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The topic is interaction of a moving domain wall in a rare-earth orthoferrite with elastic vibrations of the 
lattice and with spin waves that are localized near the domain wall. It is shown that this interaction leads 
to a sharp increase of the retarding force acting on the domain wall at a velocity close to one of the 
velocities of sound. The retarding force due to one- and two-particle processes is calculated; consideration 
is also given to the effect of this phenomenon on the variation of the domain-wall velocity with external 
magnetic field. 

PACS numbem 75.60.Ch, 75.30.D~ 

INTRODUCTION 

In the motion of domain walls (DW) in perfect, mag- 
netically ordered crystals, there is particular interest 
in the study of the dynamic retardation of DW that is 
caused by interaction of a DW with magnons and with 
lattice vibrations (phonons) and that exists even in an 
ideal crystal. 

In calculation of the dynamic retardation of DW, us- 
ually only interaction of the DW with magnons is taken 
into account.' Actually, this is due to the fact that the 
coupling between the magnetic and elastic subsystems 
is small and manifests itself significantly only when 
definite resonance conditions a re  satisfied.' As we 
shall show below, in the present case this condition is 
coincidence of the domain-wall velocity with the phase 
velocity of an elastic wave; there is then the possibility 
of sound radiation, which leads to a significant contri- 
bution to the dynamic retarding force. This phenome- 
non has been observed in experiments3v4 carried out on 
rare-earth orthoferrites (REO). 

We note that such effects can in principle be observed 
only in magnetic materials in which the limiting velocity 
Vc of DW motion is  larger than the velocity of sound. 
As an example, one may cite antiferromagnets or fer- 
rites with equivalent magnetic sublattices (for example, 
REO) ," in which' the limiting DW velocity is determined 

by exchange interaction alone5 ( V, - I,/E- lo4 m/sec; 
I is the exchange integral, a the lattice constant; the 
experimental value of Vc in REO, obtained by Konishi 
et aL3 and by Chetkin et a1.: is of the order of 2.10'' m/ 
sec). 

The present paper treats radiation of sound during 
motion of a DW in REO. Characteristic of this problem 
is the fact that the DW is plane (a one-dimensional sys- 
tem). It is shown that this significantly changes the na- 
ture of the radiation a s  compared with the standard sit- 
uation of Cerenkav radiation (a particle-like or linear 
system6); specifically: the condition for radiation of a 
phonon is satisfied only in a narrow range of DW veloc- 
ity near the sound velocity s, and not for V > s as  in the 
standard situation. This fact leads to the necessity for 
considering processes of radiation of several particles 
(phonons or phonons and spin waves). 

We shall consider processes of radiation of one and 
of two phonons, and also the process of radiation of a 
phonon and a spin wave (Sections 2 and 3). We shall 
calculate the contribution of these processes to the DW 
retarding force. It turns out that of all the two-particle 
processes, the one that makes the greatest contribution 
is  the process of radiation of a volume phonon and of a 
spin wave localized near the DW. The closing section 4 
of the paper discusses the effect of these processes on 
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the character of the DW motion under the influence of 
an external magnetic field. 

1. INTERACTION OF PHONONS WITH A DOMAIN 
WALL 

We represent the energy of the RE0 a s  the sum of the 
energy (W, of the magnetic subsystem and the energy) 
Wm, of magnetoelastic interaction. An expression for 
W m  can be written in the form7 

Here m= (MI+ Mz)/2M0, I=  (M, -Mz)/2M0; mZ+ lZ= 1, 
m.1= 0; M, and M, a r e  the magnetic moments of the 
sublattices, Mo the saturation magnetization of the sub- 
lattices ( I M, I = I M, 1 = M,). In the expression (1) we 
have neglected the energy of nonuniformity of the vector 
m, since in RE0 mZ << 1'- 1. The quantities p, and p, 
are  anisotropy constants of the second order, pi, p:, 
and 0: of the fourth order; dl and dz a r e  ~ z ~ a l o s h i n s k i ~  
constants, 6 the constant of uniform and 0 of nonuni- 
form exchange. The z axis is chosen along the c axis of 
the crystal, the x axis along the a axis. 

The magnetoelastic energy, in the linear approxima- 
tion with respect to the strain tensor, has the form 

the expression for the tensor Aij will be given later 
[see (12)]. 

