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A complete set of equations describing the average motion in a fmite-amplitude wave in solids experiencing 
first-order phase transitions is obtained by taking temperature relaxation into account. Equations for quasi- 
simple waves are derived for two models of a finely dispersive two-phase system, i.e., one with a one- 
dimensional layer structure, and one with uniformly distributed spherical nuclei of the new phase. 
Expressions are found for massive transition of matter to the new phase in a shock wave. It is shown that 
the amount of matter transformed into the new phase is determined by the heat flow away from the 
boundaria between the adjacent phases. Some particular cases are considered. 

PACS numbers: 64.60. - i, 62.50. + p 

It i s  well known that many solid materials can exist in 
different crystalline modifications under different condi- 
tions. At certain values of the temperature and pres- 
sure, which a re  connected by a definite relation, tran- 
sitions can occur that a re  accompanied by a discontinu- 
ity in the volume and (emission) absorption of latent 
heat, i.e., first-order phase transitions can take place. 
A mixture of different crystalline modifications can 
precede the formation of the new phase.'' 

In the present paper, some regularities of the propa- 
gation of finite-amplitude waves in solids a re  investi- 
gated theoretically for solids undergoing first-order 
phase transitions. It is assumed that the characteristic 
dimension of the average motion in the wave i s  much 
greater than the dimensions of the inhomogeneities in 
the system. Not too strong shock waves a re  considered, 
in which the pressure is not very large; the increase in 
the entropy is small and the shock adiabat is close to 
isentropic. As is known, in a solid a shock wave even 
of 100 kbar is a weak one. Such a wave differs little 
from an acoustic one, since i t  propagates with a velocity 
that is close to the sound velocity and imparts to the 
material behind the front a velocity that i s  one tenth the 
velocity of propagation of the wave itself. At the same 
time, the pressure in the wave should be sufficiently 
large that one can neglect effects of rigidity, assuming 
the wave to be plastic (usually the limits of rigidity a re  
-1 kbar). 

1. FUNDAMENTAL EQUATIONS 

We shall assume the pressure to be  hydrostatic and 
consider the following se t  of equations, which describe 
the motion of the medium in a finite-amplitude wave 
under conditions of a first-order phase transition: 

The set  (1) consists of the Navier-Stokes equation, the 
equation of continuity, the general equation of heat 
transfer, and the equation of state; S = xS,  + (1 - x)S, is 
the entropy per unit mass of the mixture of phases, 
where S, and S, a re  the entropies per unit mass of the 
f i rs t  and second phases; x is the mass fraction of the 
second (new) phase in the system: 

1 1 
= Y - xv;+ (i-x) v, 

is the density of the phase mixture; V, = l/p,, V, = l/p, 
a re  the partial volumes of the f i rs t  and second phases; 
6p, is change in the density at constant entropy of the 
mixture; u is the velocity of motion of the medium in 
the wave; P is the density in the wave; T is the temper- 
ature of the medium. 

The change in the temperature on the boundary of ad- 
joining phases is determined by the Clapeyron-Clausius 
equation: 

q i s  the latent heat of transition between phases. From 
the definition of the entropy of the mixture of phases and 
the definition of the density, i t  follows that 

We average the expression (2) over a volume small in 
comparison with the characteristic dimension of the 
mean motion in the wave, but containing a sufficient 
number of heterogeneous sections of both phases, so  
that the averaged characteristics of this volume a re  the 
same a s  that for  the entire medium a s  a whole. By con- 
sidering the changes in volume and entropy at each point 
as functions of the pressure and temperature, we 
get 
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where v ,  and v,  are  the volumes occupied by the phases; 
T, and T, are the temperature increases brought about 
by the varied pressure and thermal conductivity; cp,, 
c,, a re  the specific heats at constant pressure of the 
first  and second phase; the symbol (. . .) denotes aver- 
aging. We have used in (3) the fact that the pressure 
changes little a t  distances of the order of the dimension 
of the region of averaging. Consequently, the volume 
over which the averaging i s  performed i s  in a uniform 
pressure field. 

The distribution of the temperatures T, and T, in each 
phase is found from the corresponding equation of heat 
conduction: 

Equations (4)-(7) comprise the complete se t  of equa- 
tions for one-dimensional average motion, with accu- 
racy to terms of second order inclusive. To obtain the 
final expression for  the equation of state, we must con- 
sider the specific structure of the two-phase region. 

