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A method is developed for solving the Hartree-Fock-Bogolyubov equations for the rotational states of an 
axially deformed nucleus with large angular momentum. The method is based on the quasiclassical 
approximation and uses a one-dimensional realization of the group SU(2). Rotational states of two 
intersecting bands (the ground-state band and a band based on a two-quasiparticle excitation from the 
subshell with maximal j on the Fermi surface) are found in the zeroth approximation in the interaction 
between them. The point of intersection of these bands corresponds to vanishing of the energy of the two- 
quasiparticle excitation. The energies of neutron quasiparticle excitations in the i , , , ,  subshell are calculated 
in the model with rectangular potential well. The results of the calculations agree with the experiments. 

PACS numbers: 21.60.Jz, 21.10.Re 

81. INTRODUCTION 

Investigation of rotational excitations is an effective 
method for studying the structure of nuclei. For  exam- 
ple, the existence of pairing correlations i s  most clear- 
ly manifested in the value of the moment of inertia of 
the nucleus.' Investigation of the lowest states (up to 
spin I= 10) of rotational bands made it possible to es- 
tablish the degree of adiabaticity of the rotational mo- 
tion. It was shown that the distortion of the rotational 
spectrum in even-even nuclei is due to the interaction 
of the rotation with the quasiparticle degrees of free- 
dom.' The parameter of this interaction is the ratio 
a! = j , S 2 / ~  of the energy of the Coriolis interaction of a 
pair to the correlation energy A  ( S 2  is the rotation fre-  
quency of the nucleus and j, is the single-particle 
angular momentum of a nucleon on the Fe rmi  surface). 
The parameter a! is A ' / ~  (A is the number of nucleons 
in the nucleus) times greater than the parameter of the 
interaction of the rotational motion with the vibrational 
motion.' 

In experiments in recent years  on the excitation of 
rotational levels in reactions with heavy ions in rota- 
tional bands there has been discovered an S-shaped 
dependence of the moment of inertia on @, this being 
observed at spins I - 12-16. This anomaly of the rota- 
tional spectrum is known in the English literature as 
backbending. The numerous attempts to explain this 
phenomenon reduce ultimately to two alternative hypoth- 
eses: 1) The backbending a r i se s  as a result  of a phase 
transition a t  large angular momenta due to the vanishing 

of the pairing correlation4 of the anisotropy along the 
directions of the symmetry axis of the axially deformed 
nucleus5; 2) the backbending is due to the intersection of 
the ground-state band with a band based on a two-quasi- 
particle excitation whose angular momentum is aligned 
along the rotation axis of the nucleus. In the literature, 
this band has been called the superband. The model 
was proposed by Stephens and Simon.' 

Intersection of bands belonging to different phases 
also occurs in a phase transition. However, the upper 
parts  of the intersecting bands are absolutely unstable 
and cannot exist in nuclei. Upper and lower levels of 
intersecting bands on both sides of the intersection 
point have now been found experimentally7 in the nuclei 
GdlS4, DylS6, and Erle4. The difficulty of detecting upper 
levels due to their being weakly populated in electro- 
magnetic E2 transitions can be successfully overcome 
if the method of direct Coulomb excitation i s  used. As  a 
result, i t  can now be regarded as a reliably established 
fact that there i s  no phase transition in the backbending 
region 

On the other hand, the nature of the superband has not 
yet been sufficiently well established. In the model of 
Stephens and Simon, it is a band based on an excitation 
whose angular momentum is completely decoupled from 
the deformation. Such bands really a r e  observed in 
transition nuclei with small  deformation. However, 
backbending a lso  exists  in strongly deformed nuclei. 
This forces u s  to look for  a more general explanation 
of the phenomenon. We see  such an explanation in the 
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vanishing of the energy of a two-quasiparticle excitation 
in a rotating nucleus. 

This phenomenon recalls gapless superconductivity, 
which has been discussed on a number of occasions8 in 
connection with nuclei. More detailed investigations 
have recently been made by Hamamoto and Mottelsong 
in a model of one j level by means of numerical diagon- 
alization of the Hartree-Fock-Bogolyubov equations. 