We write the displacement vector u(r) of the elastic 
medium in standard form in terms of the phonon crea- 
tion and annihilation operators b;, and b,,: 

where q, ~ , ( q ) ,  and e,(q) a r e  respectively the wave vec- 
tor, the frequency, and the unit polarization vector of 
the phonon (q, X); p is the density of the material, 62 the 
volume of the crystal. 

As a rule: the plane of a DW in a RE0 coincides with 
the (xZ) plane; that is, for a plane wall moving with 
velocity V, 1= l(y - Vt) and m =  m(y - ~ t ) .  Hence also 
Aij= Aij(y - Vt). Taking account of this fact and of the 
expression (3) for the vector u(r), we write the Hamil- 
tonian of interaction of phonons with a moving DW in the 
form2' 

where S is the area of the DW; q 29,; f = y - Vt. 

Thus finding the Hamiltonian (4)-(5) reduces to cal- 
culation of the quantities A,(q), expressed in terms of 
Fourier components of the distribution of magnetization 
in the moving DW. 

As is known, the distribution of magnetization in a 

DW depends on its velocity V. The characteristic pa- 
rameter that determines the change of the magnetiza- 
tion in a moving DW as  compared with a stationary one 
is the ratio of the velocity to the critical velocity of mo- 
tion Vc of the wall. When ( v/vc)' << 1, the change of 
structure of a DW because of its motion may be con- 
sidered small. 

As we shall show below, the interaction of a DW with 
phonons is most intense when the velocity V of the DW 
is close to the velocity s, of long-wave sound. If we 
suppose that ( S , / V ~ ) ~  << 1 (for REO, ( s , / ~ , ) ~ -  lo"), we 
may neglect the change of structure of the DW and cal- 
culate the quantities A , ( ~ )  by use of the known expres- 
sions for the magnetization distribution in a stationary 
DW, simply replacing the coordinate y in them by the 
quantity 5 = y - Vt. 

It is known that in RE0 there exist two types of do- 
main walls: DW I and DW II.**' For DW I, the weak 
ferromagnetic vector m i s  parallel to e, and changes 
only in magnitude, while the antiferromagnetism vector 
1 rotates in the (XY) plane: 

d, 
I =  (-e, cos 0+e, sin 0 )  , m=e, - cos 8. 

6 (6) 

The characteristic of DW 11 is that both vectors m and 
1 turn in the (XZ) plane: 

d,+ (dl-ds)sin2 0 
I -  (-ex cos W e ,  sin 0 ) ,  m = 

6 
(e,  cos 0+e=sin 0). (7) 

The function 8= 8(5) for DW I and DW 11 i s  determined 
by the single relation 

where the quantities p and yo (the latter has the meaning 
of DW thickness) a r e  determined by the crystal param- 
eters and the type of DW: 

-d3'/26+1/Z$l+1/‘$1' for DW I 
K,= ( (d,'-d.?) I ~ E +  */ , (p , -p3)  +l/,(pi'-ps') for DW 11 ' 

(10) 

'/szB*' for DW I (11) 
K2= {- (d,-d3)2/26+'/n(pt ' -$;+~s')  for DW 'I ' 

The condition for existence of a 180-degree DW, sep- 
arating domains with equilibrium orientation of the vec- 
tors m and 1 along the c and a axes respectively, bounds 
the values of the parameters K, and K, by the inequality 
K, + 8 1 K, I < 0. We note that when Kz> 0 (then two sec- 
ond-order phase transitions can occur in the REO), the 
parameter p>O; but when Kz<O (then a first-order 
phase transition can occur in the REO), the parameter 
p lies in the interval ( - 6,O). 

For concrete calculation of the values of A,(q) cor- 
responding to DW of both types, it i s  necessary to 
write an explicit expression for the tensor hij{m;l} in 
the magnetoelastic energy (2). But there is no neces- 
sity for writing all the invariant combinations of the 
type liljus, and m,ljus,, since, first, A,(q) involves only 
the quantities A,,, and, second, not all components of 
the vectors m and 1 differ from zero in the DW [see (6) 
and (7)]. Taking these facts into account and restricting 
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ourselves to invariants of the second order in m, and 
I,, we write the expression for the energy density of 
interaction of the DW with elastic strains in the form 

Here b,, b,, and b, a r e  relativistic magnetoelastic con- 
stants, due to  the anisotropy energy (b -,9,p1), and fl, 
f ,, and f, are  constants due to exchange-relativistic 
~ z ~ a l o s h i n s k i i  interaction (f -d ) .  The last term in (12) 
i s  prescribed by the consideration that a t  the equilib- 
rium value (m"), 1")) of the magnetization, the mag- 
netoelastic energy must vanish. 

