimensional (X', cp', cp) space. 

For comparison we give the expression that deter- 
mines the first integral in the case of the more compli- 
cated form (1.2) of the uniaxial-anisotropy energy: 

In the latter case the solution of separatrix type belongs 
to a three-dimensional manifold, the surface (2.9) in 
the four-space (X', cpl,X, cp). We remark that going over 
to a more general expression for the uniaxial-aniso- 
tropy energy than that defined by the relation (1.2) does 
not lead to further qualitative change of the solutions. 

According to an earlier paper,' in the case of a uni- 
axial ferromagnetic medium there a r e  three character- 
istic velocities of magnetic-moment waves, on passage 
through which the type and structure of a stationary- 
profile wave change. On passage through the limiting 
velocity 

the solutions of the moving-domain-wall type disappear, 
and solutions of the isolated-wave (magnetic-soliton) 
type, characterized by precession of the magnetic mo- 
ment, are  excited. On attainment of the characteristic 
velocity 

(AK) " (AK) '" 
Uo=21yl-(i+e)"=ZIyl- 

M, 
uo(e) 

M. 

along with precession, nutational motion of the magnetic 
moment is  excited in an isolated wave. Finally, on at- 
tainment of the limiting velocity 

(AK)" [ ( i + e ) " +  I]-2171- u+-2171- 
M. 

(m+ u+ (el 
M .  

(2.12) 

the self -localized solutions completely disappear. 

By numerical analysis, the phenomenon of accidental 
degeneracy of solutions of the Landau-Lifshitz equa- 
tions for uniaxial-anisotropy energy of the form (1.1) 
and the phenomenon of removal of this degeneracy on 
going over to the more general expression of the form 
(1.2) for the anisotropy energy have been investigated 
in all three regions of existence of isolated waves, de- 
fined by the limiting velocities (2.10)-(2.12). 

In each of the regions, upon removal of the accidental 
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degeneracy a disintegration of the continuous manifold 
of self-localized solutions was observed, and generation 
of a countable number of new self-localized solutions, 
characterized by a definite internal structure. In other 
words, removal of the accidental degeneracy upon going 
over from (1.1) to (1.2) occurs at all values of the vel- 
ocities for which self-localized solutions exist.' 

3. We shall begin the discussion of the results of 
qualitative and numerical analysis of the problem with 
the case of zero velocities of stationary-profile waves. 
For u = O  and for the uniaxial-anisotropy energy (1.1), 
there a r e  two types of known solutions of the Landau- 
Lifshitz equations, with 

corresponding to Bloch and Nee1 domain walls. By nu- 
merical analysis it was established that there is a con- 
tinuous manifold of solutions of the isolated-domain 
type, with one nodal point with respect to the polar angle 
6 and with turning of the aximuthal angle rp through n. 
One of the solutions of this type is symmetric (see Fig. 
1). 

In (cp', cp, 8) space we consider the limiting surface 

The singular point of saddle-point type corresponding to 
the homogeneous state 

is knownS to be the origin of a one-parameter set of in- 
tegral curves, forming on the limiting surface a curve 
of first contacts [a set of points (cp', cp, 8 )  of the limiting 
surface at which the integral curves mentioned first 
touch the limiting surface]. 

We introduce the concept of a curve of last contacts, 
as the set of points of the limiting surface that flow into 
the singular saddle point (3.3). 

The assertion made above regarding the existence of 
a continuous set of solutions of the isolated-domain type, 



with one nodal point with respect to 8 and with turning 
of rp through R, is equivalent to the assertion that the 
curve of first contacts for the singular point 

coincides with the curve of last contacts for the singular 
point 

By virtue of the symmetry properties of the Landau- 
Lifshitz equations with respect to the transformation 
rp 0-40, for verification of the conditions of coincidence 
of the curves of first and of last contacts it is suffici- 
cient to show that a curve of first, o r  equivalently of 
last, contacts is  symmetric with respect to the plane 
cp =0, a s  was indeed observed in the numerical calcula- 
tions. An independent numerical-analysis procedure is 
set forth in the Appendix. 

On going over to the more general expression (1.2) 
for the uniaxial-anisotropy energy, numerical analysis 
showed that the curves of first and of last contacts do 
not coincide, and that they intersect at a single point 
belonging to the plane cp =O. Consequently there occurs 
a removal of the degeneracy, which leads to disinte- 
gration of all asymmetric solutions of the isolated- 
domain type with one nodal point with respect to 8 and 
with turning of cp through n. Only the symmetric solu- 
tions survive. The noncoincidence of the curves of first 
and of last contacts leads to the appearance on the limit- 
ing surface (3.2) of curves of second, third, . . . , n-th 
contacts. Their intersections with the curve of last 
contacts lead to a countable set of solutions of the iso- 
lated-domain type, with a definite number of nodal 
points with respect to the angle 8 and to cp'. Figure 3 
shows a solution with three nodes with respect to the 
polar angle 8. 