Below, we develop an analytic method of solving the 
Hartree-Fock-Bogolyubov equations in the quasiclassi- 
cal approximation using a one-dimensional realization 
of the group SU(2). We show that the quasiclassical 
treatment in the cranking model does not lead to hybrid- 
ization of the intersecting bands depending on the rota- 
tional frequency, a s  in Ref. 9. In the considered ap- 
proximation, the ground-state band intersects the two- 
quasiparticle band, and the point of intersection corre- 
sponds to vanishing of the energy of the lowest two- 
quasiparticle excitation. 

The absence of hybridization of the bands eliminates 
strong fluctuation of the angular momentum. On the 
other hand, the solution found here must be regarded 
a s  a zeroth approximation, which does not take into 
account the interaction between the bands. Although 
this interaction is small (the region of hybridization of 
the bands in the nuclei mentioned above includes not 
more than one rotational state on each side of the point 
of intersection), i t  is extremely important for obtaining 
the condition for the existence of backbending.'' How- 
ever, this last  problem cannot be solved in the frame- 
work of the cranking model. 

In the spirit of the considered mechanism for the ex- 
planation of backbending, we compare with the experi- 
ments the energies of the quasiparticle excitations, 
which, a s  is shown in 86, can be deduced from the 
energies of the rotational bands. The lowest neutron 
quasiparticle excitations in the i,,,, subshell found in 83 
agree satisfactorily with the corresponding experimen- 
tal values for nuclei of the ra re  earth elements. 

It should be noted that the dependence of the energy of 
the quasiparticles on the rotational frequency of the 
nucleus is very sensitive to the position of the levels of 
the self-consistent field. This circumstance may be 
used to deduce more precisely the parameters of this 
field in deformed nuclei. 

52. METHOD OF SOLUTION OF THE HARTREE-FOCK- 
BOGOLYUBOV EQUATIONS 

1. To describe the rotational states of an axially de- 
formed nucleus, we use the cranking model, which, a s  
Belyaev" has shown by means of a generalized density 
matrix, corresponds to the quasiclassical approximation 
a t  large angular momenta. The Hamiltonian of the nu- 
cleons in the rotating coordinate system has the form 

I 'fil-1, 'fX'-'fr, h ( 8 )  "ha-$% (r )  Y*o(e, 9)-b)f.-er. 

Here, a; and a, a r e  creation and annihilation operators 

of nucleons in the state A (X is the state conjugate with 
respect to the time), h,, is the Hamiltonian of the spher- 
ical average field, B is the deformation of the nucleus, 
j, is a component of the angular momentum operator, G 
is the coupling constant of the pairing interaction, and 
E, is the Fermi  energy. 

We consider the simplest type of pairing interaction 
for which the correlation energy A is constant over the 
volume of the nucleus (uniform pairing). For  deformed 
nuclei this is a good approximation, since A l l 3  single- 
particle levels a r e  distributed over the energy interval 
A.') With increasing angular momentum, the impor- 
tance of nonuniform pairing increases. However, the 
approximation of uniform pairing does not lead to 
serious e r r o r s  for spins I G 20. 

We introduce the quasiparticle operators a, by means 
of the transformation 

rp ( r )  = {u, (11 a,-R,vv (r) a,+), 

where @(r) is the second-quantization operator of anni- 
hilation of nucleons, and Ry = exp(-i7rjy) is the operator 
of rotation of the coordinate system attached to the nu- 
cleus. In the Hartree-Fock-Bogolyubov approximation, 
the amplitudes u and v of the quasiparticles satisfy the 
equations (E, is the energy of the quasiparticles) 

and the orthogonality conditions 

The equation for A has the form2) 

where n, a r e  the quasiparticle population numbers. The 
integral in this expression can be expressed in terms of 
the energy of the quasiparticles if we use Eqs. (1) and 
(2). We obtain the equation 

From this, using the realtion known from superconduc- 
tivity theory for the difference between the expectation 
values of the Hamiltonian in the superfluid state and the 
normal state,12 we can find the energy of the nucleus in 
the rotating coordinate system: 

Here, E: is the energy of a nucleon in the self-consis- 
tent field of the nucleus for n = 0 .  

Equations (1) a r e  invariant under rotation of the coor- 
dinate system through angle r about the x axis (R,) and 
under the transformation TRY (T is the operator of time 
reversal). 

