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The dynamics of excitation from a discrete state into a quasicontinuous spectrurn (band of levels) under 
the influence of a monochromatic field is considered. Exact solutions are obtained for the Schriidinger 
equation in a number of particular cases. The condition under which the solutions for excitation into a 
discrete and into a continuous band are equivalent is obtained. The quasienergy spectrum, the structure of 
the quasienergy eigenstates, and the properties of the solutions are investigated. The results are used to 
formulate a theoretical approach to the description of the process of accumulation of energy by a 
plyatomic molecule over the levels of a quasicontinuum of excited vibrational states under the influence 
of IR radiation. 

PACS numbers: 33.80. - b, 03.65.G~ 31.50. + w 
1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

The discovery of collisionless dissociation of poly - db,= iy,aexp[i(o.-S2)tl. 
dt  

atomic molecules under the influence of IR laser radia- 
tion''' and the use of this effect for isotope separation3e4 Here yn= Ccng/2ff (we assume henceforth for the sake of 

have stimulated theoretical investigations on the inter- argument that y,>O); on are  the frequencies of the 

action of the vibrations of molecules with an IR field. transitions lbn)- la). Obviously the analysis of the sys- 

The rapidly developing theory of the phenomenon covers tem (1.1) becomes much simpler if the discrete band is 

a number of aspects. The spectroscopy of degenerate replaced by a quasi-contiiuous one. It can be assumed 

oscillations of spherical-top molecules,5'9 the dynamics that a sufficient condition for this replacement is the 

of the excitation of various multilevel systems that sim- inequality 

ulate atomic rnolec~les , '~ '~  the possibility of describing 
the phenomenon in quasiclassical and semiclassical lan- 
g~age,''-~' and the application of the theory of monomo- 
lecular reactions to the description of the dissociation 

are only some of the topics in question. 

In view of the complexity of the problem, there is a 
natural justification for a stepwise approach, in which 
the energy spectrum of the molecule is arbitrarily 
broken up into a t  least three regions (see, e.g., the re- 
views): a system of lower vibrational levels, a quasi- 
continuum of highly excited vibrational states, and a 
continuum of states lying above the dissociation bound- 
ary. To consider the excitation of the molecule over 
the spectrum in each of these regions, it is of interest 
to consider elementary model-dependent problems. In 
the present paper we consider the simplest of the prob- 
lems for the quasi-continuum, namely the problem of 
the interaction of a "level-band" quantum system with a 
quasiresonant field; this problem admits of exact solu- 
tions in a number of interesting  case^.^ 

We consider the lower discrete state la) and a set of 
upper discrete states I bn), the characteristic energy 
distance between which is much shorter than the dis- 
tance to the level 1 a). We also assume that the level 
1 a) is connected with each state 1 bn) by a transition with 
a dipole moment 1.. 

When a quasiresonant monochromatic field %7 cos62t 
is applied, the time evolution of the system is described 
by the following well known equations for the amplitudes 
of the states a(t) and b,(t): 

7r B6, (1.2) 
where yr is the characteristic value of the matrix ele- 
ment of the interaction operator G8'/2/%fi near resonance, 
and tZ6 is the characteristic energy distance between 
neighboring levels of the band. It can be shown, using 
an example that admits of an analytic solution, that the 
condition (1.2) can be replaced by a less stringent one. 
This is the example of a band with equal distances be- 
tween neighboring levels and with a Lorentz contour for 
the quantity c($ 

where 6 is the distance between the levels of the band 
and o is the half-width of the band a t  half-maximum. 

The solution for the case of a discrete Lorentz band, 
satisfying the initial conditions 

will be obtained in Sec. 2 together with the correspond- 
ing solution for the case of a continuous Lorentz band 
and with a comparison of the two solutions. It turns out 
that a perfectly sufficient condition for the equivalence 
of the two solutions is  

The results of Sec. 2 serve in essence a s  the basis 
for the approximation in which the band is regarded a s  
continuous. However, since the form of the contour of 
the transitions from a given excited state of the mole- 
cule is not known beforehand, it is of interest to obtain 
solutions also for other (non-Lorentz) continuous con- 
tours /.&Yo). In particular, the case of a restricted 
band is of interest. For this case we develop in Sec. 3 
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a general solution method based on the quasi-energy ap- 
 roach.^' The method is used in explicit form for 

ol<O<ot ,  (1.6) 
O<al  and o > o z .  

