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An instability of coherent propagation of light pulses in a resonant medium, predicted earlier theoretically 
[L. A. Bol'shov, V. V. ~ikhanskir, and A. P. Napartovich, Sov. Phys. JETP 45, 928 (1977)], is 
demonstrated to be in agreement with the published experimental data. It is shown that detuning from 
resonance by Ao = oo - o,, (a, is the frequency of light and o,, is the frequency of a resonance transition) 
causes the growth rate of this instability to decrease by a factor of Aot,, where t, is the pulse duration. 
For IAot,l>l and Ao>O, the effect reduces to the self-focusing instabiiity of ~ e & o v  and Talanov 
[JETP Lett. 3, 307 (1966)l. For Ao<O, when there is no self-focusing in the noncoherent case, a 
coherent pulse is unstable. The growth rate of the instability is of the same order as in the Ao>O case 
but it is numerically slightly smaller. 

PACS numbers: 42.10.Mg 

1. The phenomenon of self -induced transparency ance of "hot spots" in the transverse cross section of a 
discovered by McCall and Hahnl has been investigated pulse transmitted by an absorber was pointed out in the 
intensively for the last decade. This phenomenon rep- very first paper of McCall and Hahn.' The results of 
resents lossless propagation of short sufficiently in- the experiments mentioned above were in agreement 
tense light pulses through resonantly absorbing media with the theoretical predictions5 of the existence of a 
(see, for example, the reviews of Poluhktov et ~1.'). coherent pulse instability. 
Attention has been concentrated on such characteristics 
of ultrashort pulses as  the propagation velocity, shape, 
delay time, absorption, etc. In comparing the experi- 
mental results with the theory, use has been made of 
one -dimensional calculations allowing for inhomogen- 
eous broadening of absorption lines, resonance transi- 
tion degeneracy, etc. Under real experimental condi- 
tions a pulse i s  finite in the transverse direction but in 
the case of sufficiently large apertures the one-dimen- 
sional approximation is regarded as  fully justified. 
The influence of the transverse structure of pulses on 
their propagation in resonantly absorbing media has not 
yet been investigated in detail. Some years ago Mattar 
and Newstein4 carried out numerical calculations of the 
propagation of coherent pulses of Gaussian shape in the 
transverse direction. These calculations indicated a 
tendency of the pulses to self-focus a s  a whole. 

In an earlier theoretical paper5 the present authors 
and Napartovich proved the existence of an instability of 
light pulses in respect of transverse perturbations dur- 
ing resonant coherent propagation. We have shown that 
the fastest to grow are  the perturbations with a charac- 
teristic transverse size -(Alp)'/ ', which grow in a dis- 
tance which i s  of the order of the length of a light pulse 
1, in a medium (A i s  the wavelength of light). Experi- 
mental investigations have been made's7 of coherent 
propagation of short resonant light pulses through sod- 
ium vapor and of the transverse distribution of the in- 
tensity of the transmitted pulses. Numerical calcula- 
tions7 indicate a factor of -10 increase in the intensity 
on the beam axis in the case of sufficiently large trans- 
verse dimensions r, of the input pulse, i.e., when F 
>> 1 (F = ~ I I Y ~ / A ~ ,  is the Fresnel number); this is due to 
focusing of the pulse a s  a whole. However, experi- 
mental attempts to increase the intensity on the axis by 
a factor exceeding 2 have resulted in transverse split- 
ting of a large-diameter light beam into filaments whose 
transverse size is of the order of (Alp)" ,. The appear - 

It would seem that the development of an instability 
should affect the propagation of pulses in sufficiently 
long absorbers [longer than 1, ln($,/;j, where go is the 
amplitude of a steady-state pulse and g i s  the amplitude 
of transverse perturbations]. In fact, a recent numeri- 
cal experiment8 showed that a 2 r  pulse breaks up after 
traversing a distance of about ten pulse lengths in a 
medium with homogeneous broadening. However, the 
majority of the experimental data agree more or  less 
satisfactorily with one-dimensional calculations. This 
has been due to the fact that such experiments have 
been carried out mainly in absorbers of moderate 
length (L/l, -5-7). In those cases when the length of 
an absorber has exceeded the pulse length by a factor 
of 8-10, the observations have indicated a considerable 
influence of the transverse structure on the nature of 
pulse propagati~n.'*~*'*~~~*~~ Diels and ~ a h n "  investi- 
gated the propagation of 271 pulses in ruby in the L/l, 
220 case. They found that a coherent pulse crosses an 
absorber only when the carrier frequency w, is detuned 
sufficiently from the center of an absorption line w,,. 
They also found experimentally that the transmission of 
a 277 pulse depends on the sign of the detuning Aw = w, 
- w,, and that for Aw > 0 the absorption is considerably 
stronger than for Aw <O for the same absolute detuning. 