2. The Coriolis force acting on a nucleon in the rotat- 
ing nucleus is proportional to the single-particle angular 
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momentum j. Therefore, nucleons in levels with j -A'/' 
near the Fermi surface interact the most strongly with 
the rotation. For  the r a r e  earths, these a r e  levels of 
the il,12 subshell for neutrons and hIll2 subshell for pro- 
tons. These levels a r e  distinguished by their parity 
from the other states of the closed shell. Therefore, j 
for them is a good quantum number, since admixture of 
states with different j due to deformation and rotation 
corresponds to transitions to a neighboring shell. 
Therefore, states with maximal j a t  the Fermi  surface 
can be assumed to be isolated. At rotational frequency 
a - +/A, corresponding to the backbending region, the 
parameter a is of order unity, a - 1, and perturbation 
theory cannot be used for these states. On the other 
hand, the interaction of the rotation with the nucleons in 
the remaining levels can be treated by perturbation 
theory, since they either have small j or  a r e  situated 
far  from the Fermi surface. 

For  the isolated j level, Eqs. (1) can be written in the 
form 

[36 ('/,e+j.Z) -Bj,]  u,-Av.=E,u., 
(5) 

[36('/,e+j,') +QjJ v.+Au,=-En,, 

where 6 determines the splitting of the levels under the 
influence of the quadrupole deformation, and 

~='/~(~,-e~);6-'/,j(j+I) (6) 

is determined by the distance (&,) of the j level in the 
spherical nucleus from the Fermi surface. 

3. To solve the system (5), we use a one-dimensional 
complex realization of the group SU(2) (see Ref. 13), in 
which the operators of the angular momentum have the 
form (the complex variable z = x + i y  is defined in the 
s t r ip  0 c x < n )  

1 d I d 
j.=j cos 22 - -sin (2 z )  - , 1,- j sin 2z + - cos (22)- ,  

2 dz  2 dz 

The operators of finite rotations a re  given by 

All the operators of this representation act on the space 
of functions 

The chosen representation makes i t  possible to reduce 
the system of partial differential equations (5) in two 
variables to a system of ordinary differential equations 
in the complex variable z .  These equations contain the 
large parameter j, and for their solution we can there- 
fore use the quasiclassical approximation. Quasiclas- 
sical solutions must be found for the complete range of 
the complex variable z and must satisfy the requirement 
that the scalar product be finite. This requirement de- 
termines the quantization conditions for E,. 

The invariance of Eqs. (5) under the transformation 
R, (8) means that there exist even (e) and odd (0)  solu- 
tions of these equations. The symmetry of the system 
(5) leads to the relation 

The quantization conditions can be obtained from the 
quasiclassical solutions on the real  axis if we use the 
invariance of the equations under R,. In accordance 
with (8) and (9), the solutions of the system (5) have the 
form 

I-% 

Y . ,o( . )=  (\) = z ~ k .  { cos ( 2 k + l ) z ,  

k-0 
s in (2k+ l ) z .  

Therefore, the relations 

a r e  boundary conditions for the solution of Eqs. (5) on 
the real  axis. 

$3. CALCULATION OF THE ENERGIES OF THE 
QUASIPARTICLE EXCITATIONS 

1. We write out the system of equations (5) on the 
real axis: 

Here, we have introduced the notation 

f ( x )  ='/?E sin ax, g ( x )  =q+jE cos 22, 

E=4Q/36, v=4A/36, q=4E/36.  

We transform (12) into a fourth-order equation and 
seek a solution of i t  in the form eS, where 

When I q 1 -j, the parameter of the expansion (13) is p 
= j"I2; when 1771 -j2, i t  is p =  j-'. If -&*/A, then v - j  
and 5-1.  

The parameter c (6) varies in a wide interval. De- 
pending on its value, solutions of the system (12) will be 
different. If I € I << j, then in the zeroth approximation 
the phase S t  can be found from the equation 

For  large c, one must use the equation 

These two cases differ in the turning points on the real  
axis and the rules for going round them. Let us  consid- 
e r  these cases separately. 

2. For  small c, the four linearly independent solutions 
of the system (12) in the quasiclassical approximation 
have the form 

1 
v ,  (5) = - - [g+e'Pn (8-vZ)'I']  u, ( z ) ,  

where P=O, 1,2,3. In these functions, the phase C#I is 
measured from the turning point x,: 
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On the real  axis, there a r e  not more two turning points 
x, and x,: 

cos 2x1, ,= (*v-q)I jg,  * v-jz<q<* v+jg. (15) 

The comparison equation near these points has the form 

if ( € 1  < j. This last  inequality determines the region of 
small c Equation (16) can be solved exactly by Lap- 
lace's method. Comparing the exact solutions with the 
approximate solutions (14), we find the formulas for 
connecting the quasiclassical solutions on the two sides 
of the turning point x, or  x,. 