In the expression (12) invariants containing spatial 
derivatives of the vectors m and 1 have been omitted, 
since allowance for these terms, which make a contri- 
bution to the interaction of the DW with longitudinal 
sound, leads only to overdetermination of the corre- 
sponding magnetoelastic constants. In addition, invari- 
ants quadratic in the mi have been omitted; they a re  
small in comparison with (12). 

From the expression (-12) we see  that a DW interacts 
both with longitudinal phonons (A= 1) and with transverse 
( A =  t )  phonons polarized along the x axis. There i s  no 
interaction, however, with transverse phonons polar - 
ized along the z axis. 

2. CONTRIBUTION OF SINGLE-PHONON PROCESSES 
TO RETARDATION OF DW ' 

The Hamiltonian (4)-(5) describes processes of ra-  
diation and absorption by the domain wall of a phonon 
with qlle,. Here energy of DW motion is transferred to 
the phonon subsystem; that is, retardation of the DW 
occurs. The retarding force that acts on the DW can be 
found a s  the rate of transfer of momentum to the pho- 
non subsystem; this can be calculated without difficulty 
by starting from standard thermodynamic perturbation 
theory (considering W,, a s  the perturbation, we use the 
smallness of the magnetoelastic coupling constant 5 
= (bM2/psZ) - lo-'). Using (4) and (5), we find the re-  
tarding force F, acting on unit area  of the DW because 
of single-phonon processes: 

It must be noted that formula (13) does not contain the 
occupation numbers of the phonons (the probability of 
radiation of a phonon is proportional to n,+ 1, of the re-  
verse process to -n,). Consequently this mechanism of 
dissipation of DW energy, in contrast to the many-mag- 
non mechanism, is independent of temperature and may 
become dominant a t  low temperatures. 

It is  important to note that in writing (13) we have not 
taken into account that phonons have a finite lifetime. 
Therefore this formula is strictly applicable only a t  T 
= 0. The role a t  attenuation of phonons will be discussed 
a t  the end of this section. 

It i s  easy to see  that according to formula (l3), Fl # O  
only when the DW velocity V coincides with the phase 
velocity of some elastic wave propagating along the y 
axis; that is ,  only when for some phonon polarization A 
there i s  a root of the equation 

The number of roots of Eq. (14) depends on the disper- 
sion law of phonons with qlle, over a whole Brillouin 
zone. We note, however, that for any form of the dis- 
persion law, there exist velocity values v:; and v:; 
such that Eq. (14) has one o r  several roots for V ~ L  
6 V 6 v:A and has no roots outside this velocity range 
(see Fig. 1). As a rule, v:A coincides with the velocity 
of long-wave sound of the prescribed polarization A. 

Taking account of this fact, we write the expression 
for the retarding force Fl in the form 

where q,, a r e  the roots of Eq. (14) (the index (Y enu- 
merates the roots of Eq. (14) for a given polarization A 
of the phonon). 

Using this relation and formulas (6), (8), and (12), we 
obtain the retarding force that acts on a DW of the f i rs t  
type (DW I) by virtue of interaction with transverse (F,,) 
and longitudinal (Fl ,) phonons: 

In the derivation of the expressions (16) and (17) we 
have used the fact that a t  large values of the vector q ,  
the Fourier components of the magnetization distribu- 
tion in the DW, A,(q), a r e  exponentially small; that is, 
i t  is small q that a r e  of interest. Therefore we can take 
the phonon dispersion law approximately in the form 

u.% (41 
FIG. 1. Graphical solu- 
tion of Eq. (14); %( q) i s  
the dispersion law of 
phonons with polarization 
A; tan v = V, tan v,,, 

qb (a=1,2,3)  are the 
roots of Eq. (14). 
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where s, is the velocity of long-wave sound with polar- 
ization A, and where u, is  a coefficient of order unity. 

The parameter go that occurs in (16) and (17) is  the 
positive root of Eq. (14) for the dispersion law (18): 

We note that this root exists only when V G  s,. 