In this example of a rectangular band one can discern 
clearly the limiting case of a strong field, when the 
system degenerates in fact into a two-level one. At the 
same time, a comparison with the solutions obtained in 
Sec. 2 enables us to conclude that in the case of a rela- 
tively weak field (a  criterion will be given in the main 
text) the behavior of the amplitude of the lower level 
(exponential decay) is  insensitive to the form of the 
j ~ ( w )  dependence and corresponds on the linear section 
to perturbation theory for transitions to a continuous 
spectrum." 

Section 4 deals with a particular case that corre- 
sponds a s  close a s  possible to the real situation for 
transitions of spherical-top molecules into the quasi- 
continuum. This is the case when the band has a pro- 
nounced level dipole-coupled much more strongly with 
the lower state than with the remaining levels of the 
band. This pronounced level can correspond, for ex- 
ample, to one of the anharmonic-splitting  component^"^ 
that is closest to resonance. 

In the conclusion (Sec. 5) we discuss, on the basis of 
the results, some qualitative aspects of the development 
of a theory for the excitation of molecules under the in- 
fluence of an IR field over the quasi-continuum levels. 

2. CASES OF DISCRETE AND CONTINUOUS BANDS 
WITH LORENTZ CONTOUR FOR THE TRANSITION 
CROSS SECTIONS 

We consider the equations in (1.1) for the case of a 
discrete band with 

The normalization in (2.1) is chosen such that 

The system (1.1) with initial conditions (1.4) i s  equiva- 
lent to the following Volterra-type integro-differential 
equation: 

where the integral kernel ~ ( z )  is  given by 

For the case (2.1), summation in (2.3) yields 

K ( z )  =yz e r p  (isz) [ch oz-th (no/6)  sh oz ]  

at 0+<2n/6, (2.4) 

K(z+2n/6)  = K ( z )  e s p  ( isz) ,  

where s is  the detuning from resonance for the transi- 
tion to the center of the band ( s  = - w,). 

The standard method of solving equations such a s  
(2.2) is to use Laplace transforms (see, e.g., Ref. 38). 

In our case (2.4), the Laplace transform ii(p) of the 
function a(t) is  given by 

a ( p )  = [ p + R ( p )  ] - I = [  ( p - i ~ ) ~ - o ~ ]  {p3-2ispz 

+ (y2-oZ-sZ)p-iy2s-uyZ th(no/6)cth[n (p - i s ) /6 ] ) - ' .  (2.5) 

Since the choice of the integration line Rep= c>O for the 
inversion of the Laplace transformation 

1 '+'" 
a ( t )  = - J d ( p )  eP1dp 

2nic-i' 

is  in a certain sense arbitrary, we can choose a line 
far enough from the imaginary axis, where it can be 
shown that the function Z(p) can be expanded in the fol- 
lowing form: 

2nn(p-is) 1 fi (p+p.') } 
+20y2 t h z v  e s p  - ' [  6 6 u  (P-PA)"" ' 

(2.7) 
n - l  k-1 

Here p, a r e  the roots of the equation 

and the asterisk denotes complex conjugation. 

From (2.6) and (2.7) follows an expression that de- 
scribes the time behavior of the amplitude of the lower 
level 

where the function co(t) yields the contribution for all 
the times and is determined by the formula 

while the remaining functions c,(t)(n= l ,2 , .  . .) are  
turned on in succession a t  the instants of time 277 n/6:  

For our purposes it will be sufficient from now on to 
analyze mainly the behavior of a&t) only in the first 
time interval t < 277 /6. Some results of numerical cal- 
culations by formulas (2.9)-(2.11) will be given also for 
larger time intervals. But at first we obtain the solu- 
tion for the continuous band with a Lorentz contour . 