2. We shall consider the influence of detuning of the 
frequency of light from the center of a resonance tran- 
sition line on the stability of coherent propagation of 
light pulses in the presence of transverse perturbations. 
For simplicity, we shall confine ourselves to a two- 
level model without degeneracy and we shall ignore in- 
homogeneous broadening. In this case the reduced 
equations for the field E, polarization of the medium P, 
and difference between the populations of the lower and 
upper levels n are  

ip; ( la)  
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Here, 

E(x ,  t )  =8 (x ,  t ) exp  [ i (oo t -kx )  +irp ( x ,  t )  1, 
P ( x ,  t )  - (PI- iPz)  exp [i(oot--*kx)+irp(x, t )  1, 

q i s  the nonresonant refractive index, N is the density 
of resonant particles, and p is the dipole moment of the 
transition. 

The system (1) has a familiar steady -state solution in 
the form of a one-dimensional soliton (nonresonance 2n 
pulse): 

where v i s  the pulse velocity and t, i s  the pulse duration, 
related by the expression 

We shall now analyze the stability of the system (1) 
against transverse perturbations which we shall assume 
to be proportional to cos x-r,. Linearization of the 
material equations (lb) near the steady-state solution 
(2) gives 

d?, a @ - = -Am?* - -P20, 
dt ot 

a@ k2 - 
-= a'a A d I  + - P I ,  + -(&no+80ii),  

ot at  A 
dii 1 - 
-=-- 
at h 

(&P,O+8OPZ), 

where 

A o t ;  p2 
P I ,  = - - 8 0 ,  

I + ( A U ~ , ) ~  h 
p2 aTo 

pzo = tP' -- 
~ + ( ~ ~ t & = h  at ' 

2 t-xlu 
n o =  I -  

i + ( ~ u r p ) ~ c h - 2  . 
A tilde above the quantities n, PI, P,, cp, and %'repre- 
sents small perturbations. The equations for the per- 
turbations of the amplitude and phase of the field a re  

-. 

It i s  now convenient to adopt a coordinate system 
moving together with a pulse because all the coefficients 
in the above equations depend on the variable T =  (t 
- x / v ) / t  , . The dependence on the longitudinal coordi - 
nate x will be sought in the form exp(rx), where r is 
the growth rate of transverse perturbations. Differ- 
entiating Eq. (5) with respect to T and using Eq. (4), 
we readily obtain the following system of equations in 
terms of dimensionless variables: 

Here, we have adopted the notation 

Our task is to determine the eigenvalue spectrum y(g) 
of the system (6) and the eigenfunctions satisfying zero 
boundary conditions in the limit T - *w. For g= 0, we 
have Re y c 0. The doubly degenerate eigenvalue y = 0 
corresponds to the eigenfunctions 

1 
V o  = -, Uo=O and Vo=O, U, = 

ch T 

which in turn correspond to a small initial displacement 
of the pulse envelope and a small phase shift of the light 
pulse. 

We shall find the dispersion relationship y(g) employ- 
ing perturbation theory. For $<< 1 the eigenvalue i s  
I Y I<< 1 but we shall show later that 1 y and, there- 
fore, to find the relationship betwe6n y and g we have to 
calculate the eigenfunctions of the system (6) in the first 
order of the largest parameter y. The eigenfunctions 
a r e  then 

c 7 7  V =A+ --(c,+ Aotpcz)  + V,, 
c h r  2 c h s  

d i d 
U = Q -  (-) +f [ c z Z ( l )  - 2 b w t c , y ( ~ ) ]  + u*. 

d~ c h r  ch T 

Here, c, and c, are  the constants related by an expres- 
sion which we shall find later; V, and U, are  terms of 
the second order of smallness in respect of y; y (T) is 
the solution of an inhomogeneous differential equation 

this y (7) i s  an even function which decreases monoton- 
ically in the limit T - *w. 

