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A complete theory is developed for describing the experimental data on diamond-type crystals without 
allowance for relaxation processes. It is shown that our hypothesis of localization of muonium in 
tetrahedral and octahedral voids [Sov. Phys. JETP 47, 331 (1978)l explains fully the results of recent 
experiments on Si. A complete theoretical analysis is made of the spin Hamiltonian. The analytic 
solutions obtained are used to suggest a series of experiments for investigatingcrystal structures with the 
aid of positive muons. 

PACS numbers: 61.70.Ey, 36.10.Dr 

1. We recently put forward1 a theory of the behavior 
of positive muons in crystals with the diamond struc- 
ture. This theory i s  based on a fundamentally new (for 
the muon method) assumption that a muonium atom (Mu) 
formed in a semiconductor or  an insulator may have 
several equilibrium positions corresponding to different 
crystallographic voids. If the potential wells corre- 
ponding to these voids are separated by a potential bar- 
rier, several types of muonium atom should be observ- 
ed in crystals. In the case of diamond-type crystals we 
may expect a Mu atom to have just two potential wells 
corresponding to tetrahedral and octahedral voids (also 
called tegragonal and hexagonal voids). 

served in Si at low temperatures in p- andn-type sam- 
ples with different impurity concentrations. Obviously, 
the authors of Refs. 3-5 were unaware of our theory1 
but in their theoretical interpretation they reached inde- 
pendently the conclusion that anomalous muonium is de- 
scribed by the Hamiltonian (1) and that the two types of 
Mu atom in Si correspond to the capture by tetrahedral 
and octahedral voids. Thus, the theoretical parts of the 
investigations reported in Refs. 3-5 are in basic agree- 
ment with our theory.' The results of Ref. 1 are partly 
reproduced: the spin Hamiltonianis diagonalized numer- 
ically but analytic solutions are not obtained. We shall 
show that the experimental results of Refs. 3-5 show 

Since the potential relief for an Mu atom cannot be at unambiguously that, at least at temperatures below 
80°K, muonium atoms in silicon can exist simultaneous- present calculated reliably from the first  principles, 

only experimental results can be used to determine ly in octahedral and tetrahedral voids. Therefore, all 

whether a Mu atom occupies several equilibrium posi- the subsequent interpretations of the behavior of the 
muon polarization in silicon should be carried out bear- tions. Brewer et a1.' investigated Si single crystals and 
ing this fact in mind. discovered two types of Mu atom: normal and anomal- 

ous. The theory developed by u s  earlier1 has made it Finally, we must s t ress  that the experimental results 
possible to explain all the observed effects, and to iden- of Refs. 2-5 and the theory developed by us1 provide 
tify the normal and anomalous muonium with the loca- new extensive opportunities for using the muon method 
tion of Mu in the tetrahedral and octahedral voids, re-  in investigations of fine details of the structure of the 
spec tively . internal crystal field and of the potential relief in solid 

lattices. There i s  every reason to expect that very soon It has been shown that purely group-theoretic consider- 
ations indicate that the spin Hamiltonian of the hyperfine the existence of two (or maybe even several) types of 

interaction for the tetrahedral voids in crystals with the Mu atom will be discovered in many crystals. 

diamond structure i s  of the same form as  the corre- 
sponding Hamiltonian for vacuum (the influence of the 
crystal field reduces to renormalization of the hyper- 
fine interaction frequency w,); in the case of octahedral 
voids the invariant form of the spin Hamiltonian i s  

where St ,, and 51, are the hyperfine interaction constants; 
B i s  an external magnetic field; n i s  a unit vector di- 
rected along the c, symmetry axis; p,  and p ,  are the 
magnetic moments of a muonium electron and of a posi- 
tive muon, respectively. 

