
inhomogeneous broadening of the absorption line i s  im- 
portant, T,* <t,, we can carry  out a similar analysis 
representing the polarization of the medium as factor- 
ized in  respect of the frequency: 

In all the above expressions one then has t o  replace the 
detuning parameter Awt, with its effective value 
(Awt,),,, = ( Awx)/( x), where the averaging is carried 
out over the profile of an inhomogeneously broadened 
line. The effective detuning parameter is proportional 
to  AwT: and the coefficient of proportionality depends 
on the actual line profile and on Aw. Detuning of the 
frequency of light with a narrow spectrum from the 
center of an inhomogeneously broadened absorption line 
has the greatest influence on the diffraction instability 
for I AwT: I - 1. The asymmetric dependence of the 
growth rate of transverse perturbations on the sign of 
detuning [see Eq. (9)] is in agreement with the experi- 
mental results on the influence of detuning of the light 
frequency on the passage of coherent pulses through a 
resonantly absorbing medium" and on the transverse 
structure of the transmitted radiation. '8' 
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The influence of motion of the active medium between the mirrors of an open resonator on the interaction 
of the generated radiation with its ensuing periodic structure of the inverted population is investigated 
theoretically. It is shown that the distributed feedback of the opposing light waves decreases when the 
active medium moves; this leads to establishment of single-frequency stationary generation at velocities 
exceeding the calculated critical value (which agrees well with experiment). 

PACS numbers: 42.80. - f 

An electromagnetic analysis of a resonator filled with 
a moving medium1 is carried out here for the purpose 
of studying the progagation and generation of light in a 
dispersive active medium that moves uniformly along 
the optical axis of an open resonator. The problem is 
both of independent interest and serves  to reveal the 
role of the spatial-periodic structure which is produced 
in the active medium because of the inhomogeneous 
saturation of the inverted population,2s3 since motion of 
the medium is one method of eliminating structure ef- 
f e c t ~ . ~  

It will be shown that the distributed feedback that is 

self-induced in the active medium decreases rapidly 
with increasing velocity of the active medium, both be- 
cause of the smoothing of the periodic structure of the 
inverted population, and because it lags in phase the 
generating standing light wave. As a result, at suffi- 
ciently high velocities exceeding a certain critical value, 
stable stationary generation is produced in the medium 
and has been observed in a number of  experiment^.^'^ 
The model considered here  does not take into account 
the modulation that can occur in the generated radiation 
when the dielectric boundaries move parallel to the 
resonator mirrors4" and does not occur, for example, 
when the end faces of the active element are  cut a t  the 
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Brewster angle,5e6 o r  when they a r e  excited only reson- 
antly when the boundary is made se l f - t ran~parent .~  
At velocities lower than critical, near the state of sta- 
tionary generation, the space-time modulation of the 
radiation, which corresponds to excitation of longitudi- 
nal resonator modes, increases and can lead to homo- 
geneous pulsations of the generated radiation. 

1. FORMULATION OF PROBLEM 

We consider an open resonator of length 2X, made up 
of ideal flat mirrors,  and assume that the active medium 
filling the resonator moves homogeneously with constant 
velocity V in a positive direction of the resonator z 
axis. The initial equations for the propagation and gen- 
eration of the light a r e  most easily written out in an 
inertial reference frame that moves together with the 
active medium. We denote by z, and t, respectively the 
spatial and temporal coordinates of this reference 
frame. The independent variables z and t of the immo- 
bile system of the resonator (lzlcl, t >0) a re  expressedin 
terms of z, and t, by means of approximate (V<< c) 
Lorentz transformations 

We introduce the mutually perpendicular components 
of the electric and magnetic fields, E and H in the reso- 
nator system and E, and H, in the coordinate system of 
the active medium. Under the transformation (1), they 
go over into each other 

In the reference frame connected with the medium, E,  
and H, satisfy the one-dimensional wave equations 

d2  e d2  E = - - E  3 - 2  
& C  cz atz  " 

d z  e aZ  1 ae a - H  - - - H  + - - E  
az: - cZ at2 a ~ ,  a t ,  

with permittivity ~ ( z , ,  t,) given near the working transi- 
tion of the active medium by 

E (z , ,  t , )=  eo + %[ ( ia l+a2)np(z , ,  t , )  - iu, I ,  
me 

(4) 

where E, is the contribution of all  the other transitions, 
w, is the central frequency of the working transition, a, 
is the loss coefficient in the medium, 

Here a, =T,w,~ d12/tiso, d is the matrix element of the 
dipole moment of the transition, T, is the spin-spinre- 
laxation time (T? is the half-width of the spectral line 
of the working transition), and w is the frequency of the 
acting electromagnetic field. 