For the case of a continuous band, the evolution of the 
amplitude of the lower level a(t), just a s  for the dis- 
crete band, is  described by (2.2). The integral kernel 
corresponding to (2.12) is  

K ( z )  =yZ e r p  [ (is-a) z ] .  (2.13) 

Omitting the elementary intermediate steps of deter- 
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mining and inverting the Laplace transformation, we 
obtain 

where 

We now compare the solution aAt) for the case of a 
discrete band and the solution a,,,(t) for the case of a 
continuous band in the time interval 0 < t  <2n/6. It is 
natural to seek equivalence of the two solutions under 
the condition that the dipole moments of the neighboring 
transitions into the discrete band do not differ very 
strongly. By way of a criterion it suffices to require 
satisfaction of the inequality 

e=l-th (rro/6)<l 

or 

esp (-2rro/6) < 1, (2.16) 

which holes with large margin already at a s  6. 

When the condition (2.16) is  satisfied, there is no dif- 
ficulty in obtaining an estimate for the roots of Eq. (2.8). 
The first  two roots p,,,, accurate to terms that a re  
small in the parameter E, coincide with r,,, which enter 
in the solution (2.14) for a,,,(t). For the third root p, 
we have, accurate to terms -E, the expression 

Consequently the solution a&t) in the time interval 0 < t 
<2n/b takes the following form: 

where p, = r,,p,a r,, r,,, are defined in (2.15), and p, is 
approximately given by (2.17). 

It follows from (2.18) that if the most substantial 
changes of the modulus of the amplitude of the lower 
level occur within times shorter than h / 6 ,  then the ex- 
citation process can be described with good accuracy by 
the solution (2.14) for the case of the continuous band. 
To ascertain the conditions under which the time inter- 
val 0 < t  < 2n/6 is sufficient for the description of the 
main features of the excitation process, we consider the 
limiting relations between the parameters. 

For a strong field, when the following condition is 
satisfied 

the behavior of the amplitude of the lower level is de- 
scribed by a damped oscillating solution 

The characteristic changes of the solution, by virtue 
of the condition (2.16), occur in times much shorter 
than 2n/b. The last statement remains valid also for 
intermediate fields. 

The case of greatest interest is that of a weak field, 
when 

yalo-bl.  (2.19') 

In this case the amplitude of the lower level is damped 
exponentiiy without oscillations: 

At the instant of time t =  2n/6 the probability of finding 
the system on the lower level is given by 

Obviously, the condition 

is a sufficient criterion for the equivalence of the solu- 
tions for the cases of discrete and continuous bands. 

To impart to the condition (2.23) a clear physical 
meaning, we introduce in it explicitly the characteristic 
value of the matrix element of the interaction operator 
y, near resonance. Combining (2.1) with the relation y, 
~ y , , ( n ~ s / b ) ,  we obtain the following criterion: 

It is clear therefore that the condition (1.5) is perfectly 
sufficient for the change from the discrete to the contin- 
uous description. 

However, when comparing the two solutions (2.9) and 
(2.141, it must be remembered that their equivalence 
holds only in the time interval 0 < t < 2n/6. Whereas in 
the case of the continuous band the decay of the lower 
level is irreversible, for the case of the discrete band 
the system returns at definite instants of time to the 
ground state. The limiting case of such a return (at 
y, << 6) constitutes ordinary oscillations of the popula- 
tions between the lower state and that band state to 
which the transition is closest to resonance. This 
statement is illustrated by results of a numerical cal- 
culation by means of exact formulas (2.9)-(2.11). For 
the calculations illustrated in Fig. 1, we chose the case 
of resonance at the center of the band (s = 0). 

3. CASE OF CONTINUOUS LIMITED BAND 

We consider Eqs. (1.1) for a system (see Fig. 2) con- 
sisting of a lower discrete state 1 a) and states I b(x) )  
of a continuous band; the variable x ,  which has the di- 

FIG. 1. Dependence of the quantity I a 1 on the time for ex- 
citation into a discrete band with a Lorentz contour for the 
transition cross sections. The parameter values are: s/6 
= 0 and u/6 = 5; curve 1-yo/6 = 0.5 (y/6 = 1.98); curve 2- 
yo/6 = 0.2 (y/6 = 0.79). 
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FIG. 2. .Level scheme and notation for the case of excitation 
to a continuous limited band. 

mension of frequency, is  reckoned from the center of 
the band (-A <x < A). It i s  convenient to use the follow - 
ing notation for the matrix element of the interaction 
operator: 

<b(x )  l & / ~ ~ l a > = y g ( x ) .  (3.1) 

Here, just as  in (2.1) and (2.12), the form factor g(x) 
of the transition cross section is  normalized in such a 
way that 

A 

j g'(z)=l. 
-A 

In the assumed notation, the equations in (1.1) take the 
form 

where, a s  before, s is the deviation from resonance 
with the field for a transition to the center of the band. 