We made various predictions in Ref. 1 and analyzed a 
series of interesting experimental possibilities which 
follow from the theory. However, the analysis has been 
limited to the case when an external field i s  either par- 
allel to the c, ([Ill])  symmetry axis or  perpendicular to 
this axis. Recent series of striking precision experi- 
ment~ ' -~  have shown that two types of Mu atom are ob- 

We shall carry out a complete analysis of the behav- 
ior of the polarization of positive muons in single cryst- 
als with the diamond structure for an arbitrary mutual 
orientation of the field B and the symmetry axis c,. We 
shall give the formulas for the total polarization of ano- 
malous muonium (following Ref. 1, we shall call it 0 
muonium) for three simple cases most convenient for 
experimental analysis. We shall not consider here the 
processes of polarization relaxation so that we restrict 
ourselves to the case when the relaxation rate is v <<do. 

2. We must s t ress  that consideration of arbitrary or- 
ientation of B and c, i s  necessary for complete analysis 
of the experimental data on silicon. In fact, an octa- 
hedral void in Si i s  located in the middle of the [ I l l ]  
axis joining two tetragonal voids. Consequently, four 
octahedral voids have four different directions of the 
symmetry axis. If a crystal is subjected to a magnetic 
field, the four octahedral voids for the 0 muonium are 
generally under different conditions because of the dif- 
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ferent angles between the direction of the field and the 
symmetry axis of a given void. If, for example, the 
field is directed along the [ 1111 axis, two varieties of 
the 0 muonium may be observed: one of them is located 
in an octahedral void whose symmetry axis is parallel 
to the field and the other in the remaining three types of 
octahedral void. In general, we can observe up to four 
"different" types of 0 muonium. 

It is pointed out in Ref. 1 that in the B llcs configura- 
tion the energy levels cross in weak and strong fields, 
whereas in the BL c, case this occurs only in strong 
fields. Consequently, if the field is parallel to the sym- 
metry axis, the projection of the total spin onto the 
quantization axis, parallel to the field B, is conserved. 
If the field is perpendicular to the symmetry axis, the 
square of the projection of the total spin onto the axis 
parallel to the field is conserved. In these cases the 
system has "good" quantum numbers and, in accord- 
ance with the Wigner-Neumann theorem,' the levels 
characterized by different values of good quantum num- 
bers may cross. For an arbitrary orientation of the 
field B and the symmetry axis c, there is only one good 
quantum number (parity) which is identical for all four 
levels and, in accordance with the Wigner-Neumann 
theorem, these levels cannot cross. The behavior of 
the spin energy levels is shown in Fig. 1. 

3. We shall direct the quantization axis z along the 
field B and we shall take the x axis in a plane passing 
through B and c, which meet at an angle 0.. The basis 
is represented by the functions 

The first sign refers to an electron and the second to a 
muon. Tn this basis the Hamiltonian matrix is 

Q=Q,, cost 0+Q, sin' 0, AQ,=  (Q,,-8,)sin 0 cos 0. 

AQ,=(Qll-R,)sinXO, Ao=l y.lB, c= I kc,Iflel,l. 

We can see that for e=0 and r/2 the matrix (3) simpli- 
fies to the terms along the principal and secondary dia- 
gonals. We can, therefore, assume that it is generally 
convenient to reduce the Hamiltonian (3) to the form 
which eliminates elements from the secondary diagonal. 
The unitary transformation matrix TI(@) is found in ac- 
cordance with the familiar prescription (see, for exam- 
ple, Ref. 1): 

'cose, 0 0 - sin??,' 
o cos ef - sin el (4 
0 s ine ,  cos6, 

sin 6, 0 0 cose2 

tg 26,=(2Q,+8Q2)/w(1+~), tg 26?=1Q2/w (I-;). 

FIG. 1. Energy level scheme of the spin Hamiltonian of the 0 
muonium: a) a,, < QL; b) 0,, >a,, . In accordance with the Wig- 
ner-Neumann theorem, there i s  no level crossing for 8 * O,?r/2. 

ments H&, then H;, represents approximately an energy 
level. If IH&~-(H~, -H' I the states a and 0 are  "mixed." 2 -  - -  -. - - 

B follows from our earlier analysis1 that in fields 
w-lAS21=(al,-S2,l with S211>51L the states 2 and 4 are 
mixed, whereas for 51 11 < 51, and in strong fields 5w -a 
the states 1 and 2 are mixed, and for IAS2/-51 the states 
3 and 4 are also mixed. 

