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A study is made of the oscillations of the amplitude of an electric field near the leading edge of a 
rectangular pulse due to reemission of photons by resonant atoms of molecules in a gas (nutation effect). 
Optical nutation due to a pair of pulses is also considered. Allowance is made for the level degeneracy 
associated with various projections of the total momentum and for the thermal motion of atoms and 
irreversible relaxation. It is shown that a change of the input-pulse polarization from linear to circular 
makes nutational oscillations dependent on the nature of. the atomic resonance transition. In the absence 
of irreversible relaxation the change from linear to circular polarization is accompanied by an increase in 
the nutation period and slower decay of the amplitude of nutational oscillations if the resonance transition 
is of the J 4  type. The reverse is true of J e J  + 1 atomic transitions. These relationships can be used in 
experimental determinations of the type of atomic transition. For high values of the momentum J the 
nutation period and the nature of decay of the nutational oscillation amplitude are independent of J but 
are governed by the reduced dipole moment of the resonance transition. A comparison of the theoretical 
and experimental nutational oscillation curves makes it possible to determine this dipole moment. When 
the nutation period is comparable with the irreversible relaxation time, the nutation amplitude decay is 
basically exponential and this makes it possible to calculate the relaxation time of a resonant medium. 

PACS numbers: 51.70. + f 

The optical nutation consists in oscillations of the 
amplitude of an electric field near the leading edge of 
a rectangular light pllse passing through a resonant 
medium. This effect is analogous to the familiar nuta- 
tion in NMR when an ensemble of nuclear spins subject- 
ed to a static magnetic field interacts with a weak alter- 
nating magnetic field of the resonance frequency.' Opti- 
cal nutation is due to the fact that the majority of reso- 
nant molecules i s  transferred to an excited state in the 
leading edge of a high-power light pulse. These mole- 
cules then emit induced radiation under the action of 
the same pulse and drop to a lower energy state. This 
reemission process is repeated so that the amplitude of 
the resultant field i s  modulated at a frequency a,, which 
is known a s  the nutation frequency. This effect can be 
observed if the nutation period 2n/O, is long compared 
with the leading edge of an input pulse but short com- 
pared with the irreversible relaxation time, so that the 
interaction with a medium remains coherent. 

Optical nutation was predicted by Tang and Statz2 and 
then observed experimentally by Hocker and Tang.' 
However, in the latter case: the leading edge of the 
light pulse was comparable with the nutation period 
and the pulse itself was far  from rectangular and it 
was absorbed strongly in the investigated medium. 
More recently, Alimpiev and Karlov4-6 suggested a 
method for bypassing these difficulties: they illuminat- 
ed a resonant medium with two superimposed light pul- 
ses  of the same carrier frequency but of different dur- 
ations and intensities. The first pulse was very short 
but of high intensity and i t  acted a s  a characteristic 
perturbation after which optical nutation was observed 
against the background of the longer second pulse of 
lower intensity. The experimental investigation of nuta- 
t i ~ n ~ - ~  made if possible to identify certain molecular 
transitions and to determine the corresponding dipole 
moments. Another original method for investigating 

nutation was suggested by Brewer and Sh~ernaker .~ 

We shall allow more consistently for the resonance 
level degeneracy and thermal motion of atoms, and we 
shall investigate fully the influence of irreversible re- 
laxation on the nutation effect. Our treatment applies 
to any degree of level degeneracy and to an arbitrary 
inhomogeneous broadening of a resonance transition. 
This makes it possible to study nutation in the case of 
linear and circular polarization of light pulses under 
on-resonance and slightly off-resonance conditions. 
The approach reveals new features of optical nutation, 
which extend the possibilities of using this effect in in- 
vestigations of resonant media alongside with self-in- 
duced transparencyhg and with photon echo.'0." 

1. PRINCIPAL EQUATIONS 

We shall consider a gas composed of identical atoms 
(or molecules) such that one of the atomic transition 
frequencies w ,  is close to the carrier frequency w of a 
light pulse traveling along the Z axis and having the 
shape of a step: 

Here, E is the electric field intensity; 1 is a unit po- 
larization vector of the light wave; e is a slowly vary: 
ing amplitude of the wave; w = kc and I w - wo(<<wo. Here, 
1=1, for linear polarization and 1=2-"2(1,+il,) for right- 
handed circular polarization; 1, and 1, are unit vectors 
along the indicated Cartesian axes. 