The change of the population difference of the levels 
of the working transition n,(z,, t,) is determined by the 
average value of the field intensity IECl2 during the per- 
iod of oscillation in accordance with the kinetic equa- 
t ion 

a 
- np=y, (no-np) - 2aInPIEE12. 
a t ,  

(6) 

in which y ,  =TI-', T, is the time of the spin-lattice re- 

laxation of the inversion, and no is the value of the in- 
verted population produced by the pump in the absence 
of the f ie ld  In a field E, (and correspondingly in H,, E, 
and H) we assume that a normalization factor has been 
introduced, such that J E , ~ ~  has the meaning of the quan- 
tity usually called the photon density in the resonator. 

Equation (6) and the f i rs t  equation of (3) constitute 
under ordinary conditions a closed system for the field 
and for the inverted population. However, the boundary 
conditions on the resonator mirrors  

in the immobile reference frame connect, in accordance 
with the transformation (2), the electric and magnetic 
components of the field that acts in the moving medium. 
Taking this connection into account, we can immediately 
derive from (2) and (3), in terms of z, and t,, a single 
equation for E 

8' e a t  V a e a  
- E = - - E + - - - E .  
dzeZ cZ at," C= az ,  at ,  

In the immobile reference frame the field E(z, t) will 
be represented in the form of a sum of opposing waves: 

with amplitudes R ( z ,  t) and S(z, t) and with phase shifts 
6,(z, t) and 6,(z, t), which a re  assumed to be slowly 
varying both over the wavelength X =2n/& and during the 
period T =2n/w0 of one oscillation of the light. Substitut- 
ing (9) in terms of the variables z, and t, in (2) and (8) 
we find that, accurate to quantities of f i rs t  order in 
V/V(V = c~?, /p,  = ~ / c ~ ~ ~ ~  is the speed of light in the medium) 
the light intensity which varies slowly in time (but not 
in coordinate) is a standing wave in which the nodes 
and antinodes move in the reference frame of the me- 
dium with velocity V relative to the active atoms 

This standing wave duplicates the spatial-periodic 
structure of the inverted population, which we seek in 
the form of the expansion 

confining ourselves in weak fields to the first  spatial 
harmonics. Here n (the average value of the inverted 
population) and n, and b (the depth and phase shift of i ts  
spatial modulation) a r e  also slowly varying functions of 
the time and of the spatial coordinates. 

2. COUPLED WAVE GENERATION EQUATIONS 

The presence of a periodic structure in the active 
medium causes the opposing waves (9) to become 
coupled via Bragg reflections from this s t r u c t ~ r e . ~ * ~  
The Bragg condition for normal reflection from the 
periodic structure is satisfied automatically, since the 
structure is produced by the same field that propagates 
in it. It is therefore possible to use here the coupled- 
wave approximation,' wherein the resultant field can be 
represented as before in the form (S), but each of the 
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opposing waves is already a superposition of a direct the frequencies of the system to change by a factor 
and Bragg-reflected waves. 1 i  X ~ / v .  This differs substantially from the corres- 

We express (9) in terms of the variables z, and t, and 
substitute i t  together with (10) and (11) in (6) and (8). 
Neglecting the higher orders of the Bragg reflections, 
we obtain from (8) four quasilinear partial differential 
equations of f irst  order for the slowly varying ampli- 
tudes and phases of the opposing waves; a similar re- 
striction to the lowest spatial harmonics in (6) yields 
three ordinary differential equations for the components 
of the inverted population. We write down directly the 
resultant equations in the immobile reference frame 
connected with the resonator mirrors ;  for this purpose, 
in accordance with transformation (1) we replace the 
derivatives in accordance with the relations 

and obtain ultimately a closed system of seven partial 
differential equations of f irst  order 

u + 3(&, cos mR+& sin O,)R - $ S, 
4 - 

1 2 ,  -- (?, sin @s+& cos (DS)S+?Ol-./.. 
4R 

(12) 

with boundary conditions 

R(*L t )=S(*l ,  t ) ,  6n(*l, t )  =68(+1, t ) ,  

which follow from (7). 