If 0=0 and n/2, the Hamiltonian is diagonal in the new The elements of the Hamiltonian Ht have thus the form 
basis and we obtain immediately the spectrum given 
earlier.' Clearly, if the difference between the diagon- fI,,'=PtAQz sin 26>+m (1-5)cos 26,. (5) 
al element H:, of the Hamiltonian in the new basis H' Hz/=-Q+ (2Q,+AQ2) sin 26,+01 (l+f) cos 26,. (6) 
=T;'(0)HTl(0) and the remaining diagonal elements H& Hz;=-R-(2Q,+AQ,)sin ~ O , - U ( ~ + ~ ) C O S  26,, (7) 
is much greater than the corresponding nondiagonal ele- H,,'=Q-AQ, sin 26,-GI (i-L)cos 2e2. (8) 

1008 Sov. Phys. JETP 48(6), Dec. 1978 Belousov et a/. 1008 



The nonzero nondiagonal elements are  

Ht,'=H,,'=AQ, [cos (B,+Ol) +s in(@,-@,)  1 ,  
(9) 

H,,'=fl,,'=-AQ,[cos(6,-B,) +s in (@,+@, )  1 ,  (10) 

If;,'=f13:'=-AR,[cos(0,+-B1) -s in(@,-BZ)  1, (1 1) 
Hi,'=H3,'=lQ,[c~~(~~,-~,) -s in(e ,+O,)  1. (12) 

The muon polarization i s  P ( t )= t~ r [o ,~ ( t ) ] ,  where a, 
are  the spin operators and p(t) i s  the spin density ma- 
trix of muonium. If electrons in the investigated crystal 
are totally depolarized, the density matrix at the mo- 
ment t = 0 has the form 

where P,(O) is the initial polarization of a positive muon 
and I i s  a unit matrix. Then, the polarization of a posi- 
tive muon in muonium located in an octahedral void, 
whose symmetry axis makes an angle e with the field B, 
can be described at any moment t by 

P , ( t )  =S,,(cos 0, t )P , (O) ,  (14) 

S,,(cos 0 ,  t )  ='Ir Sp [aN exp(ih-'H't) a,, esp(-iA-'H't) 1. (15) 

If the unitary transformation T, which diagonalizes 
approximately the Hamiltonian H' i s  known, the tensor 
S,,(cose, t) becomes 

~ , , ( c o s  0 ,  t)=C (a~a~,~~)<~ia,,~~a)esp(iog~t), (16) 
a.0 

where KW, ,=E~  - E, E,= (T;'H'T,),, are the approximate 
energy levels. The actual form of the matrix T, will be 
found later for various limiting cases. It follows from 
Eq. (16) that the nondiagonal components of the tensor 
Si,(cosO, t) are related by 

4. If the magnetic field i s  such that w -52 and 1 ~ 5 2 1 -  52, 
the tensor (16) i s  given by cumbersome formulas, so 
that we shall confine our attention to the limiting cases: 
A) w <<(~51,(, 52 and B) w>>52. 

A. It is clear from Eqs. (11) and (12) that the nondia- 
gonal elements H: and Hi4 a re  of the second order of 
smallness and, therefore, we shall neglect them. The 
order of the elements H:, and H12 depends on the sign of 
An,.  For A52,>0, we have HA=(O,-Q ,,)sin2e7 H,',=w cote; 
ifA52,<0 thenH*=wcote, ~,'~=(S2,,-0,)sin2e. We shall 
show that the nature of the polarization i s  independent 
of the sign of An,. 