From the functions (14), we form even and odd linear 
combinations and continue them from the coordinate 
origin through the turning points in such a way a s  to 
satisfy the boundary conditions (11). Ignoring exponen- 
tially small terms, we obtain the quantization condi- 
tions, which a r e  determined solely by the turning point. 
If there a r e  not turning points on the real  axis, then q, 
=qo a re  found from the equation 

If there is one turning point, x,, on the real  axis, then 
the quantization conditions a r e  

The index o is used to denote the even ( e )  and odd ( 0 )  

solutions, and the integer no is determined from (18) for 
q = v + j t .  

The quantization conditions with the turning point x, 
a r e  obtained from (18) by replacing by -q and x by n/2 
- x in accordnace with Eq. (10). If A < jS1, then on the 
real  axis there may be two turning points x, and x,. In 
this case, the spectrum of quasiparticles is found from 
the quantization condition for the point x,. In this re- 
gion, the lowest quasiparticle excitations change sign 
with increasing 62. 

2. In the case of large €, the linearly independent 
solutions a r e  

[g+e'Pn (g2-v2)'"]-'" e ~ p { e ' ~ " / ~ ~ , .  ( x ) }  
u9 = [ (g'-vz) ( E + e ' ~ " ( g 2 L V 2 ) ' h )  ] ' 

1 
v9 ( 5 )  = - -[g+e'pX (g2-v2) I b ]  up  ( x ) ,  (19) 

v 

@,,(x) = [ (g2 ( t )  -v" )C + ee'pnIab dt. 

In the interval 0 e x  e r / 2  there a r e  not more than four 
turning points. Besides x, and x, (15), there a r e  two 
further points corresponding to the vanishing of the 
factor in the denominator of u, (19); these a r e  deter- 
mined by the equation 

The number of turning points on the interval 0 e x  e r / 2  
depends on the value of the parameters j [ ,  v, and r and 

FIG. 1. Positions of the turning points on the real axis as 
functions of 5 ,  v ,  and 11. 

the eigenvalue q. The corresponding regions a re  shown 
in Fig. 1. 

The comparison equation for the turning points x, and 
x, is obtained from (12) under the condition 

j"a< 1 € 1 <j=,  (21) 

which is the definition of the region of large €. It de- 
composes into two second-order equations for the func- 
tions u,, u, and u,, u,. Therefore, the formulas for 
connecting the solutions on the two sides of the turning 
points have the usual form.14 The comparison equation 
for the points x, and x, also reduces to a second-order 
equation for the functions u, and u, for € > 0 and for uo 
and u, for €< 0 if the inequality (21) is satisfied. It 
should be noted that this inequality also enables us to 
assume that all  the points a r e  isolated if there is more 
than one turning point in the interval 0 < x <  r/2. 

Satisfying the boundary conditions (11) and ignoring 
the exponentially small terms, we obtain the quantiza- 
tion conditions, which a r e  again determined by the turn- 
ing points on the real  axis. If there a r e  no turning 
points on the interval 0 < x < n /2, then q, = q, can be 
found from the equations 

y[k (gZ ( x )  -vZ) 'Iz - ela1* dx=n (n-'/,). (22) 
B 

The quantization condition with the upper sign is used to 
determine the eigenvalues in the region q > q+ for €Z 0, 
and the condition with the lower sign is used in the re- 
gion v + j [ < q < q -  f o r € < 0 .  

For  one turning point x,, the solutions q,=qo exist 
only for negative e: and a r e  determined by the equation 

J {[  lel+ ( g z ( z )  -v2)"]'"- [ lel- ( g 2 ( x )  - v Z ) ' " ] } d = ( n - )  (23) 
0 
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For one turning point x,, the cases €> 0 and Z< 0 are  
different. If €> 0, then the quantization conditions a re  

For €< 0, there exist two possibilities: 

If there are  two turning points x, and x, in the interval 
0 < x < n/2, then for o 0 the quantization condition i s  
determined by Eq. (24), and for C< 0 i t  has the form 

-n [n-'/,(i+28..,) 1. (27) 

The ranges of variation of q in Eqs. (23)-(27) can be 
found in Fig. 1. 