We shall use p,,, and p,, for the density matrices 
representing the state of an atom at the lower and upper 
levels whose energies are and and total momenta 
are J, and J,, respectively (E, - &,=tioo). Let p,, be the 
density matrix describing transitions between these two 
levels, whose degeneracy is due to the projections IJ. 
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and m of the total momenta. Propagation of an ultra- 
short pulse (1) in such a resonant medium can be de- 
scribed by the dYAlembert equation 

and by the quantum-mechanical equation for the density 
matrix p 

Here, H i s  the Hamiltonian of an atom in a system based 
on its center of inertia; p=pd is the operator of the po- 
larization of the medium, d is the operator of the dipole 
moment of the resonance transition; the last term on 
the right-hand side of Eq. (3) allows for irreversible 
relaxation in accordance with the formulas 

where l/r, and l/r, are the relaxation times of an ex- 
cited atom at the lower and upper levels, respectively. 
The values of rl and r, are governed by collisions and 
radiative decay. 

The density matrix p = p k, t )  applies to the atoms 
moving along the Z axis at a velocity v. Before the 
passage of a light pulse t -z/cCO the elements of the 
density matrix satisfy the relationships 

for t - z / c c ~ ,  OCZ. Here, the point z=O corresponds to 
the boundary of the medium; n, and n, are the densities 
of atoms at the lower and upper levels in the absence of 
an external field; f(v) is the Maxwellian distribution 
function 

where u is the average thermal velocity of atoms. 
Equation (4) is derived on the assumption that the atoms 
are distributed homogeneously in space and that the 
Zeeman sublevels have all the same populations before 
the passage of a light pulse. 

The polarization of an ultrashort pulse (1) does not 
change during its propagation in the medium. This al- 
lows us to obtain the equation for the pulse amplitude by 
equating the factors in front of the exponential function 
e"k*-m' on both sides of Eq. (2). It is convenient to use 

where p,, is a slow function of time, and the repeated 
matrix and vector indices always imply summation. 

It follows from Eqs. (2) and (3) that the equations for 
slow functions have the following form in the resonance 
approximation 

where 

Here, d(J,, J,) is the reduced dipole moment of a J,- J, 
&omic transition, related to the probability y of spon- 
taneous emission of a photon tiw, from an isolated atom 
by the expression 

~ - - 4 1 d ( I 1 ,  I,) 1'/3(2J2+1)AXY, A-c/o. 

The term kv on the left-hand side of Eq. (7) allows for 
the Doppler frequency change during the motion of an 
atom. 

The initial and boundary conditions for Eqs. (6)-(9) 
are, in accordance with Eqs. (4) and (5), 

LIiI I 

nzf ( v )  
(10) 

N,,, = n , .  for t 4 ; 
2I:+l 

e ( 0 ,  t )  =a( t )  for O<t, (11) 

where a(t) is the profile of a step-like pulse entering 
the medium. 

In the case of linear polarization the quantization axis 
can be taken parallel to 1 and for the circular polariza- 
tion along the direction of propagation of the wave. 
Then, the principal matrix ll ,, becomes diagonal 

II,, =II,6,,,,- (12) 

with the following diagonal  element^'^*'^: 

a) for the linear polarization 

P' for J,=I+I,=J, 
'' = I ( J L l )  (2 I+i )  

n,, = (J+l)Z-c for Jz=J-.I,=I+I and 
( ] + I )  ( 2 I+l )  (2I+3) 

J2=I+l-+I,-I; 
(14) 

b) for the right-handed circular polarization 

If a left-handed polarized circular wave is used, the 
sign in front of p on the right-hand side of Eqs. (15)- 
(17) should be reversed. 

When the matrixII,, has the diagonal form (12), the 
diagonal elements of the required matrices 

form an independent closed system of equations. For 
simplicity, we shall solve it in the constant-field ap- 
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proximation ignoring the reaction of the medium on the 
transmitted light pulse. This is possible if 

where N=%/(2JI + 1)  - %/(2J2 + 1) isthe initial density of 
the change in the population of the Zeeman sublevels; 
L is the length of gaseous medium; To= l / k u  is the 
time of reversible Doppler relaxation. 

