
')In the present case the polynomials 6 (x) have degree k +1 
and a definite parity, equal to (-lpP: 

 ere, the K i  are certain coefficients, depending on the 
parameters v, b , and p. We shall give details of the calcu- 
lations, and also the explicit form of the coefficients K i  , 
in another publication. 
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A theoretical investigation is made of the influence of resonance excitation-exchange collisions on the line 
profile of a two-photon S S  transition. It is shown that the profile differs from the form predicted by the 
adiabatic collision theory of the broadening. In particular, the ratio of the line width I' to the shift Ao, 
does not obey the relationship T/lAo, I = 1.4. The characteristics of the broadening in the presence of 
hyperfine splitting of the levels are considered. 

PACS numbers: 32.80.Kf, 32.70.12, 3 1.30.G~. 

01. INTRODUCTION Waals interaction plays the main role in such collisions 

The theoretically predicted1 advantages of two-photon 
and its influence on the broadening of one-photon tran- 
sition lines has been investigated quite thoroughly. 

absorption as the most accurate method for  investigating 
atomic and molecular transitions have recently been 
confirmed convincingly by several  experimental inves- 
t igation~. ' -~ One of the most attractive features of this 
method is that it can be used to eliminate in principle 
and reduce considerably in practice the influence of the 
Doppler effect on the line width. Therefore, beginning 
f rom relatively low pressures of -1 Torr,  when the 
collisional line width becomes comparable with the ra- 
diative width, collisions play the dominant role in the 
formation of a line profile. 

We shall a lso  assume that the density of the perturbing 
particles is sufficiently low so that the collision (impact) 
theory of the broadening can be applied. The broadening 
of the two-photon transition lines by a foreign gas does 
not require any special treatment. We can use the 
standard formulas of the collision theory for  the broaden- 
ing of one-photon absorption ~ p e c t r a . ~  

The situation is different in the case of the broadening 
of two-photon transition lines by the gas of the same 
substance. In this case the broadening may be greatly 

We shall consider the characteristics of the broaden- affected by the resonance exchange of excitations in col- 
ing of two-photon transitions in atoms. In a typical ex- lisions between identical atoms, whose role is not taken 
perimental situation the line profile of such a transition into account in the standard adiabatic collision theory of 
is formed as a result  of collisions with neutral particles, the broadening. The analogous question of the influence 
which are atoms and molecules of the same substance of the resonance transfer of excitation on the profile of 
in the form of a gas o r  of an impurity. The van der a one-photon line has been considered on many occa- 
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~ i o n s . ~ - '  It is worth noting the following points. It is 
known that such processes must be allowed for  only in 
the calculation of the line profile of transitions from the 
ground atomic state. A considerable contribution to the 
broadening is made by these processes only a t  sufficient- 
ly high densities when the collisional line width becomes 
comparable with the radiative width. However, a t  these 
densities the optical thickness of a layer becomes very 
great which makes i t  extremely difficult to investigate 
the line profile experimentally. On the other hand, a t  
least one of the states linked by a one-photon transition 
is degenerate. This degeneracy complicates the prob- 
lem and its analytic investigation enormously. As a 
result, i t  is difficult to separate the effects of the reson- 
ance excitation exchange from the effects associated with 
the level degeneracy. 

Both these difficulties disappear in most two-photon 
absorption spectra. We a r e  speaking here of the S-S 
transitions from the ground state of an atom, which will 
be the only transitions considered in the present paper. 
In this case we can assume that there is no degeneracy, 
which eases greatly the theoretical study. Moreover, 
the optical thickness of a layer remains less than unity 
for practically any gas density. 

5 2. DENSITY MATR lX EQUATION 

The profile of a two-photon absorption line repre- 
senting a transition of an atom from state 1 to state 2 in 
a field 

E=E, esp (ik,r-iw,t) tE? exp (-ik2r-iw2t)+c.c. 

is governed by the density matrix element p,,(v), where 
v is the velocity of the atom. We shall use o(v) to denote 
the time-independent part of the density matrix: 

oi2(v) =p,? (v) e"Dx+":" , oii (v) =-gii(v). 