The quantization conditions with the turning points x,, 
x4 or x2 and x4 a r e  obtained from the conditions given 
above by replacing q by -1) and x by r/2 - x, so that the 
symmetry property (10) i s  satisfied. If A <  jS2, then to 
the points x, or  (and) x, there are  added the points x, or  
(and) x4 (see Fig. 1). The quantization conditions with 
the points x2 or  (and) x4 contain nothing new compared 
with the property (10). 

3. The quantization conditions (22)-(27) go over into 
the conditions (17) and (18) then c tends to zero. This 
makes i t  possible to use Eqs. (22)-(27) to determine 
the quasiparticle energies in the interval I c 1 < j2. Note 
that the dependence of the energies of the quasiparticle 
excitations on the rotational frequency is determined by 
it. 

4. At low rotational frequencies, the quasiparticle 
energies can be found from Eqs. (22) and (26). The 
remaining conditions become inoperative, since their 
left-hand sides become less than unity. To terms quad- 
ratic in [, we have 

Here, m is the projection of the angular momentum of 
the nucleon onto the symmetry axis of the nucleus. The 
quantity 7, is equal to the quasiparticle energy obtained 
by perturbation theory from Eqs. (5) for 1 m 1 < j. The 
restriction at large m is due to the fact that for I m 1 - j 
and small 5 terms that for 5 - 1 are  small become im- 
portant in the equation for the phase S;. For the same 
reason, one cannot obtain from Eqs. (22)-(27) the 
other limiting case for 5 >> 1. 

5. When [ - 1, the obtained approximation is a good 
one except for the case when two closely spaced turning 
points are  situated on either side of x=n/2. This oc- 
curs when one of the turning points is near x=n/2, 
since Eqs. (12) a re  symmetric about n/2. 

Another restriction arises in the region of intersec- 
tion of the quasiparticle "terms." The quantization 
conditions (22)-(27) do not hold near the point of inter- 
section of quasiparticle levels of the same parity. In 
the quasiclassical approximation, each level is charac- 
terized by a quantum number that does not depend on 5 
or  another parameter because the left-hand side of the 
quantization conditions is an adiabatic invariant. On 
the other hand, in the case of repulsion of the levels the 
quantum number changes on the transition through the 
point of intersection. Therefore, in the quasiclassical 
treatment the terms can only intersect. 

The exact and approximate dependence of the quasi- 
particle energies on the rotational frequency for con- 
stant A a re  shown in Fig. 2 for j =13/2. In Fig. 2, the 
index n i s  used to designate the exact values of the 
quasiparticle energies in the order in which their energy 
increases. It can be seen from Fig. 2 that the obtained 
approximation can be used up to values [ = 10. 

$4. EQUATION FOR A 

1. We now turn to the determination of the pairing en- 
ergy A. To this end, we find the contribution of a sub- 
shell with large j to the right-hand side of Eq. (3) for 
n, = 0. Using the quantization conditions (22)-(27) and 
replacing the summation over the quantum number n by 
integration, we obtain 

2 t , ( x )  =[ [ (q,+jS cos 2 s )  2-vz]"~-e]'", 

where q, i s  the quasiparticle energy determined by Eq. 
(22) for n= j  + 4. This energy depends weakly on the 

FIG. 2. Quasiparticle levels in rotating nucleus (c = 0, v 
= 20). The continuous curves are exad solutions, the dashed 
curves are solutions obtained quasiclassically, and the chain 
curves are solutions obtained by perturbation theory. 
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rotation. Calculating it  by perturbation theory, we find 

Thus, rotation, which strongly influences the spec- 
trum of quasiparticle excitations of the subshell with 
large j, hardly changes the sum (28). The weak de- 
pendence on the rotational'frequency [the parameter 
( j 5 1 / ~ ) ~ / j ~ ]  is explained by the quasiclassical canceling 
of the terms that depend on 51. 

2. Equation (3) contains the sum of the expressions 
(28) over all j levels. If the rotational frequency of the 
nucleus does not exceed cF/A, then to calculate this sum 
we can use perturbation theory; for at small j perturba- 
tion theory i s  valid because of the smallness of the 
adiabaticity parameter a, while for large j i t  i s  valid 
because of the weak dependence of the quantity (28) on 52. 