Regarding (3.2) a s  equations for the determination of 
the quasi-energy eigenvalues, we seek the solution in 
the form 

a( t )  =A (h )  exp [t(s-h) t l ,  

b(x,  t )  =B(x. l)exp[i(x-A) t ] ,  
(3.3) 

where the quasi-energy tiX is  reckoned from the center 
of the band. From this we get the following equations 
that connect the coefficients A(x) and B(x, A): 

The condition for the existence of a nontrivial solution 
of the system (3.4) obviously determine the spectrum of 
the eigenvalues A,, and the corresponding connection 
between A(X,) and B(x, A,) determines the wave functions 
of the quasi-energy eigenstates (QES). 

An investigation of Eqs. (3.4) shows that the quasi-en- 
ergy spectrum always contains a continuous segment 

-A<b<A, (3.5) 
which coincides with the energy spectrum of the band. 
In fact, considering the function B(x, A) in a generalized 
sense, we obtain from the second equation of (3.4), if 
the condition (3.5) is ~at isf ied,~ '  

Substituting (3.6) in the first equation of (3.4) we get 

A ( h )  s-A A gZ(z) 
c(A)=-[--yJ-dr]. 7 -A 

x-h 

Thus, when (3.5) holds, the system (3.4) has a nontriv- 
ial solution determined by formulas (3.6) and (3.7). 

In (3.6) and (3.71, A(X) is  in essence a normalization 
factor. It is convenient in what follows to normalize the 
quasi-energy eigenstates to a 6 function, putting 

The possiblity of such a normalization follows from the 
general property of the orthogonality of the quasi-ener- 
gy eigenstate~, '~ and also directly from (3.4). Integrat- 
ing (3.8) with respect to XI over the interval -A <XI <A 
and using the Poincare-Bertrand permutation formula40 
we obtain after simple calculations the following ex- 
pression for the normalization constant: 

We now obtain conditions under which discrete eigen- 
values X exist outside the interval ( -A, A). These 
eigenvalues, a s  follows from (3.4), must satisfy the 
transcendental equation 

The simple properties of (3.10) allow us to formulate 
the following statements, which cover all the possible 
cases. 

1. There exist not more than two discrete eigenval- 
ues (A+>A and x -<-A). 

2. If the condition limg(x) #0 is  satisfied, a discrete 
eigenvalue X, exists for any value of the field amplitude. 

3. If the radiation frequency is lower than the fre- 
quency of the transition to the upper edge of the band 
(s < A) and if the condition 

lim g ( x )  =0, 
=-a 

is  satisfied, then on discrete eigenvalue X, appears only 
at field amplitudes exceeding a certain critical value 
determined from the equation 

4. If the radiation frequency lies above the frequency 
of the transition to the upper edge of the band (s>A), 
then a discrete eigenvalue A+ exists for any value of the 
field amplitude regardless of the value of g(x) at the 
upper limit x=  A. 

5. Statements analogous to 2-4 can be formulated 
also for the discrete eigenvalue A,. 

The structure of the quasi-energy eigenstates for the 
discrete eigenvalues A, i s  determined by the relation 

Therefore, normalizing the discrete quasi-energy 
eigenstate to unity, we obtain the following expression 
for the normalization constants A&): 
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We have thus obtained the quasi-energy spectrum and 
the wave functions of the quasi-energy eigenstates. Us- 
ing the orthogonality properties of the quasi-energy 
eigenstates, we can obtain a solution of the system (3.2) 
with arbitrary initial conditions. We shall not write out 
the solution in general form, and confine ourselves to 
the case of a constant dipole moment of the transitions 
to the band 

g ( r )  = ( 2 6 )  -" , (3.14) 

with initial conditions (1.4). For this case both dis- 
crete quasi-energy states exist, and the solution takes 
the form 

A 
e-'"dh 

+! ( r - A )  1 2 ~ P  ( A )  +nZy'/21 1 

The function F is determined here by the relation 

and A, are respectively the positive and the negative 
roots of the equation 

The properties of the obtained solution depend essen- 
tially on the relation between the probability W, of find- 
ing the system in discrete quasi-energy states and the 
probability W,,, for finding the system in continuous 
quasi-energy states. Obviously, 

In the limiting case W,>> W,,, the solution has in the 
main an oscillating character determined by the dis- 
crete quasi-energy states. In the limiting case W, 
<< WOWt the main singularity of the solution is the damp- 
ing of the amplitude of the lower level, due to the damp- 
ing of the integral term in (3.15). We shall illustrate 
this circumstance for the particular case of resonance 
a t  the center of the band (s = 0). In this case A,= -A,. 