The equation for u,,(v) has the form 

where Aw = a,, - w ,  - w,; w,, is the frequency of the 1 - 2 transition; y, is the radiative line width; Ak = k, - k,; 
G is the composite matrix element of the interaction of 
the atom with the field, including the sum over all  the 
intermediate states; (dylJdt)w"is the collision term de- 
scribing the relaxation processes. Equation (1) is ob- 
tained on the assumption that u,,(v) = 1, u,,(v) = 0. 

The expression for (di~,,/dt)'" can be obtained by a 
method similar to that used in Ref. 7. We note that the 
increase in the two-particle density matrix u(v)a(vd 
[u(v,) is the density matrix of the perturbing atom] due 
to one collision is given by the standard expression 

in which the S collision matrix is a function of the quan- 
tum numbers of both atoms. Taking the traces of the 
left- and right-hand sides of Eq. (2) for the quantum 
numbers of the perturbing atom and averaging over the 
collisions, we obtain 

dol2 (v) co" (dt) = x J [ S ~ ~ , , ~ S ~ ~ , ~ ~ U ~ ~ ( V )  oal(vt) -oi=(v)oaa(v~) IF(g)dg9 (3) 
i,h,=.8 

where F(g)dg is the number of collisions with the param- 
e te r s  between g and g + dg; the f i rs t  and third index of 
S represent the quantum numbers of the investigated 
atom, whereas the second and fourth a r e  the corres- 
ponding numbers of the perturbing atom. In spectral 
problems we can simplify the right-hand side by retain- 
ing only the matrix elements whose resonance frequen- 
cies a r e  close (within the limits of the line width of the 
investigated transition) to the resonance frequency of 
the element u,,(v). Bearing in mind also that the popula- 
tion of the upper state of the atom is zero (o,,= 0), we 
need to retain on the right-hand side of Eq. (3) only the 
terms w i t h i = l , k = 2 , a = y = l  and a = l , y = 2 , i = k = l .  The 
sum over the index f l  still remains on the right-hand 
side of Eq. (3). However, we can easily see  that if /3# 1, 
the S-matrix elements describe nonresonance collisions 
when one of the atoms is in the initial state and the 
second is transferred to another energy level after the 
collision. We can quite accurately regard these ele- 
ments as equal to zero, i.e., we need retain only the 
terms with p = 1. 

We shall now allow for the influence of a hyperfine 
structure on Eqs. (1) and (3). We shall consider only 
the case when none of the field frequencies w, and w, 
is in resonance with any of the components of the fine 
structure of virtual states. It is important to note that 
the orbital momentum of the states 1 and 2 is zero. 
Then, the composite matrix element G,  which is the 
matrix element of the electrostatic operator, is diagonal 
in respect of the spin and the total momentum of the 
transition. Therefore, i t  is sufficient to use one index 
F for  the matrix elements a,, and this index gives the 
total momentum of the transition: a:,:,. The S-matrix 
elements a r e  also matrix elements of the electrostatic 
operator. Therefore, they differ from zero only if the 
total momentum is conserved by each atom. On the 
other hand, the resonance defect in collisions accom- 
panied by, for  example, the IF- 2F transition of the 
f i r s t  atom and 2F'- IF' transition of the second atom 
is very small for  F #  F' s o  that we can assume that the 
S collision matrix is independent of F and F'. We then 
obtain 

where N ,  is the total number of atoms a t  the sublevel 
F; C P ,  =N; p is the impact parameter; ~ ( v )  is the 
Maxwellian distribution function of the atomic velo- 
cities. 

To avoid unjustifiable complication of the formulas,' 
we shall use the nonnormalized intensity of two-photon 
absorption I(w) : 

63. S COLLISION MATRIX 

We shall consider a collision between two identical 
atoms, one of which is in the ground state n,S and the 
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other i s  in the excited state n$. The main contribution 
to the interaction between these potentials i s  made by 
the van der Waals potential. After the collision the 
atoms may remain in the initial states or  they may ex- 
change the excitations. We shall use U, for the ampli- 
tude of the wave function of two atoms corresponding to 
the case when the first  atom is excited and the second 
is not, and we shall employ U,, for the case when the 
first  atom is not excited and the second is excited. The 
Schrijdinger equation for the state amplitudes i s  

where V, ( t )  =c, (p2+ v2t 2)-3, v is the relative velocity of 
the atoms, 

(n~lldlln'~) i s  the reduced matrix element of the dipole 
moment, and En, i s  the energy of the atomic states. 
Solution of the system (6) corresponding to the initial 
state u~(-03) = 1, uII(-m) = 0, i s  