The correction to A in the second order of perturba- 
tion theory was calculated by Grin' in Ref. 15. Using 
the results of Ref. 15, we can obtain the following ex- 
pression for the dependence A(52) in the model of a rec- 
tangular well: 

Here, A, is the pairing energy in the ground state of a 
nucleus with N neutrons (or protons for proton quasi- 
particles). The function g i s  determined in Migdal's 
paper (Ref. 1): 

arg sh x 
g(x)=-. 

x ( l + x = ) "  

To understand how good perturbation theory is to cal- 
culate A(51), we use the results of $7. The maximal 
rotational frequency 51 = 360 keV (I = 22) is observed in 
the nuclei DylS8 and ErlM. At this frequency, the value 
of A is reduced by 18 and 16%, respectively. On the 
average for eight rare  earth elements, we have the 
maximal values (A, - A)/A, = 0.11. 

5 5. INTERSECTION OF ROTATIONAL BANDS 

The dependence of the quasiparticle energies on the 
rotational frequency of the nucleus enables us to under- 
stand how the backbending arises. 

1. We consider first  an even-even nucleus in which 
one of the levels of a subshell with large j is near the 
Fermi surface. In the expression (4) for the energy of 
the nucleus in the rotating coordinate system the term 
-+C,,E, can be conveniently regarded as  the "vacuum" 
of the quasiparticles, corresponding to filling of all 
quasiparticle levels with negative energy in the ground 
state of the even-even nucleus. The lowest two-quasi- 
particle excitation in the subshell j can be formed by 
transferring two quasiparticles from the highest vacuum 
levels to the lowest quasiparticle levels. The excita- 
tion energy of the nucleus will differ from the ground- 

state energy by the amount E,,,+ E,,,. For large j, 
this quantity decreases with increasing 52, becoming 
zero3) (the point B in Fig. 2). At this point, the ground- 
state band intersects the band based on the two-quasi- 
particle excitation of the subshell j. For  appropriate 
interaction between these bands, backbending occurs.10 

For every two-quasiparticle excitation in subshell j 
or  superposition of excitations with different j in an 
even nucleus there is corresponding superband. It con- 
tains only even spins I if the excitations have different 
parity under the transformation R,. For the same par- 
ity, the sequence of spins is odd." The parity of the 
state of the superband i s  determined by the parity of the 
j level. 

In the considered approximation, the rotational bands 
can only intersect, since the quasiclassical treatment 
does not describe the phenomenon of repulsion of the 
levels. Therefore, our approximation corresponds to 
noninteracting bands. Since there i s  no hybridization of 
the bands a t  fixed rotational frequency, there is no 
strong fluctuation of the angular momentum in each sep- 
arately taken band. 

2. We consider the lowest state of an odd nucleus in 
which the odd particle is in the lowest quasiparticle 
state of subshell j. The energy of the lowest three- 
quasiparticle state in this subshell differs from the 
energy of the single-quasiparticle state j l e  by the 
amount Ell, +El,,, which vanishes a t  values of 51 greater 
than in an even nucleus (the point B' in Fig. 2). There- 
fore, the point of intersection of the bands in the odd 
nucleus is shifted to the region of higher rotational fre- 
quencies. Experimental investigation of the bands in 
odd nuclei based on states of the subshells il,l, (neu- 
trons) and hg12 and hllll, (protons) shows that back- 
bending is absent in these bands at values of the rota- 
tional frequencies for which it  is observed in the neigh- 
boring even-even nuclei. 

3. Finally, we consider a rotational band based on a 
vibrational state of an even-even nucleus. In the rotat- 
ing nucleus, the energy of the vibrational excitation, 
which is a superposition of two-quasiparticle states 
with different j, will decrease with increasing 52 slower 
than the energy of the lowest two-quasiparticle excita- 
tion with the maximal j. To the intersection of these 
two excitations there will correspond intersection of the 
bands based on the vibrational level and the two-quasi- 
particle level. 

It is clear from what we have said above that quasi- 
particle excitations from the subshell with maximal j 
at the Fermi surface play a decisive part in the back- 
bending phenomenon. It i s  of interest to compare the. 
theoretical and experimental values of these quantities. 