For a strong field, when the condition 

is satisfied, the roots of (3.18) can be estimated, ac- 
curate to terms <A/y)', a s  follows: 

A*-*y (1-A'/2y2),  (3.21) 

and it follows from (3.19) that 
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The solution oscillates, just a s  for a two-level system, 
and all the states of the bands a re  on the average ap- 
proximately equally excited. 

In the case of a weak field, when the condition y <<A 
is satisfied, the roots of (3.18) are exponentially close 
to the edges of the band: 

A,-*A [ 1+2 exp (-2A'/y2) 1. (3.23) 

It then follows from (3.19) that W, is exponentially 
small: 

Thus, the process of excitation is described by the in- 
tegral damped term in (3.13). Obviously, if the condi- 
tion (3.20) is satisfied the main contribution to this in- 
tegral term is made by the vicinity of the point k =  0, 
where F(A) =A/y. 

Neglecting the logarithmic term in Eq. (3.17) for 
F ( X )  and extending formally the integration to the entire 
infinite axis, we arrive a t  the expression 

a ( t )  -exp ( - n y 2 t / 2 A ) ,  (3.25) 

which coincides exactly with (2.21) if the "resonant" 
matrix element of the interaction operator is introduced 
in both expressions in explicit form. As to the distribu- 
tion produced in the band in the course of the excitation, 
a simple estimate can be obtained by integrating the 
equations (3.2) and using (3.25). As a result we obtain 
for the probabilities I b(x)  1 ' the Lorentz distribution 

whose maximum corresponds to resonance, and whose 
characteristic width coincides with the rate of decay of 
the lower level. These two facts, naturally, a re  con- 
sequences of the energy conservation law and of the un- 
certainty relation. 

The intermediate cases a re  reflected in the calcula- 
tions illustrated in Fig. 3, which shows plots of W, 

FIG. 3. Dependence of the probability W, of finding the system 
in discrete quasi-energy eigenstates on the parameter y/A 
for the case of excitation into a bounded continuous band with 
constant dipole moment of the transitions. The deviations of 
the field frequency from the frequency of the transition to the 
center of the band are: 1-s/A = 0; 2-s/A= 0.5; 3-s/A 
= 0.9; 4-s/A= 1.1 (in the last case, the field frequency ex- 
ceeds the frequency of the transition to the upper edge of the 
band. 
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against the ratio y / ~ .  In addition to the case of reso- 
nance at the center of the band ( s  = 0), curves were cal- 
culated also for other values of s. 

4. CASE OF BAND WITH PRONOUNCED LEVEL 

In the preceding sections it was shown that in a suf- 
ficiently weak field the excitation of the "level-band" 
level is described by exponential decay of the lower 
discrete level [see formulas (2.21) and (3.25)]. It is of 
interest to examine the change in the excitation dynam- 
ics if the band has a pronounced level Ic) that i s  dipole- 
coupled with the lower state la) much more strongly 
that the remaining levels I b,) of the band. 

The methods described in Secs. 2 and 3 for the solu- 
tion of the equations of the amplitudes can be easily 
generalized also to this case. It turns out that all the 
main qualitative features can be illustrated with a sim- 
ple example of a continuous Lorentz band with a pro- 
nounced level, the transition to which from the lower 
state is a t  resonance (Fig. 4a). In this case, interest 
attaches to the situation when the pronounced level i s  
near the center of the band, i.e., 

and the field is weak enough: 

y/aOl. 