In the derivation of the system (12) we took into ac- 
count the fact that the factors a, and a, in (4) have, 
generally speaking, the meaning of integral operators 
h,  and &, whose eigenvalues a re  given for a monochro- 
matic field by expressions (5). For the sake of brevity 
the operator symbols 6, and &, include also the vari- 
ables on which these operators do not act. They a r e  in- 
cluded in the notation 

and a r e  enclosed there in the parentheses. The factors 
1 i x V/V of the derivatives in the f i rs t  four equations of 
(12) have been omitted here inasmuch a s  the velocities 
in question (on the order of several  dozen centimeters 
per second) they differ little from unity and cause all 

ponding changes that occur when the active medium 
moves perpendicular to the optical axis,' but neverthe- 
less  the effects of the displacement of the structure of 
the field and of the inverted population, which corres- 
pond to the terms -&V, turn out to predominate to a 
considerable degree. 

The quantity x = (1 - l/co) is the s o  called Fresnel co- 
efficient of the "ether" drag, as can b e  easily verified 
by calculating the phase velocity of the constant-ampli- 
tude wave without allowance for the activity of the me- 
dium: 

which, a s  is well known, explains the result of the Fiz- 
eau experiment for a wave traveling, for example, in 
the same direction a s  the medium. 

The right-hand sides of the f i rs t  four equations in (12) 
determine the changes of the amplitudes and phases of 
the opposing waves on account of the variance of the 
gains and of the refractive indices in the presence of an 
opposing wave in the periodic structure of the inverted 
population. The last  terms of the equations for  the am- 
plitudes correspond to the radiation losses, which a re  
uniformly distributed over the length of the resonator. 
The last  three equations of (12) describe the changes of 
the components of the inverted population ( l l ) ,  which 
occur when the active medium moves in the presence of 
a field in the resonator. At V = O  the system (12) is a 
generalization of the previously obtained system3 to in- 
clude the case of dispersion of the active medium. 

3. STATIONARY GENERATION 

The time-independent solutions of (12), which satisfy 
the boundary conditions, determine a stationary regime 
of generation of opposing waves of light by the moving 
medium. For a generation frequency that coincides with 
the frequency of the working transition, the stationary 
values of the variables a r e  respectively 

where 

a r  2q6,- 2SOV 
v,=rt:: sin @, = - 6r=- 

a, ti,-' f (14-7)  (1+2q)  ' 71 

and the dimensionless parameter q which characterizes 
the stationary intensity is determined from the equation 

from which i t  is seen that the threshold of the stationary 
generation (q> 0 )  is usually given by the condition adz0 
> cu, corresponding to an excess of the gain over the 
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losses. 

The stationary values depend on the velocity of the 
active medium via the parameter 6,, which is propor- 
tional to the ratio of the inverted-population relaxation 
time T, to the time interval within which the atoms of 
the active medium a r e  displaced by an amount equal to 
the wavelength of the light in the medium. 

In the immobile medium we have 

and 7 = ~(aono/a ,  - 1) near the generation threshold, 
whereas at sufficiently large velocities of the medium 
(6, >> 1) we have 7 = $(adZO/a, - I) ,  i.e., a t  the same 
pump power one obtains in the moving medium single- 
frequency radiation intensities larger by a factor 1.5, 
a s  observed by direct measurementsm4 This is due to 
the smoothing of the structure of the inverted population 
(nl0 - 6;') when the active medium moves and to its phase 
lag relative to the standing light wave that produces the 
structure. 