In the constant-field approximation the amplitude in 
Eqs. (7)-(9) can be replaced withthe profile of the pulse 
entering the medium e =a(t - z / c )  and the equations be- 
come 

Having determined the function p ,  from Eqs. (18)-(20)  
using Eqs. (10)  and ( l l ) ,  we can easily apply Eq. (6) to 
find the amplitude e ,  =e,(t  - z / c )  of the intensity of an 
electric field due to the reemission from resonant 
molecules: 

This quantity is taken at the exit from the medium. For 
O c t - z / c  it describes optical nutation with allowance for 
the level degeneracy, thermal motion of atoms, and ir- 
reversible relaxation. The amplitude e of the total 
electric field is e =a + e n .  

The intensity I of an electromagnetic pulse at the exit 
from the medium is 

where 1 , = c ~ ~ 2 r  is the time-average intensity of the 
light pulse at the entry to the medium for linear or cir- 
cular polarizations, and the prime denotes the real part 
of the amplitude (21) .  

2. CASE OF A SINGLE RECTANGULAR PULSE 

Let us assume that a light pulse ( 1 )  with a constant 
real amplitude eo enters a resonant medium. If we 
ignore the irreversible relaxation, Eqs. (18)-(20)  are 
easily integrated and the real part of the amplitude (21)  
for 0s t - z / c  i s  

where the parameter II, is defined in Eqs. (13)-(17)  for 
the linear and circular polarization cases, and the 
other quantities are 

Eo=2n%LNT~ld(J~, I,) Ize0/hX, 

Q:-(q/Ts-Ao)z+ (Ul+i)  lIPQg, 

Q=21d(Jz, I,) le,/h (2Jz+i) "= (37 ~ ' / h ) ' ~ e ~ .  

In the case of linear polarization and the atomic J - J  
transition with large values of the momentum J >> 1 it is 
possible to sum the series in Eq. (22)  for Ao=O and 
OTo>>l ,  expressing it in terms of a Bessel function of 

order $: 

Numerical calculations show that the formula (23)  ap- 
plies also to J = J + l  atomic transitions excited by a 
light pulse with circular polarization. The period of 
nutations described by Eq. (23) can be used to deter- 
mine y because other quantities can be found experi- 
mentally. The value of y is independent of J for ~ > > 1 ,  
since the reduced dipole moment d ( ~ ,  J )  is proportional 
to J ' ~  (Ref. 14) .  However, the factor Eo increases on 
increase in J because of enhancement in the change in 
the population of the active levels 2 ~ N a ( n ,  -n,). The 
decay of nutation (23) is solely due to the resonant level 
degeneracy. 

An analysis of a large number of graphs of the ampli- 
tude (22)  reveals the following features. If the intensity 
of an input pulse ( 1 )  is constant and the J - J  atomic 
transition is characterized by large momenta J>> 1, the 
nutation period in the case of linear polarization is ap- 
proximately 2'" times shorter than in the circular po- 
larization case. The amplitude of rmtation in the linear 
polarization case is less and it decays more rapidly 
than in the circular case. For J =  J +  1 (J>>  1) transitions 
the nature of nutation in the linear and circular polar- 
ization cases is diametrically opposite to the nature in 
the case of J - J  transitions (curves 1 and 2 in Fig. 1) .  
This behavior is due to the different probabilities of the 
emission (absorption) of a photon with linear and circu- 
lar polarizations a s  a result of a transition of an atom 
from one Zeeman sublevel to another ~ ~ ~ ~ - € , ~ , r n ,  