2. ONE-DIMENSIONAL LAYERED STRUCTURE 

We f i r s t  consider a layered structure, assuming that 
the phases a re  arranged in alternate layers of thickness 
h-the second phase, and H-the f i rs t  phase. The thick- 
nesses of the layers are  assumed to be small in com- 
parison with the dimension of the average motion in the 
wave. If we take the center of a layer of the second 
phase as the plane z = 0, then the spatial distribution of 

The spatial distribution of the temperatures T, and T, 
the temperature in the layer i s  obtained from the equa- 

is found from the corresponding general equation of heat 
tion of heat conduction 

transport for each phase, with account of the fact that 
the temperature change on the boundary of the adjoining a ~ ,  azrZ T ( ~ v , / ~ T ) ,  a~ -=o 
phases i s  determined from the Clapeyron-Clausius at prcp2 az2 C P ~  at 
equation. Substituting (3) in (2), we obtain an averaged 

with the boundary conditions 
equation of state of the medium. Consequently, the f i rs t  . . 

three equations of the system (1) and the averaged pres- T (Vz-Vl)  
sure of the state (2) can be regarded as the complete Tll r - t h / l  = 6P 

9 
set  of equations describing the mean motion of the mix- 

and with the initial condition 
ture of material in a wave of finite amplitude in first-  
order phase transitions. T, ( ,-,=O. (1 1) 

U nfortunately, the investigation of the solutions of 
this set  is accompanied by great  difficulties in the gen- 
era l  case. However, in the case of sufficiently small  
but finite amplitudes and small dissipative coefficients, 
we can obtain the equations of interest to us on the basis 
of the se t  (1) with accuracy to terms of second order 
inclusive, if we limit ourselves in the lat ter  to non- 
linear terms of second order and assume the dissipative 
coefficients to be small in f i rs t  order. Then the linear 
dissipative terms will be small in second order, and the 
nonlinear dissipative terms can be neglected.' 

We assume that the wave i s  propagated along the z 
axis. Then the f i rs t  and third equations of the system 
(1) for the average motion take at the specified accuracy 
the form 

The solution of Eq. (9) with the conditions (10) and (11) 
is 

where 

02 = 
T(Vz-V , )  - T ( a V J a T ) p  , Q ( z .  t )  = 2 exp (2ninr-n2n't) 

a CPS ,,=-= 

is the Jacobi function. 

Averaging of T, over the layer h yields 

Discarding the small third-order term in the equation of Carrying out a similar calculation for  the f i rs t  phase of 
continuity, we get thickness H. we obtain 

arT x C 

(6) , - 
n Z X ,  (2n+l) 'r  +&B,JE erp[- ] , F J ( ~ - T )  a,, 

H1 
(1 4) 

ap.=-pz [z ((av.) - O n-O 

where X, and X, a re  the coefficients of thermal diffusiv- 
+ ( 1 - z )  ( <8V,) - 5 <85',))] . 

S,-S, (7) ity of the f i rs t  and second phases, 
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T(Va-VI)  T ( a V J a T ) p  
01 = - 

CPI 

The quantities (T,) and ( T I )  will be respectively the 
same f o r  all alternating layers, since the spatial dis- 
tribution of the temperature in the layers will be re- 
peated periodically. 

Substituting (3) in (7), we obtain, with the help of (13) 
and (141, an equation of state which takes into account 
the temperature relaxation for the layered structure of 
a two-phase medium: 

Here 

c,,, and c,, are  the specific heats of the f i rs t  and sec- 
ond phases along the phase equilibrium curve: 

Equations (4)-(6) and (15) comprise the complete set  of 
equations describing the motion of the material in a 
wave of finite amplitude in the case of a layered struc- 
ture of a two-phase medium. 

We now consider the case in which the relaxation time 
is sufficiently small in comparison with the character- 
istic period of the wave, i.e., t, >>H2/x1; then the quan- 
tity 6P(t - 7) in Eq. (15) can be expanded in powers of 7. 

We limit ourselves to the firm term of the expansion 
and, taking i t  into account that 

we can write 

Further, using the usual method of Ref. 1, it  i s  not 
difficult to obtain from (4), (6) and (16) Burgers equa- 
tion for a quasi- simple wave: 

where 

is the sound velocity in the mixture of phases in the case 
of low frequencies, i.e., a s  w - 0. We note that this ex- 
pression for the velocity is identical in accuracy with 
the formula obtained by Landau and Lifshitz2: xis the 
mean thermal conductivity of the mixture; c,, c, a re  the 
mean specific heats of the mixture. 

It i s  seen from Eq. (17) that the propagation of the 
wave in the phase transition takes place in such fashion 
as if the body possessed an additional, large viscosity, 
determined by the last  two terms in the expression for 
k. We find the amount of matter going into the second 
phase from Eq. (5), with account of (3), (13) and (14). 

At t, >> H2/x1, we obtain 

As is well known, the nonstationary Burgers equation 
has an exact s o l u t i ~ n . ~  

Under the initial conditions u(z - -rn, 0) - Au and 
u(z - *, 0) - 0, any excitation tends toward the station- 
ary form: 

The solution (19) is a shock wave with magnitude of 
jump Au and with a width of the transition region 2k/ 
yAu. It follows from (18) and (19) that at x<< 1, 

Now let the relaxation time be large in comparison with 
the characteristic period of the wave t, << h2/x2 <<H2/xl; 
we can then replace the sum in (15) by an integral. The 
expression (15) will consequently have the form 

In this case, we obtain the following nonlinear integro- 
differential equation from (4), (6), (21) at x << 1 for the 
quasi- simple wave: 

is the sound velocity in the mixture of phases at x<< 1, 
and W-*. 