We shall consider the specific case when An ,  <O. We 
shall apply the standard method of approximate diagon- 
alization of a symmetric r n a t r i ~ . ~  We shall make the 

,unitary transformation 

cos0 - 2 ' " s i n ~  0 - cos0  
1 s ine  2'"cos0 0 - sin0 To = 21" i: 0 0 1  

To within terms quadratic in the field, we obtain 

Using the form of the matrix T,, we obtain the compo- 
nents of the tensor S,,: 

S, ,=l /z [cosV (i+cos 4Q,t) + 2 g ( t )  sin' 01, 

S,,='li sin 2 0 [ 2 g ( t )  -1-cos 4Q, t ] ,  

S,='/,[sinZO(I+cos 4Q,t) + 2 g ( t )  cosZO],  (22) 

S, ,=g( t ) ,  (23) 
S,,=f ( t )  cos 8 ,  S,.--f ( t )  sin 0 ,  (24) 

where for compactness we have introduced the functions 

g ( t )  =cos 2Q,t cos 2Qllt cos ( o l , t / 2 ) ,  

f ( t )  =cos 252,t cos 2Ql1t s in (w l i t / 2 ) .  

Employing the characteristic equation for 5w<<S1 [see 
Eq. (10) in Ref. 11, we find that to within quadratic 
terms the quantity w14 i s  given by 

w i , = ~ o [ c o s a  O + Q , ~ ~ ' / ( Q ~ ~ - Q , ~ )  ,I". (27) 

The expression (27) for w14 i s  valid for any angle e sub- 
ject to the condition w<<lS2 Il-S1,l. The formulas (20)- 
(24) describe the behavior of the polarization1 also for 
e= 0, when the condition w<< (AQ,) i s  not obeyed. We 
may expect the range of validity of these formulas to be 
really limited only by the condition w<<)52 and they 
should work well for any angle 8. 

B. We shall now consider the range of strong fields 
w >>I A n \ ,  52; then 9, and 9, are small. If Sw << 51 and 
(hSZIz<:<S1, the polarization i s  described by the familiar 
formulas for two-frequency precession8-" but the tran- 
sition frequencies are  given by the diagonal elements 
(5)-(8) of the Hamiltonian H'. If IhS2I-52, the formulas 
for the polarization have the simpler form in the range 
50-52. In this case we have (Hi4(<<JH,', -HA1 and \HA( << 
(Hi, -Hj,l, and we can ignore the nondiagonal elements 
(10) and (12). 

We are thus left with the elements Hi, and Hi4. ~ h e i  
the Hamiltonian H' can be reduced to the diagonal form 
by the transformation 

s i n e ,  cos6 ,  0 
T? = 0 cos6,  - sin 6, 

0 sin 6, cos 6, 

where tan28,=AR1/(52- Sw), and tan23,=~S1~/(S1+Sw). 
The approximate energy levels are then defined as  fol- 
lows: 

The components of the tensor S,,(cose, t )  are 

(Q-5, )  '".lQ12 cos wZl t  (Q-!-;w)'+AQ,' cos w,,t + 
0 2 1 -  o',? 

1. (30) 

S.,={[ ( Q - ~ o ) l o 2 i l s i o  w, , t+[  (Q+Lo) lo l l l s in  o l l t ) ,  (3 4) 
SW='I2 (COS O ~ ~ ~ + C O S  ahst). (35) 

We can see that for 152*5wl>>(~52,1 the formulas (30)- 
(35) reduce to the familiar expressions for two-frequen- 
cy precession with the corresponding hyperfine constant 
$2 depending on the angle 0. 

5. We shall now consider the behavior of the longi- 
tudinal (parallel to an external magnetic field B) and 
transverse (perpendicular to B) polarizations of a muon 
in the three simplest special cases. 
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Case 1:  Field B directed along the [lo01 axis. The 
directions of the symmetry axes of all four inequivalent 
octahedral voids make the same angle with the field de- 
fined by cos0=3-'~. Consequently, only one 0 muonium 
is observed. The polarization of all four octahedral 
voids can be written in the form 

P, ( t )  =P.(0)Sz, (3-", t ) ,  

P- ( t )  =P+ ( 0 )  [S,(3-", t )  +S,,(3-'", t )  

+2iS,(3-'", t )  I .  

In general, the polarization has a fairly complex time 
dependence and i s  governed by all six possible transi- 
tion frequencies (Fig. I), but in weak and strong fields 
the formulas simplify considerably. As expected from 
Eqs. (20) and (22)-(24), all the components have oscil- 
latory terms in weak fields (w <<I52 -a , ()  and these 
terms exhibit beats of frequency w[+ +of ~~/(51~~-62:)~]l/~. 
The constant term of the longitudinal and transverse 
component is 3. If \A51 1s 10' sec-', this behavior may 
be observed in fields BslO G. 