It must be remembered, however, that, a s  was men- 
tioned earlier, the retarding force due to interaction of 
the DW with phonons itself shows up only when V> ~2:~. 
But in the model of the phonon dispersion law (18), there 
is formally no minimum velocity; this is due to the fact 
that formula (18) is valid only for aq << 1. A value of 
v,"in can nevertheless be determined by starting from 
the exact dispersion law. Thus, for example, if we take 
a s  the exact dispersion law 

then v:/~= 2s,/n, and radiation of phonons by a moving 
DW occurs in the velocity interval 2s,/n G V S  s,. 

We see from formulas (16) and (17) that the retarding 
force a s  a function of the velocity V may have, depend- 
ing on the sign of the parameter p, either oscillatory 
(for p<O) or nonoscillatory (for p>O) character. We 
note also that a s  V- s,, the value of F:~)(V) approaches 
a finite limit; that is, at  the point V= s, itself there is 
a discontinuity, equal to 

9-p 
- "+P ( C C  -) > P O  

X 4, p=O, 

The value of F::)(v), however, approaches zero a s  V 
- s t ,  and its maximum value is attained at a velocity V 
such that qdo-1. 

With increase of the value of go, the retardation force 
decreases exponentially. The parameter qd0, which 
determines the function Fl= Fl(V), is determined by 
(19); and since y,,/a >> 1, therefore qg,S 1 only in the 
velocity range (s, - V)/s, << 1. As soon a s  the velocity V 
becomes significantly different from s,, the quantity 
go, becomes a large parameter, and the force Fl,(V) is  
exponentially small with respect to this parameter. In 
other words, without allowance for attenuation of pho- 
nons, the retardation force F,,(V) is, in effect, nonzero 
only in a narrow (according to the parameter 

FIG. 2. Single-phonon 
retarding force Fix( V) as 
a function of velocity 
(schematic); the peak 
shown corresponds to one 
of the polarizations A of 
the phonons. Curve 1 cor- 
responds to low tempera- 
tures ( T << O. 1 8D), Curve 
2 to high (T >> 0.1 8,). 

- velocity interval near the velocity of sound (see 
Fig. 2). 

Formulas (16) and (17) determine the retardation 
force for DW L By use of the relations (7), (8), and 
(12), we find similarly the retardation force for DW 11: 

For brevity, we have given the formula for F::" only 
for p= 0. The corresponding expression for p#O can be 
derived without difficulty, but it is not quoted here be- 
cause of its unwieldiness. 

Formula (21) has the same structure as formula (17): 
when V- s, (9,- O), the force F:i1)(v) approaches a fi- 
nite limit, and it decreases exponentially with increase 
of q,. Therefore the remark made above regarding the 
velocity interval in which the retardation force is  sig- 
nificant for DW I is  quite pertinent also to DW IL 

We shall estimate the order of magnitude of the re- 
tardation force resulting from single-phonon processes 
(without allowance for attenuation of phonons). As fol- 
lows from formulas (l6), (17), and (21), 

On setting 6 -  3- (bMOZ) - 3- lo7 erg/cm3, and y0/a - lo2,  we get Fl= 10' to lo7 dyn/cmz. This value is con- 
siderably larger than the retardation force correspond- 
ing to the linear section of the V =  V(H) relation: where 
the main contribution to the retardation force is due to 
interaction of the DW with magnons' (see below). 

Thus the maximum value of Fl without allowance for 
attenuation of phonons is very large, but Fl(V) drops 
rapidly (exponentially) outside a narrow range of DW 
velocity. This result is due to satisfaction of the very 
stringent condition (14) (jointly with q d , s  I), which de- 
termines the law of conservation of energy in radiation 
of a phonon. We note that here allowance for the dis- 
persion of phonons is  very important, since the width 
of the peak in the F,(V) relation is completely deter- 
mined by the dispersion, and when a,= 0 we have Flx(V) - 6 ( ~ ,  - V). 

It is  to be expected that the result will change sub- 
stantially with allowance for attenuation of phonons. ' 
Since the Hamiltonian (4) corresponds to the Hamilton- 
ian of linear-response theory, it can be easily shown; 
by standard procedures, that the retardation force is 
determined by the imaginary part of the single-time 
Green's function. Therefore allowance for attenuation 
of the phonons reduces to the following substitution for 
the 6 function in formula (13): 

where r,(g) is the line-width of a phonon, which for q 
<< l /a  is determined by the expression" 

1103 Sov. Phys. JETP 48(6), Dee. 1978 Bar'yakhtar et a/. 1103 



where 8, is the Debye temperature and k is Boltz- 
mann's constant. 