The orthogonality of the right-hand sides of the equa- 
tions in the system (6) to the solutions of the unper- 
turbed equations (with y = g =  0) is the condition of solu- 
bility of the system (6) because the left-hand sides con- 
tain only the Hermitian operators. Multiplying the first 
equation by l/coshr and the second by t a n h ~ / c o s h ~  and 
then integrating with respect to T, we obtain the follow- 
ing linear system of algebraic equations: 

The condition of existence of nonzero solutions of the 
system (8) gives the following dispersion relationship: 

Thus, the propagation of a 277 pulse is unstable against 
transverse perturbations for any detuning from reso- 
nance. The unstable perturbations correspond to the 
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plus sign in front of the root in Eq. (9). For I ~ w t , (  << 1 
the results obtained above reduce to those found earlier.5 

We shall now consider the case of large detuning: 
1 ~ w t , ( > >  1 .  We then have to distinguish two possibili - 
ties: Aw > 0 and Aw <O. If Aw > 0, the growth rate of 
the instability is given by 

x ( i - u q / c ) " ,  re- 
( A d , )  '" ( k v t p )  '!, ' 

The envelope of the field and its phase a re  then 

cp=-a cos xr,er'. I 
Hence, we can see that if Awt,>>l ,  transverse pertur- 
bations result in small-scale self-focusing of the light 
pulse (constrictions develop). We shall now assume 
that Aw <O. Then, the propagation of coherent light 
pulses i s  once again unstable against transverse per- 
turbations. Perturbations a re  now snake-like: 

d&o ( t - z / v )  
tp cos xrL er"a, 

dt 
r u t ,  ( t - x / u )  

'F=a-- (hot , ) '  cos xr, err. l - u q l c  t p  

The growth rate of such an instability is given by 

The terms snake and constriction were applied to trans- 
verse perturbations of pulses by Zakharov and Ruben- 
chik12 in discussing instabilities of solitons in disper- 
sive media. The range of validity of the results ob- 
tained i s  governed by the range of validity of perturba- 
tion theory in respect of 2 in the system (6): $ 1  ~ w t , )  
<< 1. It is worth considering the stability of propagation 
of a coherent light pulse against transverse perturba- 
tions of smaller scale such that 2 I Awt, I>> 1. 

Introducing a large parameter g A w t ,  and lowering 
the order of equations in the system (6), we can show- 
a s  in Ref. 5-that the eigenvalue i s  given by 

where 

A and B are numbers of the order of unity. Thus, the 
growth rate of transverse perturbations increases 
monotonically in the range ( $ ~ w t ,  1 < 1 and then falls for 
perturbations of smaller scale 1 2 ~ w t ,  1 > 1. Conse - 
quently, the maximum growth rate corresponds to the 
limit of validity of perturbation theory where g2 I Awt, I 
-1. 

3. We shall now consider the results obtained. If 
Aw = 0, instability of coherent propagation of light 
pulses against transverse perturb~tions i s  due to the 
appearance of diffracted oblique waves which interfere 
with the field of the main wave and cause (because of 
the dependence of the velocity of a 21r pulse on the field 
amplitude) transverse perturbations to grow. If I Awt, 1 

>> 1, it follows from the adiabatic approximation theo- 
ry'3914 that the propagation of light can be described by 
the refractive index of a medium (if p$,/E<< ( Aw I ) and 
then the field broadening of a two-level transition re-  
sults in a nonlinear dependence of the refractive index 
on the field intensity. According to the theory of Bes- 
palov and Telan~v, '~ this nonlinear refraction results 
for Aw > 0 in small-scale self-focusing of light. It 
should be noted that for Awt, >> 1 Eq. (10) is identical 
with the response obtained by Zakharov and Rubenchik12 
if the nonlinear dependence of the refractive index i s  
deduced from the adiabatic approximation. '=*I4 

The condition of existence of small-scale self-focus- 
ing-which results in a considerable excess of the light 
power density above a critical value for a nonresonant 
21r pulse-is equivalent to the inequality 

Consequently, if I Awt, I >> 1 (Aw > O), the diffraction in- 
stability changes to self-focusing described by the theo- 
ry of Bespalov and Talanov. In this case the refraction 
of rays and the dependence of the refractive index on the 
intensity result in self -focusing of light and diffraction 
limits the transverse size of light filaments which then 
form. 