In strong fields the polarization is given by Eqs. (30) 
and (33)-(35). It is interesting to note that in fields 5w - 51 the longitudinal component has two terms oscillating 
at frequencies w,, and w,,. One frequency (w,,) has a 
minimum at 5w=S'Z= (51 + 251,)/3 and i ts  value is w,, 
= 23")51 11 -51 ,(/3; the corresponding amplitude is *. The 
amplitude associated with the frequency w,, decreases 
monotonically. If 50 >>a, the longitudinal component of 
the polarization is unity. The transverse polarization 
is given by Eqs. (33)-(35); they also contain the constant 
term and the precession i s  described by two frequencies 
w,, and w,. In a field 5w=(52,,+252,)/3, the constant 
term is close to * and the precession is described only 
by the frequency w,,; the only oscillations at the fre- 
quency w,, have the amplitude t. 

Case 2: Field B directed along the [ill] axis. In this 
case the symmetry axis of one octahedral void i s  par- 
allel to the field and the directions of the symmetry 
axes of the three other inequivalent octahedral voids 
make the same angle with the field and this angle is de- 
fined by cosO=+. For this orientation of a crystal in the 
field there should be two varieties of the 0 muonium. 
The total polarization of the 0 muonium is given by 

In general, there are 11 transition frequencies. The 
abwe formulas simplify in weak and strong fields. For 
a void with the symmetry axis parallel to the field there 
are only high-frequency oscillatory terms and no beats 
in weak fields. The constant term in the longitudinal and 
transverse components of the polarization is 4 and the 
amplitude of the oscillatory term exhibiting beats of 
frequency w [ ~ + 5 2 2 , ~ ~ / ( 5 1 ~ ~ - 5 1 , 2 ) ~ ] ~ ~  is 3. The precess- 
ion term (with beats) of the transverse polarization has 
the amplitude &. 

In strong fields the longitudinal component is given by 
Eq. (30). For muonium in an octahedral void charac- 
terized by B (1 c, the polarization is constant and close to 
unity and, therefore, i ts contribution to the total longi- 

tudinal polarization (38) is i. The second term in Eq. 
(38) has components oscillating at two frequencies. In a 
field t w =  (51 + 861,)/9 the term of frequency w2, has the 
maximum amplitude $ and me frequency has its mini- 
mum at ~ , , = 2 ~ " 1 ~ ~ ~ - ~ , 1 / 9 .  

The two varieties of the anomalous muonium appear 
most clearly in strong fields lo-62, where only two low 
frequencies of each muonium may be observed. For 
each muonium in a void characterized by B l(c3 there 
should be a precession stopping point in a field 5w=Q 
and the behavior of polarization should be a s  described 
in detail in Ref. 1: For the other 0 muonium the signal 
i s  stronger and has a constant component whose maxi- 
mum value corresponds to 5w= (62 +8!2,)/9. The pre- 
cession occurs then only at the frequency w, and the 
component with the frequency w,,, oscillates with the 
amplitude &. 

Case 3: Field Bparallel to the [ll~l axis. In this 
case the symmetry axes of two octahedral voids are 
perpendicular to the field and the directions of the 
other two voids make the same angle 13 with the field: 
c o s ~ =  ($)Ih. In this case there should be once again two 
varieties of anomalous muonium. The total polarization 
is given by the formulas 

I 

The system does not have axial symmetry and, there- 
fore, the polarization depends on the angle cp between 
the planes passing through P(0) and B, and on the di- 
rections of the symmetry axes making an angle e rela- 
tive to the field. It follows from Eq. (41) that the trans- 
verse polarization has the simplest form for c p = O  and 
n/2, i.e., P(0) is parallel to the directions [001] and 
[TlO], respectively. In weak fields the longitudinal 
component has two oscillatory terms which exhibit low- 
frequency beats. The term of frequency 51,w2/(51f -St:( 
has the amplitude and the term of frequency 
w[) + 5 1 ~ ~ ~ / ( 5 2 ~ ~  - 51;)2]1/2 has the amplitude 4. 