By means of expressions (l3), (22), and (23), 
i t  i s  not difficult to show that the form of the function 
F,,(V) i s  determined by the relation between the disper- 
sion and the attenuation of sound; that is, allowance for 
attenuation is important under the condition 

Consequently, when T << 0.1 8, the function Fl,( V) i s  of 
the "low temperature" type (see Fig. 2). But if the in- 
equality (24) is satisfied, i.e. if T >>0.1 @,, then Fl,(V) 
is determined by the following interpolation formula: 

 ere we have again restricted ourselves to the sim- 
plest case p = 0, and in addition we have supposed that 
A([)- b sinz@([).] In this case the function F,,(V) has the 
form of a Lorentzian peak with a maximum a t  V= s, 
(see Fig. 2); that is, in the "high-temperature" range 
the peak becomes symmetric, and the decrease of the 
function F,, at the wings follows a power law. 

The maximum value of F,,(v) decreases with increase 
of y,: 

4 
(F.,)- - F l , ( V  = 8.) - - g ( b M t )  (%) - g (bM:) (q)' . 3 7, 

But the width of the peak, which is determined by the 
relation 

V - S ,  T a  l~l-&-(:)(c,) - 
increases with increase of y,. At room temperature ( T  
5 2  to38 , )weget  

We note also that the presence of any mechanism of 
phonon relaxation in addition to the temperature mech- 
anism leads to an additional decrease of (F,,),, and 
broadening of the peak. 

We recall that the Lorentzian peaks considered cor- 
respond to each of the polarizations of sound; and with 
sufficiently strong attenuation, it may turn out that the 
different peaks a re  indistinguishable (see below, Sec- 
tion 4). Nevertheless, when V>> s, (s, is the largest of 
the sound velocities), Fl( V) - F,,,(s,/v)~; that is, the 
single-phonon mechanism is turned off. Therefore in 
this velocity range, it is of interest to study processes 
of radiation of two quasiparticles. 

3. TWO-PARTICLE RADIATION PROCESSES 

As we showed in the preceding section, in the motion 
of a plane system of the DW type single-particle radia- 
tion is important only when V-s,. But when one allows 
for simultaneous radiation of several quasiparticles, 
the situation changes; in particular, the retardation 

force does not decrease with increase of the velocity 
above s, and may, on the contrary, increase. 

In the RE0 under consideration, two-particle pro- 
cesses a r e  possible in which phonons and spin waves 
(magnons) take part; in magnetic materials with a DW, 
there exist not only the usual volume magnons, but also 
unique ones localized near the DW. 

In a paper of Abyzov and one of the authors' it was 
shown that the processes of volume spin-wave scatter- 
ing a r e  responsible for the linear section of the V= V ( H )  
relation (see below); and it is quite clear that this pro- 
cess is not of the threshold type. But processes involv- 
ing simultaneous radiation (or absorption) of two quasi- 
particles a re  of threshold type; and for activationless 
quasiparticles, they begin only at velocities larger than 
the smallest phase velocity of the particles taking part 
in the p r o c e s ~ . ~ '  For us, therefore, it is of interest to 
study processes of simultaneous radiation of two pho- 
nons, and also of a phonon and the above-mentioned spin 
wave localized near the DW, which has the linear dis- 
persion law'' 

where .~c, is a two-dimensional vector lying in the plane 
of the DW, and where c i s  the velocity of this wave. 
Analysis shows that it i s  this process, in which an 
acoustical phonon and a "parietal" magnon (PM) take 
part, that is most important; and we shall devote this 
section to investigation of it. 

Spin waves localized near a DW can be described a s  
elastic waves of DW bending.12 In the long-wave limit, 
bending oscillations of a DW can be described by intro- 
ducing the departure of the DW from its equilibrium 
value; that is, one supposes that the coordinate of the 
center of the DW is located at the point 

Q=Vt+f ( x ,  z ;  t ) ,  l = l o ( y - g ) ,  m = m , ( y - g ) ,  

where the functions l, and m, describe the magnetiza- 
tion distribution in the DW plane. The energy of bending 
oscillations of the DW can be written in the form1' 

where m, is the effective mass and o is the energy of 
unit area of a plane DW. The integration in (28) extends 
over the plane of the DW. 