U I  ( + m )  =Szl. 2 1 = 1 / z [ e ~ p { - i ( q ~ + q 1 ~ ) )  + e x p ( - i ( q ~ - q ~ ~ ) )  I ,  
U I I ( + - )  =S2,, ,2=S12, 2,='/2[exp(-i(qI+q11)}-esp(-i(q~-~l~~ 1, 

where 17, = $ n ~ , / ~ ~ v .  

When both atoms are  in the ground state n,S before a 
collision, there is only one scattering channel (state 
amplitude U,,) : 

Then, 

substituting Eqs. (9) and (11) into Eq. (4), and integrat- 
ing with respect to the impact parameter p, we obtain 

d a s z p ( v )  V-v 
( T ~ " = - o l z ~ ( v ) r + ~ j  1 + 1 ~ ( v , ) d v ,  

where 

v, is the mean thermal velocity of the atoms. 

It follows from Eqs. (12)-(13) that the specific fea- 
tures of the collision integral depend on the relative 
values of the constants a and b. The following comment 
should be made. The constant C, is negative and i s  
usually much smaller than the absolute value of the con- 

stant C,, representing the interaction in the excited 
state. If the constants CI and CII a re  dominated by the 
contribution of the same intermediate state, it follows 
from Eqs. (7) and (8) that C,= C,,. In the other case, 
when the constant C, includes a considerable contribu- 
tion from several nearest intermediate states, we 
usually find that Ic,,I < I c , ~ .  

By way of example, we shall give these constants for 
the 3s-4S transition in sodium. Calculations were car- 
ried out using the tables of Bates and Damgaard given in 
Sobel'man's book.6 In the calculation of Co= C (3s) i t  was 
possible to consider only the contribution of the state 
3P: C,= 1.3 x cm6/sec. In the calculation of CI 
and C,, an allowance was made for the contributions of 
the 3P and 4P states: C,= 13.1x cm6/sec and C,, 
= 3.8X cm6/sec. 

94. BROADENING OF AN ISOLATED SPECTRAL LINE 

We shall consider the broadening of an isolated spec- 
tral line when there i s  no hyperfine structure. Equation 
(1) with the collision integral (12) then becomes 

[ i ( A o - A k v )  + y , l a l z ( v ) = - a l z ( v ) y + f  ( u )  
v - v ,  

+ -  1 1  W ( v , ) a i Z ( v . ) d v . + G .  (14) 

From now onward we shall ignore the radiative broaden- 
ing because it  can be included in all the subsequent for- 
mulas by the simple substitution iAw - iAw + y,. 

The integral Eq. (14) cannot be solved exactly because 
of the presence of the factor 5 = I(v - v , ) / v , ~ ~ ' ~  in its 
kernel. Since the function 5 varies slowly with v and v, 
in the effective integration domain, we can represent 
this function in the form 5 = 1 +g(v,v,) and then solve the 
integral Eq. (14) by the method of successive approxi- 
mations assuming formally that the function g(v, v,) i s  
a small parameter. The zeroth approximation i s  then 
taken to be the solution of the integral Eq. (14) in which 
the function 5 i s  replaced by unity. 

In the f i rs t  approximation with respect tog(v,v,), we 
find that the absorbed power i s  

I ( o ) = N R e l G I 2 -  I - - -  
1 1-7-1 1 ' 

W ( v )  d v  '= j ~ ( A W - A ~ V ) + ~ + >  

Continuation of the successive approximation procedure 
gives a series for I(w), which converges only asymp- 
totically when the functiong approaches zero: g- 0. 
However, we may expect a satisfactory result if only the 
first  term of the series i s  included. For y- = 0, the re- 
sult given by Eq. (15) can be compared with the exact 
line profile obtained directly from Eq. (14): 
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and thus determine the sufficiency of the approximation 
(15). A study of the profile (16) i s  also of intrinsic in- 
terest because the presence of the function f(v) makes 
the line profile I(w) different from the convolution of the 
Doppler and dispersion profiles given by the usual adia- 
batic collision theory (see, for example, Ref. 6). As 
pointed out many times,lO-l1 this difference is due to the 
dependence of the collisional line width on the velocity 
of the investigated particle and it disappears only in the 
case f (v) = 1. 