If the phase difference between the field and the 
structure in the immobile medium is = 0, i.e., if the 
antinodes of the light wave correspond to minima of the 
gain, a situation highly unfavorable for effective ampli- 
f i ~ a t i o n , ~ ~ '  then a t  sufficiently high velocities of the me- 
dium we have @,- -n/2, i.e., the structure lags in 
phase in such a way that the nodes and antinodes of the 
field a re  under practically the same amplification con- 
ditions. The Bragg-reflection coefficient, which de- 
termines the connection between the opposing waves, is 
in the stationary regime 

and a t  high velocities po - 6i2, i.e., the coupling between 
the opposing is decreased just as rapidly a s  the result 
of the change of the phase relations as a result of the 
smoothing of the structure. 

4. MODULATION OF RADIATION 

We seek a solution of (12) near the stationary state 
(13). To this end we represent all the variables as  
sums (13) and small deviations 

R-R,+AR, S=S,+AS, 6R-6m+6n1, 

6s=6eo+6sr n=n.+An, n,=n,,+An,, 6=6,+8,. 
(14) 

Substituting (14) in (12) we obtain, in the approximation 
linear in the deviations, a system of equations which 
describes two types of oscillations a t  substantially dif- 
ferent frequencies. One of them characterizes the 
homogeneous oscillations of the sum of the amplitudes 
of the opposing waves and of the components of the in- 
verted population, while the other is determined by the 
time of travel of the light in the resonator and exceeds 
significantly (usually by three-four orders of magni- 
tude) the former. This circumstance enables us to 
resort ,  in the analysis of each type of oscillation, to 
perfectly justifiable approximations. Thus, when high- 
frequency oscillations a re  considered i t  turns out that 
the changes of the components of the inverted population 

a t  these frequencies1 a re  negligibly small and the excita- 
tion of these oscillations can be treated assuming con- 
stant values of the parameters of the periodic structure. 

We separate the spatially inhomogeneous and homo- 
geneous parts of the amplitude deviations: 

A E I - - ~ ( ~ )  +AR,(z, t ) ,  AS=AT(~) +AS, (z, t ) ,  

and obtain for the variables 

in the indicated approximation a system of partial dif- 
ferential equations of first  order 

36, a s ,  % ,  Y O  I A YO .. - + L.- = - -&A,  + - ( a o - - & , ) ~ ,  + - ( ~ , a , - a , ) 6 ~  - -at6, ,  
d t  a 2  2R, 4R 9 2 4 

d6r 86,  v 
- + ~ - = ~ ( a ~ + & , ) \ , , ,  

a t  a; 4R, 
xz -- Y o -  1 - 

?%A, + - a d , ,  + T ( ~ ? ~ , - a r ) 6 r  
2Ro 4 L 

with boundary conditions 

A,(*l, t)=O, 6,(*l,t) =O.  

Here ~ ~ = n ~ - + p , ,  %=no+$po. 

a) Immobile medium. We consider f i rs t  the excitation 
of the radiation modulation at V =O. If we neglect the 
small increment to the real  part of the permittivity 
(CY, = 0), then the system (15) breaks up into two indepen- 
dent systems, each of which can be reduced to a single 
second-order equation of the form 

-- as, 6 ,  (*z, t )  =o. 2a, - + ( a : - c ~ , ' ) d ~ = u ' ~  
at2 ?t 

A similar equation holds for adz, t). Its general solu- 
tion is 

6,, = C c o  exp( [a l  (Q)* i ~ ] t ) 4  (s), (16) 
n 

where the functions 

k- (rn-'I2) d l ,  
A (2) = { Ip: :: k=,/,, 

with m = 1,2, . . . correspond to solutions with different 
spatial symmetry, and 