Thus on going over from the exceptional situation that 
occurs for the simplest form (1.1) of the uniaxial-ani- 
sotropy energy to the more general expression (1.2) for 
the anisotropy energy, the limiting surface loses its 
property of "total reflection." 

Specifically: For /3 = 0, a continuous set of integral 
curves, starting from the singular point (3.4), returns, 
after a first contact with the limiting surface (3.2), to 
the singular point (3.5); but for Bz0, only a countable 
set of integral curves, after a definite number of con- 
tacts, returns to the singular points 

Self-localized solutions similar to those shown in 
Figs. 1 and 2 were obtained also for the case of isolated 
waves characterized by a turning of the piane of rotation 
of the vector magnetic moment, in the velocity range 
u< u, . 

Thus in the slow-wave range 

the numerical analysis points to a single method of re- 
organization of the self-localized solutions when the 
accidental degeneracy is removed; by the appearance 
of clearly distinguishable intersections of the curves 

FIG. 2. Self-localized solution with three nodal points (&=0.2; 
/3=0.5; u=O). 

of n-th order contact with the curves of last contact, 
and by the appearance of breaks on the curve of (n +l)th 
contact in the vicinity of the separatrix, with n nodal 
lines with respect to the polar angle 8 .  

Since for # 0 only a countable set of integral curves 
is reflected to the singular point (3.6) corresponding to 
uniform magnetization along the anisotropy axis, there 
arises a possibility of reaching, after a definite number 
of contacts, integral curves of the singular point 

corresponding to uniform inverse magnetization. Such 
separatrix solutions correspond to moving domain walls 
with turning of the plane of rotation of the magnetic mo- 
ment at a definite number of nodal lines with respect to 
the polar angle 8. The numerical analysis carried out 
confirms the existence of such magnetic-moment dis- 
tributions. 

4. For the velocity range of fast isolated waves 

and for the uniaxial anisotropy energy (1.1), two types 
of symmetric magnetic solitons were determined earl- 
ier.' A more complete numerical analysis indicates the 
existence of a continuous set of asymmetric isolated 
waves with the same structure. The symmetric solu- 

FIG. 3. Self-localized solution with three nodal points (&= 0.2; 
p=0.5; u=l). 
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FIG. 4. Self-localized so- 
lution with three nodal 
points for the envelope of 
the polar angle O(c= 3; 
p = l ;  u=2.9; uo<u<u+).  

-20 -10 0 10 zor: 

tions found earlier a r e  limiting solutions; specifically, 
the value of the polar angle 8 a t  a nodal point takes its 
largest and smallest values on these symmetric solu- 
tions. Removal of the degeneracy leads to disintegration 
of the whole continuous set of solutions with the excep- 
tion of the symmetric solutions, and to generation of a 
countable set of new self-localized solutions; isolated 
waves with an internal structure determined by the num- 
ber of nodal points with respect to the polar angle 0 (see 
Fig. 3). 

In the velocity range of fast isolated waves 

solutions of the Landau-Lifshitz equations for the uni- 
axial-anisotropy energy (1.1) also lead to two types of 
symmetric self-localized solutions, distinguished by 
the fact that nutational oscillations in the polar angle 8 
lead to a local maximum or minimum on the plane of 
symmetry. Again, these solutions a r e  limits for a con- 
tinuous set of asymmetric self-localized solutions. On 
removal of the degeneracy, only the symmetric solu- 
tions a re  retained, and new self-localized solutions a r e  
generated; they can be classified according to the num- 
ber of nodal points for the envelope of the distribution 
with respect to the polar angle 8. An example of such a 
solution is shown in Fig. 4. 

APPENDIX 

To an integral curve of the separatrix type, with n 
nodes with respect to the polar angle 0, connecting the 
singular points (3.4) and (3.5), correspond points of in- 
tersection of curves of n-th and of last contacts. We 
consider a separatrix with one tangency to the limiting 
surface 8' = O  for the case @>O. In Fig. 5, AA, is a 
curve of first contacts of the singular point (3.4), CC, 
a curve of last contacts of the singular point (3.5) in 
(cp', cp, 8) space. By virtue of the symmetry of the Lan- 
dau-Lifshitz equations, the curve AA, is symmetric to 
the curve CC, with respect to the plane cp =O. These 
curves intersect at the single point D, which corre- 
sponds to a symmetric self-localized solution with a 
single nodal point. As 8-0, the curves AA, and CC, 
asymptotically approach the curve BB,, and for 0 = O  
they fuse. Therefore any integral curve (except the 
solutions cp = 0 and cp = n/2), after going out from the 
singular point (3.4), after a single tangency with the 
limiting surface 6' =0, and after reflection, reaches 
the singular point (3.5). Such a situation, qualitatively, 
persists for velocities O< u< u, . Furthermore, if we 
introduce the concept of curves of first (last) contacts 
with the limiting surface 8' = O  for the envelope of the 

polar angle 8, then a similar situation persists also for 
velocities u,< u< u+ . 