An important difference from the theory of Bespalov 
and ~ a l a n o v ' ~  appears in the case of negative detuning 
of the light pulse frequency from that of a two-level 
transition. According to Bespalov and Talanov, propa- 
gation of homogeneous light in the Aw < 0 case is stable 
against transverse perturbations. However, it i s  
shown above that in this case the propagation of a co- 
herent light pulse i s  unstable against snake-like trans- 
verse perturbations. In the case of large detuning this 
instability can be interpreted in a simple physical man- 
ner. 

Let us consider a part of a pulse which i s  convex in 
the propagation direction. If Aw <0, the refractive in- 
dex decreases on increase of the intensity and, there- 
fore, the trailing edge of the pulse acts a s  a converging 
lens and the leading edge a s  a diverging lens. The ra -  
diation passing through two consecutive positive and 
negative lenses is transformed in the same way as  in a 
telescopic system and increases in intensity. Similar- 
ly, the intensity decreases in a concave part of a pulse. 
The group velocity of light increases on increase of the 
intensity and, therefore, the convex parts overtake an 
unperturbed pulse and concave parts lag behind, thus 
increasing further the distortions of the pulse shape. 
The condition for the growth of snake-like small-scale 
perturbations in the Aw <O case i s  similar to  the condi- 
tion for the existence of small-scale self-focusing given 
by Eq. (14). It should be pointed out that i f  Aw = 0, we 
can expect transverse perturbations which are  super- 
positions of constrictions and snakes. A change from 
one type of perturbation to another occurs for detuning 
amounting to hut, - 1 .  

The above analysis applies to the stability of propaga- 
tion of coherent pulses with a wide radiation spectrum 
so that t, < T,*, where 1/T:  is the inhomogeneous width 
of the transition. In the other limiting case when the 
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inhomogeneous broadening of the absorption line i s  im- 
portant, T,* <t,, we can carry  out a similar analysis 
representing the polarization of the medium as factor- 
ized in  respect of the frequency: 

In all the above expressions one then has t o  replace the 
detuning parameter Awt, with its effective value 
(Awt,),,, = ( Awx)/( x), where the averaging is carried 
out over the profile of an inhomogeneously broadened 
line. The effective detuning parameter is proportional 
to  AwT: and the coefficient of proportionality depends 
on the actual line profile and on Aw. Detuning of the 
frequency of light with a narrow spectrum from the 
center of an inhomogeneously broadened absorption line 
has the greatest influence on the diffraction instability 
for I AwT: I - 1. The asymmetric dependence of the 
growth rate of transverse perturbations on the sign of 
detuning [see Eq. (9)] is in agreement with the experi- 
mental results on the influence of detuning of the light 
frequency on the passage of coherent pulses through a 
resonantly absorbing medium" and on the transverse 
structure of the transmitted radiation. '8' 

The authors a r e  grateful to A. M. Dykhne and A. P. 
Napartovich for discussing the results  obtained. 
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The influence of motion of the active medium between the mirrors of an open resonator on the interaction 
of the generated radiation with its ensuing periodic structure of the inverted population is investigated 
theoretically. It is shown that the distributed feedback of the opposing light waves decreases when the 
active medium moves; this leads to establishment of single-frequency stationary generation at velocities 
exceeding the calculated critical value (which agrees well with experiment). 

PACS numbers: 42.80. - f 

An electromagnetic analysis of a resonator filled with 
a moving medium1 is carried out here for the purpose 
of studying the progagation and generation of light in a 
dispersive active medium that moves uniformly along 
the optical axis of an open resonator. The problem is 
both of independent interest and serves  to reveal the 
role of the spatial-periodic structure which is produced 
in the active medium because of the inhomogeneous 
saturation of the inverted population,2s3 since motion of 
the medium is one method of eliminating structure ef- 
f e c t ~ . ~  

It will be shown that the distributed feedback that is 

self-induced in the active medium decreases rapidly 
with increasing velocity of the active medium, both be- 
cause of the smoothing of the periodic structure of the 
inverted population, and because it lags in phase the 
generating standing light wave. As a result, at suffi- 
ciently high velocities exceeding a certain critical value, 
stable stationary generation is produced in the medium 
and has been observed in a number of  experiment^.^'^ 
The model considered here  does not take into account 
the modulation that can occur in the generated radiation 
when the dielectric boundaries move parallel to the 
resonator mirrors4" and does not occur, for example, 
when the end faces of the active element are  cut a t  the 

1033 Sov. Rtys. JETP 48(6), Dec. 1978 0038-5646/7811201033-06$02.40 O 1979 American Institute of Physics 1033 