The equations for the amplitudes of the level system 
shown in Fig. 4a a r e  

Here r=  (c 1 ;$/2fila), and the criterion of "strong" 
coupling of the levels 1 a )  and I c) can naturally be taken 
to be the inequality 

r>yz/o. (4.4) 
A solution satisfying the initial conditions (1.4) sup- 

plemented by the conditions c(O)= 0 can be obtained for 
Eqs. (4.3) for the amplitude of the lower level a(t) in 
the same manner a s  in Sec. 2 by using the Laplace 
transformation. This solution takes the form 

(4.5) 
where q, a r e  the roots of the equation 

ql+ (0-u) q2+ (rz+y2)q+ra(a-is) =o. (4.6) 
When the conditions (4.1), (4.2), and (4.4) a r e  satis- 

fied, the solution (4.5) takes the approximate form 

We have retained in this formula the principal terms of 
the real and imaginary parts of the two roots q,,, of Eq. 
(4.6). The third root q, %(is - o)(l - y 2 / r 2 )  makes a 
small contribution to the solution. 

The solution (4.7) has a clear meaning. For times t 

FIG. 4. Process of excitation into a continuous band with a 
pronounced level. The dashed lines show schematically the 
quasi-energy states in the approximation of the two-level 
system I a) - I c), and also the most effectively populated 
states I b) of the continuous spectrum. 

satisfying the condition 

the amplitude of the lower level oscillates, just as  in 
the case of the two-level system. The oscillations a re  
damped at a rate corresponding approximately to the 
characteristic rate of transitions from the discrete 
lower level to the continuous band [see formula (2.21)]. 
A more accurate interpretation of the damping rates of 
each of the terms in (4.7) becomes understandable if we 
start  from the quasi-energy approach. .Indeed, be- 
cause of the interaction with the level I c), the level la) 
i s  split in the field into two quasi-energy states located 
at distances rm from the exact resonance (see Fig. 4a). 
As a result of this splitting, the states that a r e  "reso- 
nant" in the continuous band a r e  now those separated 
from the exact resonance by the amount *El". The cor- 
responding values of the matrix element of the interac- 
tion operator a re  given by the relations 

It i s  precisely the quantities n y: which characterize the 
decay rates of the first and second terms in (4.2) re- 
spectively. The factor 1/2 takes into account the fact 
that for each of the quasi-energy states the probability 
of being located at the level la) from which the decay to 
the continuum takes place i s  equal to 1/2. 

This interpretation of the obtained solution can be 
easily generalized also to include the case of an arbi- 
trary g ( x )  dependence [see (3.1)]. In addition, the fre- 
quency of the pronounced transition can differ from the 
field frequency. In the general case (see Fig. 4b) the 
interaction with the field is best taken into account in 
two steps. In the first step we obtain the quasi-energy 
states that interact relatively more strongly with the 
field of the two-level system. The second stage i s  es- 
sentially equivalent to calculating the probabilities of 
the transitions from the obtained quasi-energy states 
into the continuous spectrum. 

Special notice should be taken of the situation when 
the pronounced level is near the edge of the band (Fig. 
4c), so  that in the case of its resonant interaction with 
the lower state one of the quasi-energy states la )  is 
beyond the edge of the band. In this case a system in- 
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itially in the lower state remains, with probability 1/2, 
in the state la) for an arbitrarily long time. 

5. CONCLUSION 

At the present time there is not a single concept with 
which to describe the process whereby a polyatomic 
molecule acquires energy over the levels over a quasi- 
continuum of excited vibrational states. We can perhaps 
mention only two papersaw4' where attempts were made 
to compare the theoretical models with the experimental 
results. 

The theory developed in the present paper for the 
interaction between a field and a "level-band" quantum 
system is the simplest model problem for one act of 
photon absorption in a quasi-continuum. At the same 
time, we can formulate on the basis of the results the 
main premises of a theoretical description of the manner 
in which the molecule acquires energy in the quasi-con- 
tinuum. To this end, we make a few estimates on the 
basis of the experimental data on the excitation of the v, 
vibrational mode of the SF, molecule, for which this 
process was most thoroughly studied. 

1. It is known from experiment that a t  C0,-laser 
pulse energy densities E>0.1 ~ / c m '  most of the rota- 
tional states of the SF, molecules take part in the exci- 
t a t i o r ~ . ~ ~ * ~ ~  The characteristic width of the absorption 
band in a strong field is then Av, - 20 cm" (Ref. 45). 
From these two experimental facts we can obtain the 
following lower bound for Av,,, of the widths of the 
transitions from a given vibrational-rotational state to 
vibrational quasi-continuum energies (EVib>(3.. .5)& 
(Refs. 10 and 11): 

A v q u a ~ A v a b r  or. Avqum220 cm-'. (5.1) 
It follows from experimental results4' that this lower- 
bound estimate is possibly smaller by a factor 2-3 than 
the real value of Av,,. 