By starting from the magnetoelastic energy (2) of the 
magnetic material, we can write the energy of inter- 
action of the PM with sound: 

Here a = x ,  z ;  the first term describes the single-pho- 
non processes considered above, whereas the second 
describes processes in which an acoustic phonon and a 
PM take part. 

Introducing the PM creation and annihilation operators 
according to the formula 
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we write the Hamiltonian of PM, with allowance for 
their interaction with sound, 

here ~=(o/ rn , ) ' /~  is the velocity of a DW bending wave, 
which coincides, a s  is easily shown, with the smallest 
phase velocity of volume spin waves; q = k,; 

,I. (q) eAf (k) z,q 
GA (k; x )  = ' '" A(k,+  x ) ,  

[ u A ( ~ ) s ( ~ )  1 ' 
where ol = x ,  z ;  A(Q) is the Kronecker symbol. 

The retardation force F, due to joint radiation (and 
absorption) of a phonon and a PM can be easily found 
from (31) and (32): 

where n, and E, are the occupancy numbers of acoustic 
phonons and of PM respectively. 

On setting, for an estimate, p= 0 and A([) - b sin28([), 
we get from (33) 

where g =  b ~ ~ ~ , / r n , c ~ - l .  At room temperature and for 
VS c we get 

that is, the contribution of the process considered may 
be considerable both in comparison with the single-pho- 
non (for V >> s,) and in comparison with the magnon con- 
tribution.' 

As regards processes in which two acoustic phonons 
take part, calculation shows that the corresponding con- 
tribution to the retardation force for kT >> ti1 V - s I / y o  
has the form 

where (p(V2/s2) is a function of the velocity that for an 
estimate may be considered to be of order unity. From 
formula (35) it is easy to see that a t  room temperature, 
(F2),,- to dyn/cm2, which is several orders 
of magnitude smaller than the contribution, considered 
above, due to the process of radiation of an acoustic 
phonon and a PM. At low temperatures ( k ~  <<ti[ V - s I /  
yo) ,  the value of (F,),, is still smaller, and therefore 
this mechanism of retardation may practically always 
be disregarded. 

4. EFFECT OF PHONON-RADIATION PROCESSES ON 
THE CHARACTER OF DW MOTION UNDER THE 
INFLUENCE OF AN EXTERNAL FIELD 

The formulas obtained in the preceding sections de- 
termine the variation of the force of retardation that 

acts on a DW with the velocity of motion of the DW. But 
it is of interest to know the dependence of the DW ve- 
locity on the value of the external force F,, that causes 
this motion. Usually a magnetic field is used a s  the ex- 
ternal driving force. For the simplest case of a plane 
DW separating domains with a magnetization discon- 
tinuity 2rnC0), the force acting on unit area of the DW 
is Fa,= 2mC0'H. By equating this force to the retarda- 
tion force, one can find the velocity of stationary mo- 
tion of a DW as  a function of the magnetic field Ii: 

2m(" (H - H,)  = Fie, - - V + F , h ( V ) .  
B 

(36) 

Here H, is  the coercive force, B is a mobility coeffi- 
cient due to interaction of the DW with thermal magnons 
(see Ref. I), and F,, is due to the above-considered 
processes of phonon radiation. In contrast to the mag- 
non force of retardation, which for V<<c is linear in 
the DW velocity V, the function Fph(V) is sharply non- 
linear, and this may lead to noticeable anomalies in the 
function V= nH).  

According to the analysis presented above, the func- 
tion F,,(V) has the form of several peaks, caused by 
single-phonon processes at V- s, ( A =  1,2,3), whose 
height and shape a r e  determined by attenuation of pho- 
nons, plus two-particle corrections, whose contribu- 
tion is relatively small but exists at all V> s,. The gen- 
eral character of the F ~ ( v )  variation is determined by 
the relation between the attenuation and the dispersion 
of the phonons. 

At high temperatures, the widths of the phonon peaks 
may prove comparable with the distance between them; 
that is, individual peaks may prove indistinguishable. 
In this limiting case of large attenuation, the single- 
phonon contribution is nonzero over the whole interval 
(s,),~~ 6 VC(s,),, (see Fig. 3a), and within this interval 
it may be considered only slightly dependent on the ve- 
locity; here F,,- lo3 to 104 dyn/cm2 [see (26)]. Outside 
this interval, only the two-particle contribution is im- 
portant, and it is much smaller (F2 s 1 dyn/cm2). 