The symmetry of the Landau-Lifshitz equations en- 
ables us to simplify the search for symmetric self- 
localized solutions with a (2n - 1)th nodal point. For 
this purpose it i s  sufficient to find the point of inter- 
section of the curve of n'-th contacts with the plane of 
symmetry. On the limiting surface 8' =0, this point is  
selected by the condition c p n  =0, which was also used 
to find the symmetric self-localized solutions. 

Another, independent method of finding the self -local- 
ized solutions is  the following: the system of Landau- 
Lifshitz equations is of fourth order and has the first 
integral (2.8). Consequently, all solutions can be em- 
bedded in a three-dimensional space, in which the one- 
parameter family of solutions that go out from the sing- 
ular point (3.4) and into the singular point (3.5) forms 
two-dimensional separatrix surfaces S; and S: . The 
intersections of the separatrix surfaces ~ , f  correspond 
to the self-localized s ~ l u t i o n s . ~  It is  therefore to be 
expected that representative points located on opposite 
sides of the surface S: will have different behavior a s  
5 = x - ut -+- (for the surface S; , a s  [ - - -). This 
shows up in the fact that if the curve of n-th contacts 
intersects (generally) the curve of last contacts, then 
the curve of (n + 1)th contacts experiences a break at 
this point. In particular, a t  the (n + 1)th contact, cp' on 
opposite sides of the break takes values of opposite 
sign. This method was used to determine the self- 
localized solutions for the case 8>0. 

But all attempts to use this method in the case 8 = O  
led to instability of the results of numerical analysis. 
Specifically, either we did not succeed in localizing a 
break point, o r  the break was not reproduced on slight 
change of the parameters of the problem. It was this 
fact that led to the hypothesis of coincidence of the 
curves of first and of last contacts when =O. Never- 
theless, the altered manner of breaking of the curves 
of contacts may be used for numerical substantiation of 
this hypothesis. 

For some value 

FIG. 5. Curves of first contacts AAl and of last contacts CCl 
for p > 0, and fused curves of first and of last contacts BBI for 
p=o.  
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we consider the solution that goes through a point of the 
interval 

0'=0, 8, q~', 90; 0<8<n. (A. 1 ) 

From the expression (2.7) for the first integral, we 
find that 

For definiteness, we choose the lower sign in (A.2). 
From points of the interval (A.l) ,  which lies on the lim- 
iting surface 8' =0, we trace solutions of the Landau- 
Lifshitz equations to an intersection with the limiting 
surface. Thus we obtain a curve of first contacts l', for 
the interval (A.l) .  A curve of last contacts r-, for the 
interval (A. 1) is constructed similarly. To a point of 
intersection of the interval (A.l) with the curve of last 
contacts corresponds a break in the curve r, . Let the 
break occur at 8 = 8,(cp0). Then if the hypothesis of co- 
incidence of curves of first and of last contacts is cor- 
rect, the curve r-, must also experience a break at the 
point 8 = 8, . A break point of the curve r, was found 
and localized numerically; that is, values 8 ,  of the po- 
lar  angle were found that lay on opposite sides of the 
break: 

and it was verified that the coordinates cp' of the points 
on the curve r-, corresponding to the values 8, had dif- 
ferent signs. Thus the curve I'-, also experiences a 
break. This procedure was carried out for various val- 
ues of cp, , with 6 - and everywhere the same re- 
sult was obtained. Introduction of a parameter B>O o r  
of an external field leads to the result that the breaks 
in the curves l', and l', occur at different points of the 
interval (A.l); that is, there occurs a disintegration of 
the continuous set of self-localized solutions with a 
single nodal point with respect to the polar angle 8. 
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A. A. Ovchinnikov and N. S. Crikhman 
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The motion of a quantum particle in a stochastic timedependent Gaussian potential 4(x,t) is considered. 
Assuming the correlator to be <&t),t(t')>-p and the correlation time T, to be small, the particle 
mobility a(o) and the diffusion coefficient D are calculated and found to satisfy the Einstein relation. It is 
shown that cr a T-2 in the high-temperature limit. 

PACS numbers: 66.30.h 

INTRODUCTION 

The calculation of electron mobility in quasi-one- 
dimensional systems in the presence of impurities is 
a timely problem. The main reason is that violation, 
even slight, of the translational invariance leads in the 
one-dimensional case to strong qualitative changes in 
many properties of the system: the energy spectrum, 
the localization of all the eigenstates,'12 vanishing of 
the static conducti~i ty,~ '~ and others. It was shown in 
a number of  paper^^'^ that the mobility of noninter- 

acting electrons in a random static potential of im- 
purities is equal to zero. On the other hand, it has 
been noted5 that allowance for the electron-phonon inter- 
action leads to a mobility that differs from zero. Di- 
agrams that give a nonzero contribution to the mobility 
of an electron interacting with the lattice phonons were 
obtained and estimated.' The calculation methods used 
in a number of studies4" consist of summing an infinite 
chain of principal diagrams and are  technically quite 
complicated. Interest attaches therefore to methods 
that make it possible to calculate the mobility without 
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