a,(Q) =a@) [q - ( l+q)Tz 'Qa] ,  a2(Q) = ' l la , [ ( l+q)  (1+T2"Q2)]-1, 

where 

The constants C, are  determined by the arbitrary 
values of the deviations. At q > T ~ S Z ~ ( ~ -  TESZ~)", which 
is readily satisfied for media with a broad (T2<< SZ-') 
luminescence line at insignificant excess over the gen- 
eration threshold, we have a,(SZ) > 0 and both the phase 
and the amplitude space-time modulations of the gen- 
erated radiation increase near the stationary state. 
The condition CY,(Q)> 0 determines the s p e c t r h  of the 
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radiation. The phase and amplitude modulations can be 
represented in the form of expansions in the modes of 
the "hot" resonator, and it turns out naturally in this 
case that the criterion for the growth of the modulation 
coincides with the threshold of excitation of the neigh- 
boring axial modes.8 The relation between the values of 
the phase and amplitude modulation is determined in the 
linear approximation by the initial conditions. Usually 
radiation detectors based on the photoeffect do not regis- 
ter  a pure phase modulation, and predominance of the 
amplitude modulation corresponds to the case of mode 
lockingg and generation of short light pulses. 

b) Moving medium. Without touching upon the analy- 
tic determination of the steady-state regimes in the im- 
mobile medium, let us examine the changes produced by 
the motion of the active medium in the conditions of the 
radiation-modulation radiation excitation. We turn to 
the system (15). For the variable 6, (or A,) it has a 
solution satisfying the boundary condition in the form 

6, = [c, e s p { [ a ( Q , ) r t i R , ] t ) +  ~ p e x p ( [ a ( n ? ) l t i n , l t ) ] ~ ( z ) ,  (17) 
0 

where 

R,.  Z =  [ k2v2+' / Iao '~02- ' / I~a ,2  ( k v )  n 1 2 f  ku ( ' / , . a g t v g f + ' / ~ a , ~ ~ a ~  ( k v )  no 

- ' / , . a ? ' ( k ~ ) ~ ~ ' ) ' ~ ] ' '  . 
At velocities close to zero, the radicand becomes 

complex and contributes also to the growth rate,  thus 
causing small changes ill the growth rate and in the 
frequency in solution (16) for an immobile medium; 
these changes a re  due to allowance for the dispersion of 
the real  part of the dielectric constant. At not too low 
velocities, the modulation frequencies a re  always real ,  
and the values of the growth rate a(n) become negative 
for active-medium velocities V> V,, 

The modulation frequencies a r e  determined principally 
by the time of travel of the light through the resonator, 
and at typical resonator dimensions they exceed by 
several orders of magnitude not only the relaxation con- 
stant of the inverted population, but also, as  will be 
shown below, the frequency of the natural oscillations 
of the inverted-population components in the absence of 
a field. 

c) Hum ogeneous pulsations. For homogeneous devia- 
tions of the sum of the amplitudes h , = s  +AX of the in- 
verted population & and of the depth of its modulation 
Gl we can obtain, after substituting (14) in (12) and 
averaging over the resonator length, a system of ordin- 
ary differential equations 

The eigensolutions of (19) take the form e ~ p ( - i ( ~ ,  
+ c ~ , ~ ~ w ~ ) t * i w ~ t }  and describe pulsations, weakly 
damped in the linear approximation, of the field and of 
the inverted population a t  a frequency 

The inhomogeneous terms of (12) take the form eZat, o r  
more accurately 

and represent those components of the squares of the 
space-dependent deviations of the phase and amplitudes 
of the field which do not vanish after spatial averaging 
over the length of the resonator ((A) = (21)"S~dz), and 
vary slowly compared with e'". At a(Q)>O they act in 
(19) a s  a driving force that takes the system out of the 
equilibrium state and initiates a radiation spike. 