The function HH) corresponding to such behavior of 
Fph(V) can be easily constructed (see Fig. 3b). Char- 
acteristic is the presence of a plateau in the V(H) rela- 
tion; that is, a range of field values (and consequently 
also of the force) to which corresponds a very slow 
change of the DW velocity. The width AH of this inter- 
val is determined by the relation 

FIG. 3. Total retardation force Fph (V) (8) and variation of 
DW velocity with external magnetic field (b) at high tempera- 
tures (T >> 0.1 eD). In Fig. 38, (sJmi,, and ( ~ 9 -  are, 
respectively, the smallest and largest of the sound velocities. 
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FIG. 4. Variation of DW velocity with external magnetic 
field at low temperatures ( T << 0.1 OD); the hysteresis cor- 
responding to one of the phondh polarizations h i s  shown. The 
dotted curve corresponds to a possible decrease of the amount 
of hysteresis because, for example, of a disturbance of the 
homogeneity of the DW. 

(we have supposed that 2m0"10 G). We note that ap- 
proximately this variation has been observed experi- 
mentally; for yttrium orthoferrite AH= 30 Oe, for 
thulium orthoferrite AH= 100 Oe. On the V= V(H) graph 
for  YFeO, it i s  a lso  possible to detect the turning off of 
the additional retardation at V-8 k m / ~ e c . ~  

At low temperatures the behavior of F,,(V), and con- 
sequently of V(H), is substantially different. The widths 
of the phonon peaks are now much smaller  than the dis- 
tance between them ( Is, - V I  / ~ , " 1 0 - ~ ) ,  and the height 
of the peaks i s  of the order lo6 dyn/cm2, which corre- 
sponds to very large fields (HE lo5 Oe). Thus at low 
temperatures (T ~ 0 . 1  8,) there is again a plateau in 
the V= V(H) relation; but, f i r s t ,  i t s  width i s  much 
greater,  and, second, i t  exists only on increase of the 
magnetic field. On decrease of the magnetic field, this 
plateau i s  absent; that is, there i s  a peculiar hysteresis 
on the V= V(H) curve (see Fig. 4). 

We note that because of the smal l  width of the velocity 
interval, it i s  not ruled out that the DW might surmount 
this interval in an  external field less than (F,~/~?YZ'~'); 
for  example, because of disturbance of the homogeneity 
of the DW, i.e. as a result of the fact that different sec- 
tions of the DW can m w e  with different velocities. In 
this case the width of the hysteresis in V =  V(H) may be 
considerably less than F,, / 2 r n ( O ) ,  but the effect in ques- 
tion will show up in poor reproducibility of the V= V(H) 
curve at Va s,. 

In conclusion we remark that if the sound velocity s is  
close to the limiting velocity of motion Vc of the DW, 
then for V-s - Vc it i s  necessary to allow for the de- 
crease of the DW thickness to microscopic dimensions 
(of the order of the lattice   on st ant).^ Then the Fourier  
components of the magnetization distribution no longer 
decrease exponentially with increase of q, and there- 
fore  there may be efficient excitation of phonons over a 
while Brillouin zone, and not just of ones with small  
wave vectors. In order to calculate the resistive force 
in this case, it is necessary to know the exact disper- 

sion law of the phonons; but it obvious in advance that 
the function F,,(V) will no longer have sharp maxima 
near the sound velocities, and that phonon retardation 
of the DW will manifest itself over a considerably wider 
range of velocities. 

"We recall that in uncompensated magnetic materials of the 
iron-garnet type, Vc is determined by relativistic inter- 
actions and a s  a rule does not exceed ld m/sec, which is 
less than the velocity of sound. 

''We note that in an analogous manner one can obtain a Hamil- 
tonian that describes radiation (and absorption) of two or 
more phonons. The corresponding estimate of the con- 
tribution of two-phonon processes to the DW retarding force 
i s  given in Section 3. Allowance for processes in which 
three or more phonons take part, at arbitrary DW velocities, 
can be shown to give small corrections, and we shall ignore 
them. 

3'When particles with activation take part in the process, the 
radiation condition becomes considerably more stringent. 
For example, the contribution of processes of radiation of 
a phonon and of a volume spin wave is small in proportion 
to the smallness of the parameter exp(-~c/s,), where c is 
the velocity of the spin wave. 
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