The constant term is also 4. The transverse polar- 
ization has an oscillatory term exhibiting beats of fre- 
quency 51,w2/151yl -a;( and the term with the beat fre- 
quency w[% +s2:w2/(52\ - 0f)2]1h precesses. 

In strong fields the first  term of the longitudinal com- 
ponent (40) is close to $, whereas the second term is 
given by Eq. (30) and for Qw= (251 +62,)/3 the term 
oscillating at the frequency w,, = 23"1~ -S2,(/3 has the 
maximum amplitude of a. The behavior of the trans- 
verse polarization i s  given by the precession of two 
varieties of 0 muonium. For one type of 0 muonium 
(BLc,) the behavior of the polarization is analyzed in 
detail in Ref. 1 and stopping of the precession occurs in 
a field Qw =a,. The behavior of the other 0 muonium is 
given by Eqs. (33) -(35); there are two frequencies and a 
constant term whose maximum corresponds to 5w,, 
= (262 +51,)/3. 

It is clear from the results obtained that complex pre- 
cession occurs in weak fields. When the field is orient- 
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FIG. 2. Magnetic-field dependences of the observed frequency 
spectrum of the 0 muonium in strong fields. The continuous 
curves correspond to the field oriented along the [1111 axis; 
the dashed curves to the field oriented along [I101 and the dot- 
ted curves to the field oriented along I1001. Two frequencies 
w,* and wd3 correspond to the two types of 0 muonium: a) 
=o.5aL2,; b) a,,=a,. 

ed along the [ I l l ]  axis, ten frequencies are observed: 
four of them correspond to the 0 muonium for which B 
Ilc, and six to the 0 muonium whose symmetry axis is 
not parallel to the field. It is clear from Eq. (39) that 
the amplitude of the latter frequencies is three times 
higher. If the field is directed along the [I101 axis, 
once again there are ten precession frequencies. In 
strong fields (w > w 3  there are in reality only two fre- 
quencies for each variety of the 0 muonium. The depen- 
dences of the observed frequencies on the magnetic field 
are illustrated in Fig. 2. 

6. The formulas (36)-(41) describe completely the ex- 
periments reported in Refs. 3-5. It should be pointed 
out that, in agreement with our theory, a large number 
of frequencies was observed in weak but the re- 
sults were not interpreted. It should be noted that the 
range of weak fields is very interesting because the ex- 
periments carried out in such fields give practically the 
only reliable possibility of accurate determination of the 
g factor of the 0 -muonium electron. The experiments 

reported in Refs. 3-5 gave 21r-~G?,=92.1*0.3 MHz, 
2n-'S2 ,I= 17.1i0.3 MHz, ge = - 2.2k0.2, andgW=2.01i0.0L 
It follows from the above discussion that the value of ge 
cannot be regarded a s  finally established until experi- 
ments a re  carried out in weak fields. 

The clearest experimental confirmation of the 0 - 
muonium hypothesis i s  probably the angular dependence 
of the precession frequencies obtained in Refs. 4 and 5 
on rotation of a crystal relative to the [Oli] axis orient- 
ed at right-angles to the field. It seems that the other 
speculative possibilities discussed in Refs. 4 and 5 are 
not very likely. It should be stressed that studies of 
relaxation processes will require experiments in longi- 
tudinal fields and then Eqs. (36), (38), (40) and (20), 
(30) of the present paper will be of special interest. We 
may conclude that a new stage of the investigation of 
solids by the muon method has been discovered. 

As pointed out earlier, we cannot a primi  predict the 
existence of several potential minima of a Mu atom, but 
this situation should not be specific to silicon alone, 
and, therefore, there is special interest in the search . 
for several types of Mu atom in other crystals. In this 
connection we shall point out that the preliminary data 
of Graf et al., indicate a considerable temperature de- 
pendence of the intensities of the 0 - and T -muonium 
lines. In addition to these lines there is always a muon 
component. As the temperature is increased, the nor- 
mal (T) muonium disappears first  and at ~=295"K only 
the muon component remains. On the other hand, the 
intensity of the muon component r ises  on increase of the 
degree of doping of a crystal and at impurity concentra- 
tions TZ= 10'' cm-, only this component is observed. 