The results of numerical integration of Eqs. (16) and 
(15) in the y- = 0 case show that these expressions give 
practically identical results for the line profile Z(w) with 
any ratio of the Doppler Akv, and collisional y: widths. 
By way of example, Fig. 1 gives the results for the line 
profile I(w) obtained for Akv,= y: from Eqs. (16) (curve 
1) and (15) with y- = 0 (curve 2), together with the result 
of convolution I(w) = Re J of the Doppler and dispersion 
profiles calculated from Eq. (16) forf(v) = 1 (curve 3). 
It is  clear from Fig. 1 that the convolution Re&), which 
is the zeroth-in respect of the parameter  term of 
the expansion (15), differs quite considerably from the 
exact result (16). Inclusion in Eq. (15) of even the first 
correction in respect of AJ/J results in practically com- 
plete coincidence of the approximate and exact results. 
Therefore, we may expect that Eq. (15) is  satisfactory 
also for y- # 0. 

We shall now consider the profile of the S-S transi- 
tion line in the presence of resonance collisions such 
that y- # 0. At low pressures characterized by y:/hkv, 
<<I, the profile (15) has the usual Doppler form. At in- 
termediate pressures the line profile differs from the 
result of convolution of the Doppler and dispersion pro- 
files. We can see from Eq. (15) that this difference is  
due to two factors: the presence of the integral term in 
Eq. (14) for the nondiagonal element of the density ma- 
trix and the dependence of the line width on the velocity 
of the investigated particle. 

Equations similar to Eq. (14) appear also if allowance 

is made for the change in the atomic velocity due to col- 
lisions. For example, the equation for the classical dis- 
tribution function in the model of strong collisions dis- 
cussed in Ref. 12 is  completely identical1' with Eq. (14) 
for g(v, v,) = 0. However, this identity is purely appar- 
ent. It follows from the derivations of this equation in 
Ref. 12 that in the model of strong collisions the quantity 
y- represents the gas-kinetic collision frequency and, 
therefore, its real part is positive. In the case under 
discussion here the sign of the real part of y- is  arbi- 
trary and depends on the relative values of the constants 
C,, C,, and C,,. Moreover, a s  pointed out above, the 
most realistic situation is one with negative y'_. It is  
known that in the model of strong  collision^^^ a t  pres- 
sures characterized by y'_/Akv,-1 an equation of the (14) 
type describes collisional narrowing of a Doppler line 
profile. In our case there is  no such narrowing because 
of the negative real part of the constant y-. Physically, 
the absence of narrowing is  due to the fact that collisions 
not only exchange excitations, which is equivalent to a 
change in the atomic velocity, but also shift the phase of 
the atomic oscillators, which results in further line 
broadening and prevents the narrowing. 

If the pressure is sufficiently high so  that y: / 
Akv,>>l and the Dopplerbroadening canbe ignored, Eq. (15) 
becomes 

The profile (17) is identical, to within terms of the 
order of q, with the dispersion profile 

which can be checked by expanding Eq. (18) a s  a series 
in terms of the small parameter q. We recall that in 
Eqs. (15) and (17) only the terms of the first  order in q 
are  retained. Therefore, Eq. (18) describes a line pro- 
file with the same precision a s  Eq. (17). Thus, a t  high 
pressures the line profile of a two-photon S-S transition 
can be represented quite accurately by the dispersion 
profile of width r and shift Aw, described by 

In the classical adiabatic collision theory of the 
broadening, in which the resonance exchange of excita- 
tions in collisions between identical atoms is ignored, 
there is a very definite ratio of the line width r to the. 
absolute shift of its maximum Aw,. In the van der 
Waals interaction case this ratio is r / lAo, l  = 1.4. How- 
ever, in one-photon linear absorption spectra, when at 
least one of the levels coupled by a one-photon transition 
is degenerate, this ratio does not apply because of the 
considerable role of collisions accompanied by momen- 
tum reorientation. One can expect this ratio to apply 
only to the S-.S transitions, for which there i s  no degen- 
eracy. We can see from Eq. (19) that in the case of 
braodening by a gas of the same substance, the ratio of 
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the line width to the shift is 

where r/law,l a 1.4, because laic lbl. Consequently, 
even in the case of the S-S transitions we can expect 
the ratio r/(Aw,l= 1.4 to be valid only for the broaden- 
ing by a foreign gas when a = b. 