FIG. 1.  Optical nutation against background of rectangular 
pulses in the case of large values of the momentum J >>I.  
Curves 1 and 2 correspond to the case when the intensities of 
the pulses entering a medium are the same for linear and 
circular polarizations. In the case of a J- J atomic transi-' 
tion the first curve corresponds to the linear polarization case 
and the second to the circular case. For a J =  J +  1  transition 
these curves are interchanged so that the linear and circular 
polarizations correspond to curves 2 and 1. If the projections 
of the electric field intensity of the incident pulses with the 
linear and circular polarizations are the same, nutation is 
described by curves 1 ,  2, 3, and 4. For a J- J transition, 
curves 1 and 3 correspond to the linear and circular polariza- 
tions. In the case of a J s  J +  1  transition, the linear and 
circular polarizations correspond to curves 2 and 4. It i s  
assumed that To = 1 jn and Aw = 0. 
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.FIG. 2. Optical nutation due to rectangular pulses with identi- 
cal intensities at the entry to a medium in the case of small 
momenta. The linear and circular polarizations correspond 
to curves 1 and 2 for a 2- 2 transition and curves 3 and 4 for 
2 3 transitions. It is assumed that To = l/Q and Au = 0. 

which is reflected in the term (2~,+1)lT,Sl~ occurring in 
a:. 

The nature of nutation in the case of small values of J 
is illustrated in Fig. 2, which gives the results for J=2. 
We can see that for each of the J2=2-Jl=2, J2=2-Jl =3  
and J2=3 - J,= 2 transitions the rates of decay of the nu- 
tation amplitudes in the linear and circular polarization 
cases become approximately equal but the periods are 
still different. The relationships obtained can be used 
to distinguish experimentally the J -J and J sr J+ 1 tran- 
sitions by altering the polarization of a light pulse (1) 
but keeping i t s  intensity (at the entry to the medium) 
constant. 

An interesting feature of nutation appears when the 
projections of the electric field intensities of the inci- 
dent pulses with linear and circular polarizations are 
the same but the intensities differ by a factor of 2. 
Then, in the J- J (J<< 1) atomic transition case the 
change from the linear to circular polarization reduces 
slightly the nutation period and results in slower decay 
of the amplitude. However, in the J ~ J +  1 (J >> 1) case 
the change from the linear to circular polarization is 
accompanied by a cmsiderable (by a factor of about 2) 
reduction in the nutation period (curves 1,2,3, and 4 in 
Fig. 1). This difference between the periods is retained 
also for small values of J. Once again such behavior 
can be used in experimental identification of atomic 
transitions. 

For each of the J -J and J r J +  1 atomic transitions 
and a specific polarization of a light pulse the period 
and behavior of the nutation amplitude is independent of 
J in the range J >> 1. The nutation period is governed 
entirely by the value of d(~,, J,) and the amplitude of the 
incident pulse, and its order of magnitude is 2n/SZ. 
Consequently, a comparison of the theoretical curve 
representing Eq. (22) with an experimental result can 
be used to find the dipole moment of an atomic transi- 
tion. For arbitrary values of the momentum J the de- 
cay of nutational oscillations is stronger for smaller 
values of the parameter nT0. In the 62Tosl case the de- 
cay is due to the degeneracy and the Doppler scatter of 
the resonant levels. 

Figures 1 and 2 give the results obtained for the on- 
resonance case when Aw=O. However, these results 
still apply for a slight detuning from resonance. Ac- 
cording to Eq. (22), a small detuning JA&< l/T, is un- 
important. If ( ~ w l  s1/T0 and 1/T0< S1, the spectral 
composition of that part of a light pulse (1) which cor- 
responds to the optical nutation duration is so wide that 
it excites the majority of molecules inside a Doppler 
profile. Therefore, detuning within the range 0 cl Aw ( 
cl/T0< 62 does not interfere with experimental identifi- 
cation of atomic transitions and determination of y in 
accordance with the method described above. However, 
if the detuning is large ( A w l > > l / ~ ~ ,  only a small pro- 
portion of the resonant atoms is excited and the nutation 
amplitude decreases strongly, compared with the exact 
on-resonance case. 

If the relaxation terms are allowed for in Eqs. (18)- 
(20), the function (22) has to be multiplied by the factor 
ed-(r ,+r , )( t  - z/c)/2], and the frequency S1, has to be 
replaced with 

sl,=2-'h[sz:-r,,z+ ((~,z-r,r')~+4r,,'(~l~~)~)'~l'~~, 

where r12= (r, - r2)/2. The new terms which appear in 
the amplitude are small if rf2/S12, << 1. 