2. The dipole moment for an allowed vibrational-ro- 
tational transition in the v, mode of the SF, molecule 
amounts to pa= 0.3 D.47 For an allowed transition from 
a specified excited level to a state with energy E,,,, the 
dipole moment in the harmonic approximation has an 
estimated upper bound 

p<pol (E,,fho,)'". (5.2) 
Since the mixing of the states, which leads to the quasi- 
continuous "band" of transitions, does not change the 
integrated value of the square of the dipole moment, the 
following estimate holds true for the parameter y (see 
Secs. 2 and 3) that characterizes the integral interaction 
of the band with the level: 

Assuming a laser intensity I = 10' W/cmZ, a t  which the 
SF, absorbs - 10 photons48 (E,,/EW, - lo), we estimate 
the upper bound of y under typical experimental condi- 
tions at 

y<O.Gcm-I. (5.4) 
3. From the estimates (5.1) and (5.4) it follows that, 

under the experimental conditions of the energy acqui- 
sition by the SF, molecule over the quasi-continuum 

FIG. 5. Illustration of the theoretical description of the pro- 
cess of energy acquisition by a polyatomic molecule in the 
quasi-continuum region of excited vibrational states under 
the influence of IR radiation. 

levels, the following inequality is certainly satisfied: 

This ratio of the parameters (see Secs. 2 and 3) cor- 
responds to an exponential decay of the level into a 
band. This circumstance is in fact the basis of the pos - 
sibility of describing the dynamics of excitation of the 
quasi-continuum within the framework of kinetic equa- 
tions that operate with the transition rates W, as  noted 
in a number of papers.26*41*42*49'51 

The kinetic equations must describe the time varia- 
tion of the populations z,, summed over states lying in 
narrow energy intervals near the energies nE&2 which 
are  multiples of the laserquantum energy (Fig. 5). 
These equations take the following form41v50*51: 

Here p, is the density of the vibrational states for the 
energy nm.  In Eqs. (5.6), the only unknown quantities 
are  in fact the rates of the successive transitions 
W,,,, Since the integrated cross sections of the transi- 
tions from states with energy (n - l)B&2 are  quite easy 
to determine from the known characteristics of the 
molecule, the only unknown parameters that necessitate 
a thorough comparison of theory with experiment a re  
the form factors g,,.,(x) [see formula (3.1)] of the 
cross sections of the successive transitions. 

An interesting question (see Ref. 6) is whether an in- 
dividual triplet degenerate vibrational mode of a spher- 
ical-top type molecule (e.g., the v, mode of the SF, 
molecule) can form a quasi-continuum via an intrinsic 
anharmonic splitting without participation other modes 
of the molecule. It is known5' that an anharmonic inter- 
action leads to a splitting of the levels of a triplet de- 
generate mode with energy v&. The characteristic 
distance between the components of the anharmonic 
splitting, for example for the SF, molecule, amounts to 
6&- 1-7 cm" (Refs. 5 and 8). This quantity depends 
little on the number of vibrational level v, since both 
the width of the multiplet and the number of its compo- 
nents a re  proportional to vZ. Assume that an optimal 
case is realized, when transitions a r e  possible between 
all the components of the level with number v - 1 and 
the level with number v, and that the dipole moment is 
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uniformly distributed over all the possible transitions. 
From this we find that the dipole moment of each indi- 
vidual transition does not exceed p,. Using the value 
of p, given above for the SF, molecule, we find that for 
typical experimental conditions (I -10' w/cm2) we have 

Thus, the transition density produced only on account 
of anharmonic splitting i s  patently insufficient for the 
formation of a quasi-continuum, since the criterion 
(1.5) derived in Sec. 2 i s  not satisfied. It was pointed 
out in Ref. 9, however, that a possible role can be 
played by the octahedral splitting of the vibrational-ro- 
tational sublevels degenerate in the projection of the 
angular momentum on an axis connected with the mole- 
cule. This additional splitting can substantially in- 
crease the density of the transitions and ensure satis- 
faction of the criterion (1.5). In addition, interest at- 
taches to the case when certain definite (but not all) vi- 
brations participate in the formation of the quasi-con- 
tinuum in addition to the triply degenerate mode. This 
possibility was recently discussed in Ref. 42. 