The expression for the amount of matter undergoing a 
transition to the second phase at t, << h2/x2<<H2/x1, will 
consequently have the form 
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3. MODEL OF A SPHERICAL NUCLEUS with spherical nuclei. 

We now consider a finely dispersed medium, consist- 
ing of spherical nuclei of the second phase in a volume 
of the f i rs t  phase. Calculation can now be carried out 
under the condition that thermal interaction is absent 
between the nuclei of the second phase. (The distance 
between the nuclei of the second phase i s  greater than 
the characteristic length of the temperature wave in the 
f i r s t  phase.) Then the temperature distribution near  
the nuclei of the second phase will be the same a s  for an 
isolated nucleus of this phase in an infinite medium of 
the first  phase. Since the nuclei of the second phase 
have spherical shape, the solution of Eq. (8) with the 
boundary condition 

has the form 

f o r  the second phase, and 

for the f i rs t  phase. Here 

is the Jacobi function, r is the distance from the center 
of the nucleus of the second phase, and R is the radius 
of the nucleus. 

Averaging T, and TI, we obtain 

: 

+4q1NR0, S ~ P ( T ) ~ T ,  (27) 
0 

where N i s  the concentration of the nuclei of the second 
phase in the system. Substituting (26) and (27) in (31, 
we rewrite (7) in the form 

The expression (28) is the equation of state for  a two- 
phase medium with spherical nuclei in the presence of 
temperature relaxation. 

Equations (4)-(6) and (28) comprise the complete set  
of equations describing the average motion of material 
in a wave of finite amplitude in a two-phase medium 

Now let  the relaxation time be small  in comparison 
with the characteristic period of the wave t, >> R2/x, 
=R2/x2. Under this condition we can expand the quantity 
6P(t - T )  in the expression (28) in powers of 7.  Limiting 
ourselves to the f i r s t  term of the expansion and taking it 
into account that 

we obtain 

Further,  from (4), (6), and (29) we find the equation for  
the quasi-simple wave a t  x << 1: 

From Eq. (51, with the help of (3), (26) and (27), and 
taking i t  into account that x = (4/3)1rNp$~/p,, we deter- 
mine the rate of growth of the nucleus of the second 
phase. 

We now consider the evolution of the wave described 
by Eq. (30) in the case in which we can neglect the high- 
frequency absorption. Omitting the term on the right 
side of Eq. (30) and transforming to the new variables 

we obtain 

(here the primes a re  omitted on the independent vari- 
ables). Equation (32) has an exact s ~ l u t i o n , ~  which can 
be written in the form 

where ~ ( v )  is an arbitrary function of the velocity. 

The nonlinearity leads to a typical distortion of the 
wave profile, but the wave decays simultaneously. It 
also follows from (33) that the shock wave can be 
formed in this case, when Bv(z, O)/Bz < -r, i.e., the 
initial profile should have a sufficiently large negative 
curvature, otherwise the damping would prevent rever- 
sal. If the relaxation time is large  in comparison with 
the characteristic period of the wave t, << R2/x,, then, 
replacing the sum in (28) by an integral, we get 
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The equation for a quasi-simple wave propagating in a 
two-phase system is found in this case at x<< 1 from 
(41, (6) and (34): 

It is seen that Eq. (35) differs from the usual Burgers 
equation by the presence of an integral term on the right 
side. 

The rate of growth of the nucleus of the second phase 
a t  t, << R2/x1 i s  

Writing Eq. (35) in divergence form and integrating i t  
over z from -- to +-, we get 

ju(z ,  l ) d r =  U(Z, O)dz. 
-- i - m 

i.e., the area  bounded by the function u(z, t )  is an inte- 
gral  of the motion. 

Linearizing next Eq. (35) and omit from it  the term 
which describes the damping due to ordinary viscosity 
and thermal conductivity: 

(We can se t  &/at = -C,&/Bz in Eq. (35) with accuracy 
up to small terms of second order inclusive.) 

The linearized Eq. (37) describes the evolution of a 

weakly damped sound wave with account of the real  dis- 
persion of the velocity in the linear approximation. As 
t - solutions of the form 

satisfy it. The fact that r"  w1I2 is entirely natural, 
since in this case the absorption takes place in a narrow 
region of order d =  (Xlt ,) l lz<<~ near the boundary be- 
tween phases. 

It follows from Eqs. (31) and (36) that the growth of 
the nucleus of the second phase i s  determined by the 
heat removal from the boundary of the adjoining phases. 

If the temperature wavelength in the f i rs t  phase is 
greater than the distance between nuclei of the second 
phase, i.e., (X ,~ , ) '~~>>N-"~ ,  then the propagation of the 
quasi-simple wave will be described by Burgers equa- 
tion, in which 

The sound velocity C, i s  determined by the expression 
obtained by Landau and Lif s h i t ~ . ~  

The process of formation of nuclei of the new phase i s  not 
considered here. It is assumed that they a re  formed instan- 
taneously and in sufficient quantity. 
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