When both active levels are excited, the parameters 
rl and r, differ only slightly. In particular, for mole- 
cular transitions the relaxation time of each of the ex- 
cited states is usually the same l/r,= l/r2= T, (Ref. 4). 
In this case the influence of irreversible relaxation re- 
duces to multiplication of the amplitude (22) by the fac- 
tor e d - ( t  -z/c)/T,]. A study of the amplitude of nuta- 
tion for various moments of atomic transitions and gas 
temperatures shows that in the absence of irreversible 
relaxation 1/&2<< T, the oscillation decay i s  due to the 
level degeneracy &d inhomogeneous broadening of the 
resonance transition. However, in the range 1/S1 2 T, 
the amplitude of nutational oscillations decays basicdly 
in accordance with the exponential law e d - ( t  -z/c)/T,] 
because of irreversible relaxation. This is in agree- 
ment with the conclusions reached in Refs. 4-6. Varia- 
tion of the amplitude of the incident pulse makes it pos- 
sible to satisfy easily the inequalities l/S1<<Tr and 1/62 
2Tr. 

3. EXCITATION OF A MEDIUM BY A PULSE PAIR 

We shall assume that a resonant medium is subjected 
to a pulse of type (I), which is a superposition of two 
rectangular pulses with the same carrier frequency w 
= wo but different amplitudes. The combined amplitude 
(11) of a light pulse entering the medium is 

where el and eo are the constant real amplitudes of the 
first  and second pulses; TI is the duration of the first 
pulse; is a possible constant phase shift of these 
pulses. The first pulse is very short T,<l/SZ, but i t s  
intensity is high: el>>e,' it excites resonant atoms 
which then reemit photons during the second longer 
pulse. Thus, the first pulse acts as  an initial perturba- 
tion, like the leading edge of a single rectangular pulse 
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with linear and circular polarizations. 

FIG. 3. Optical nutation for a pulse pair. For a J -  J  (J  >>I) 
transition, curves 1 and 2 correspond to the linear and 
circular polarizations. Conversely, for a J =  J +  1 ( J  >> 1) 
transition, the linear and circular polarizations correspond 
to curves 2 and 1.  It is assumed that To = l /Q , a TI = 0 .1 ,  
Aw=O, e1=25eo, 0 = 2 m ,  when n=O, i 1 ,  i 2 ,  . . . . 

discussed above. Since it is difficult to generate a sin- 
gle extended pulse (1) with a very steep leading edge, a 
pulse pair described by Eq. (24) is preferable in the ex- 
perimental sense .4'B 

In the approximation of constancy of the field (24), 
Eqs. (18)-(20) are easily integrated in each of the 
ranges 0 s  t -z /cG~,  and TI< t -z/c subject to the ap- 
propriate initial and boundary conditions, and also sub- 
ject to Eq. (21). Consequently, the real part of the nu- 
tation amplitude in the range T,ct -z/c becomes 

a,= 1 - - et 4 ei 
(4-cos Q,,Tl), b. = ---ws 8 sin Qt.T1, 

ee Q,, eu Ql, 

The constant phase shift ih, the duration of the pertur- 
bation T,, and the ratio el/eo affect the amplitude &a- 
t i o d  oscillations and shift the graph of the function (25) 
as a whole, but the nutation period is independent of ih, 
T,, and e,/eo. It is important to note that all the rela- 
tionships governing nutational oscillations are found 
above for a single rectangular pulse and remain in force 
for a pulse pair of Eq. (24) characterized by blT,<l. 
This is demonstrated clearly by the nutational oscilla- 
tion curves in Fig. 3, which gives the results applicable 
to the case of identical intensities of the incident pulses 

~f a strong amplitude perturbation in the form e(t -z/c) 
e1/et* for 0 s  t - z / c c ~ ,  is experienced by a monochro- 
matic wave E=12eocos(wt - kz), then nutation in the 
range T,G t -z/c is still described by Eq. (25) but now 
the coefficients a, and b, are fairly complex. The nuta- 
tion amplitude depends not only on the phase +, pertur- 
bation duration TI, and ratio e,/e, but also on some fix- 
ed values of the quantities p, (O), N,,(O), and N,,(O) taken 
at the moment t =z/c when the perturbation is activated. 
However, the nutation period is independent of these 
quantities and the above relationships still govern the 
behavior of nutational oscillations. 
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