The authors thank S. A. Akhamanov and V. S. 
Letokhov for interest in the work and for useful discus- 
sions. 
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Ionization detection of single atoms by laser radiation 
using Rydberg states 
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Single atoms of sodium and ytterbium were detected by the electric-field ionization of atoms from high 
(Rydberg) states. Sodium and ytterbium atoms in a beam were stepwise excited to Rydberg states by 
radiation from tunable dye lasers and ionized by electric field pulses. The conditions for maximum ion 
yield were investigated and implemented in the excitation and ionization processes. The statistics of 
appearance of atoms in the detection zone was studied for low-density beams under ion counting 
conditions. 

PACS numbers: 32.80. - t, 35.80. + s 
1. INTRODUCTION. FORMULATION OF THE reported in Ref. 8. Cesium atoms in a buffer gas were 
PROBLEM excited to the 72P3,2 state by dye laser  pulses and the 

same pulses were used for the subsequent ionization. 
Much attention has been paid recently to  methods for The resultant electron-ion pairs were detected by a 

detecting very small  amounts of matter. The smallest proportional counter. The system thus provided a 
amount of matter detectable in the atomic approach is a stable means for detecting single cesium atoms. 
single atom because i t  carries full spectral information 

However, the application of this method to atoms 
on matter. Consequently, the sensitivity of an ideal r e -  

moving a t  thermal velocities in vacuum, which a re  of 
cording system should be capable of detecting a single the greatest interest, presents the difficulty of very 
atom. Among all the detection methods, the most 

stringent requirements in respect of the energy of ion- 
promising is the laser excitation of resonance fluores- 

izing laser radiation. This is due to  the relatively 
cence and selective stepwise ionization of atoms by small photoionization cross section of the atoms (o,,, 
laser  radiation. = lV17 - lo-'' cm2). When the thermal velocity is ;= 5 

In the resonance fluorescence method,' an atom emits x lo4 cm/sec and the diameter of a l a se r  beam is d =  1 
photons repeatedly, returning to the initial state after cm, every atom moving a t  right-angles to a laser  beam 
each emission and it  can be subjected once again to can be ionized if the laser  pulses a re  repeated at a f re-  
laser  radiation. However, repeated excitation and re -  quency of 50 kHz. Under these conditions, the average 
laxation of an atom back to the ground state require the laser  radiation power required for efficient ionization 
existence of a transition close to that found in a two- amounts to  several kilowatt. 
level system. This seriously restricts the class of The energy of laser  pulses needed for the ionization of 
atoms that can be detected. The stepwise ionization an atom can be reduced by several orders  of magnitude 
methodze3 is more universal than the fluorescence de- if an atom is ionized from a high state by an electric 
tection technique but i t  is destructive because the re -  field. This ionization method was proposed, imple- 
corded atom is ionized and no longer interacts with the mented, and investigated in detail by the present authors 
laser  field. Attention has been drawn4' to  the possibil- and their colleagues. sa In this method, the nonreso- 
ity of using the stepwise ionization method in detecting nance process of photoionization from an intermediate 
atoms since the quantum efficiency of photoionization is 

state is replaced by resonance excitation of an atom to 
close to unity if the energy density of laser  pulses is 

a high (Rydberg) state and subsequent ionization by an high,enough. Modern methods for recording charged 
electric field pulse, which ensures near 100% ion yield. 

particles can detect ions and electrons with near-unity 
efficiency. If the transitions involved in the excitation An atom can be excited to  a high state in two or  three 
stages a re  completely saturated, it is possible to use stages by radiation from several pulsed dye lasers  
about half the atoms in the ground state. Consequently, synchronized with one another. The selection of the 
under these conditions, one can detect every second excitation scheme depends on the actual atom. For  al- 
atom. The first  successful experimental detection of kali metal atoms, i t  is convenient to use the two-stage 
single atoms by the stepwise photoionization method was excitation scheme. In the case of heavy elements with 
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