It is a s  yet difficult to draw definite conclusions but 
we may point out that in addition to the obvious inter- 
pretation variants associated with the differences be- 
tween the rates of relaxation of the 0 - and T-muonium 
polarizations, we must allow also for the interesting 
possibility of the actual disappearance of one of the 
types of muonium at higher temperatures. If the barrier 
between the potential wells is relatively small, muon- 
ium may overcome this barrier at higher temperatures 
in a time much shorter than the lifetime of the positive 
muon. The relaxation processes will be considered in 
the next paper. 
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A simple method of calculating higher orders of perturbation theory (PT) in powers of g for the D- 
dimensional isotropic oscillator with arbitrary anharmonicity gv(r) is developed. The method is based on 
transforming from the Schradinger equation to the Riccati equation (2.3). In the important particular case 
of power nonlinearity v(r) = ?N, N = 2,3,4, ..., all the terms &(r) of the PT series (2.4) become 
polynomials, and this simplifies considerably the calculation of the higher orders of PT. A new variant of 
PT is proposed, which converges at all values of the coupling constant g: O<g < m .  The structure of the 
PT series for the energy levels is investigated for potentials with a power increase [v(r)-ry and 
exponential increase [v(r)-exp(b?") at infinity. It is shown that, in the latter case with 0 < v < 1, the PT 
series is asymptotic for g 4  but is not summable by the Borel method. For v >  1 a PT series in integer 
powers of g does not exist, and the energy difference Edg) - E(0) vanishes more slowly than g as g 4 .  
The energy correction ECg) - E(0) for small values of g is calculated. The character of the singular point 
of E(g) at g = 0 changes at v = 1. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION harmonic oscillator is a convenient model upon which 
we can elucidate a number of questions of importance 

Many papers (see, e.g., Refs. 1-15) have been de- 
for field theory (e.g., the summability of the P T  se r i e s  

voted to the study of the anharmonic oscillator 
by different methods of summation of divergent ser ies ,  
the structure of the expansion (1.3) in powers of l/k, 

(1'1) and s o  forth). 

(N=2,3,4,. . .). This is explained by the fact that this 
problem not only has important applications in solid- 
state theory and molecular physics but is alsoof funda- 
mental interest in connection with certain problems in 
quantum field theory. In a ser ies  of papers,'-= Bender 
and Wu investigated the structure of the perturbation- 
theory (PT) ser ies  for the energy levels 

and showed that the coefficients of the P T  ser ies  in- 
crease factorially as  k- m: 

(1.3) 

~ i p a t o v "  established that the coefficients of the P T  
ser ies  for the Cell-Mann-Lowfunction in scalar field 
theory with the interaction 

dDx gcp" 2n H .  .=J-, D=- 
n! n-2 

behave analogously. In view of this analogy, the an- 

The present paper is devoted to an investigation of the 
P T  ser ies  for the anharmonic oscillator. In Sec. 2 a 
simple method of systematic calculation of the terms 
of the PT  ser ies ,  based on transforming from the 
Schr6dinger equation to the nonlinear Riccati equation, 
is described. The application of this method to the D- 
dimensional oscillator with anharmonicity grZN enables 
us to obtain a large number of coefficients of the P T  
ser ies  with ease. 

In Sec. 3 a new variant of P T  is proposed, in which 
the expansion is performed not in powers of g but in the 
deviation of the wave function from its asymptotic form 
for Y -  a. This makes i t  possible, with the aid of a 
small  number of approximations, to obtain the level 
energies Ek(g) with good accuracy for  all  O <  g< m. The 
analytic properties of the Ek(g) a s  functions of g a r e  
close to the properties of the exact solution. In Sec. 4 
the energy discontinuity A E ( ~ )  across the cut as  g-  -0 
is calculated in the semiclassical approximation for 
arbitrary anbrmonicity v(r ) .  

The structure of the P T  se r i e s  for the energy eigen- 
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