Thus, the measurements of the ratio of the line width 
to the shift can be used to deduce-from the difference 
between this ratio and 1.4-the importance of the influ- 
ence of collisions with resonance excitation exchange on 
the broadening of two-photon transition lines. 

55. BROADENING OF HYPERFINE STRUCTURE 
COMPONENTS 

In the presence of a hyperfine structure the equation 
for the nondiagonal density matrix element, similar to 
Eq. (14), becomes 

i (Amr-Akv) allF ( v )  
v-v1 , , *  

=-a12'(v)r+f (u) + $ E N F .  j I _ (  a,. ( v , )  W(v.)dv.+G, (20) 
I' 

ponents of the hyperfine structure overlap, the result- 
ant line profile is again given by Eq. (19). 

Quantitative characteristics of the broadening of the 
hyperfine structure components appear most clearly in 
the limiting case when I bl >> la1 (C, =C,,, IC ,I << IC , I ,  Ic,~. 
The broadening of an isolated hyperfine structure com- 
ponent can in this case be described by substituting a = 0 
in Eq. (22). An increase in the density may result f i rs t  
in an overlap of any two components, for  example, F ,  
and F,. The profile of the overlapping components has 
the width and shift given by 

The slope of the line r(N) is then greater and the shift 
AW,(N) is then less than the slope of the corresponding 
straight lines for each of the components, although al l  
the isolated components shift in the same direction. Fi- 
nally, in the case of complete overlap of all  the com- 
ponents the width and shift of the resultant dispersion 
profile a r e  

where Aw, is the frequency detuning of the field from r = 5 . 2 ~ ~ 2  b ' / a ,  AU,= 3 . 9 ~ u , ' ~ ' ~ a " ~ .  
the frequency of the transition of the F component of the la1 

(24) 

hyperfine structure. Applying the same procedure a s  in It is interesting to note that the line shift is then not only 
the preceding section, we find that in the f i r s t  approxi- much smaller but may differ in respect to the sign from 
mation with respect tog(v,v,), the absorbed power is the shift of isolated hyperfine structure components. 

The authors a r e  grateful to I. I. Sobel'man for valu- 
able discussions. 

W ( v )  dv 
I,= j 

y++i(AwF-Akv) ' I (21) i )~omplete identity of the equations i s  obtained by introducing 
g(v v i )  W ( v )  W ( v t )  dv dv, 

AJF=r* [ I + ; i ( A ~ F - h k v ) ] 2  
a new function cP = ai2 (v) W (v). 

g(v,  V I )  W ( V )  W(vt)dvdvt  'L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, 
~ o ~ - ~ k v )  ] [7++i(AmF8-Akv,) ] ' Pis'ma Zh. Eksp. Teor. Fiz. 12 ,  161 (1970) IJETP Lett. 

F.  12 ,  113 (1970)l. 

We shall f i rs t  consider the case of low pressures, 
when the width of the components is much less than the 
frequency splitting between them. Then, we can inves- 
tigate the line profile of each of the components retain- 
ing only one term in all the sums over F in Eq. (21). 
We then find that the profile of each of the components 
is given by Eq. (15) where the substitutions N- N,, and 
y-- y-N,/N have to be made. At higher pressures the 
Doppler line width may become much smaller than the 
collisional width of the component well before these 
components begin to overlap. Under these conditions the 
line profile of each of the components has the dispersion 
form of width r, and with a shift of the maximum Aw; 
given by 

The width and line shift given by Eq. (22) a r e  generally 
of the same order but their ratio is not r,/lhw:I = 1.4. 
Finally, a t  sufficiently high pressures when all the com- 
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