If all the U ( S Z ) <  0, then the stationary generation 
regime turns out to be stable both to homogeneous devi- 
ations and to the excitation of space-time amplitude and 
phase modulation of the radiation. In a moving medium 
this is possible if the condition (18) is satisfied. For 
the parameters of a laser using yttrium aluminum gar- 
net activated with neodymium ions,4 T, = 2.3 x sec ,  
w, =2 x 1015 sec-', = 1.83,21=72 cm, T, = 2 x  10'12 sec, 
(AU =(T,R)-' = 156 GHz) and TJ = f we obtain in accordance 
with (18) a critical velocity V,, = 7.5 cm/sec, in good 
agreement with the values observed by Danielmeyer 
and Nilsen4 (V,, = 10 cm/sec). Tursunov's measure- 
ments were made at a velocity V=55 cm/sec. Calcula- 
tion by formula (18) a t  pumps 1.4 times larger than 
threshold (q = 0.2) in the case of the crystal CaWO, (TI 
=0.13 x sec ,  (T,n)-'=5.3 cm-', 21=60 cm, w, 
=2  x 1015 sec") yields V,, =I0 cm/sec, and for ruby the 
values of the critical velocity a r e  lower by one order of 
magnitude. Similar observations of stationary genera- 
tion were also made by others5#' at velocities from 35 
to 80 cm/sec. 

Our analysis leads also to some conclusions with 
respect to the role of the spatially inhomogeneous burn- 
out of the inverted population in the dynamics of light 
generation in solid-state active media. As shown above, 
the induced periodic structure of the active medium and 
the distributed coupling of the opposing waves can lead 
to  pulsations of the radiation only via excitation of side 
modes, i.e., i t  is a secondary cause of pulsations and 
cannot influence directly on the stability of single-mode 
generation This is confirmed, in particular, by re- 
ports of a low level of the fluctuations of the radiation 
of single-mode generators with stabilization of the reso- 
nator elements ,lo and also by observation of spikeless 
generation in an active medium with a narrow lhmines- 
cence line," when only one longitudinal mode lands in 
the gain contour. We note here that although the per- 
mittivity approximation is valid only for broad spectral 
lines, nonetheless a formal treatment of the increment 
in the solution (16) for a line with a half-width 62 
shows that in this case, too, a stable stationary genera- 
tion regime should be observed. On the other hand, if 
several longitudinal modes a r e  excited, the inhomogen- 
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eous burnout of the inverted population can lead to 
development of radiation pulsations, in agreement with 
the large accumulated experimental material," and is 
confirmed by theoretical calculations. 

The author is deeply grateful to A. V. uspenskG for 
useful discussions which guided this work. 
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A simple general formula is derived for the probability of an allowed transition between quasiclassical 
states. 

PACS numbem 03.65.Sq 

It  is well known that the calculation of a transition 
probability between quasiclassical states reduces to the 
calculation, by the method of steepest descents, of ma- 
trix elements of the perturbation potential. If the trans- 
ition is classically forbidden, the saddle point lies in 
the complex plane and the result depends on details of 
the analytic behavior of the potential in which the quasi- 
classical motion occurs (Ref. 1, Sec. 51). If the transi- 
tion is forbidden, simple general formulas can be de- 
rived; the present note deals with this case. 

where 

1 = 
j(z) = - j (sip,+s2p,.) dz+qz. 

A (4) 

In the sense of the quasiclassical approximation, f(x) 
is a rapidly varying function. Therefore in calculating 
the integrals in Eq. (3) we can use a steepest descent 
(or stationary phase) method. The position of the sad- 
dle points is given by the equation 

We calculate the of the value of which expresses the law of conservation of momentum. 
the matrix element For allowed transitions all of the x, are real. The re- 

cp.mP (q) =I cp,(z)e'-v"~ (+)& (1) 
sult of the calculations is 

with the quasiclassical functions 
s,,sz=*l 

c, 1 = n 
lm(z)--ms (hj pndZ--) 7 I)', (2) the quasiclassical condi- 

YP* 4 
tion with respect to n and comparing the result with the 

where U(x) is the potential in which the quasiclassical well known expression for the normalization constant 
motion of a particle with mass m occurs, E, is an ener- (Ref. 1, Sec. 48), we obtain the relation 
gy eigenvalue, a is the position of one of the classical 

2m de, 
turning points, and c, is a normalization constant. We I c ~ ~ ~ = - - .  nii dn (6) 
write the integral (1) in the form of a sum 

Equations (5) and (6) give the required result. This ex- 
n dz 

c.. (q) - x exp [ij(z) -iT (si+s2) ] - pression can be written in a more intuitive, and in 
.,...-* i 

(P"P..)"= ' (3) some cases much more convenient form: 
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