5 6. DETERMINATION OF THE ENERGIES OF 
QUASIPARTICLE EXCITATIONS FROM THE 
ROTATIONAL SPECTRA 

The dependence of the energy of a quasiparticle exci- 
tation on the rotational frequency can be deduced from 
the observed energies of rotational bands.4) 
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1. If in an even-even nucleus we know .the energies of 
two intersecting bands, the ground-state band go and the 
superband gs, then the energy of the two-quasiparticle 
excitation in the subshell with maximal j is 

The energy of the nucleus in the rotating coordinate sys- 
tem is determined by 

and the rotational frequency can be found from the ex- 
pression 

Note that to the same value of I there correspond differ- 
ent S2 values in different bands. 

2. We consider an odd nucleus formed from an even- 
even nucleus with N neutrons (protons) by the addition 
of one particle to  the state X in subshell j, and the rota- 
tional band based on this state. One can show that the 
even ( e )  states in the coordinate system attached to the 
nucleus a r e  projected onto the state of the band with 
even I - $, and that the odd ( 0 )  states a r e  projected onto 
states with odd I - $- (see Ref. 16). If 0, and go a r e  the 
energies of the levels of the band with corresponding 
sequences of spins measured from the energy of the 
state X, the quasiparticle excitations a re  found a s  fol- 
lows: 

E:,,=E,+Q.'(Q) -8: (9).  E,',,=E,+EP.'(Q) - 8 , ' ( 9 ) .  (33) 

The values of g1 and Q a re  determined in accordance 
with Eqs. (31) and (32). 

In the expression (33), E, is the energy of the quasi- 
particle a t  Q=0. If the band is based on the excitated 
state of an odd nucleus with energy E,, then E,=E,, +E,. 
The quasiparticle energy corresponding to  the ground 
state can be deduced from the binding energies of the 
nuclei18: 

In concrete calculations, a s  c, i t  is best to use the 
value averaged over the neighboring nuclei with AN = 2. 

8 7. COMPARISON WITH EXPERIMENT 

To compare the quasiparticle energies calculated in 
accordance with Eqs. (22)-(27) with the experimental 
values, i t  is necessary to know the dependence A(Q) 
and the parameters 6 and 6. The value of A(S2) was cal- 
culated by means of the expression (29), and A, was 
found from the binding energies of the nuclei. The 
parameter 6 determines the splitting of the levels in 
subshell j due to the quadrupole deformation. In the 
model of an infinite rectangular well, i t  is equal to 

6= (5/.16n)'"pen,lj(j+1), 

where E,, is the energy of the j level in the spherical 
well without allowance for the spin-orbit interaction: 

en,= 14.39~,,IA'". 

Here, x,, is a root of the corresponding Bessel function. 
For  the Woods-Saxon potential, the parameter 6 is on 

the average 30% smaller than for the rectangular well.') 

The parameter € (6) depends on the population in the 
singleparticle levels of the deformed average field for  
Q = 0. It can be determined from the energy E, of the 
quasiparticle excitation: 

where K is the projection of the angular momentum of 
the nucleon onto the symmetry axis of the nucleus, and 
the plus and minus signs correspond to particle and hole 
excitations, respectively. The uncertainty due to the 
Coriolis interaction does not lead to an appreciable 
e r r o r  if the band is not strongly distorted, since the 
quasiparticle energies depend weakly on t. For  the 
same reason, the blocking effect is not taken into ac- 
count. Therefore, the expression (35) contains A, of 
the neighboring even nucleus.18 In the cases when the 
rotational band in an odd nucleus is strongly distorted 
a t  the bottom (for example, Dy15") o r  is unknown, the 
parameter € can be determined approximately from the 
population of the single-particle states. 

The quantity (4), which is needed to  determine the 
quasiparticle energies from the experiment, was taken 
equal to IP in all calculations. This is a reasonable 
approximation for bands that a re  weakly distorted a t  
the bottom. 

The experimental and theoretical values of the neutron 

E, MeV 
I 

FIG. 3. Quasiparticle excitations in the nuclei ~ y ' ~ ~  and 
~ r ' ~ ~ .  The experimental points are determined from the 
bands: a) in odd nucleus: open circles for I - 4 even and 
black circles for I- odd; b) in even nucleus; the open 
triangles are the lowest superband (I even), the black 
triangles are for superbands with odd I+,  and the inverted 
open triangles are for superbands with odd I-. 
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E, MeV E. MeV 

FIG. 4. Single-quasiparticle excitations of the subshell 4312 
in nuclei of the rare earth elements. The experimental points 
are determined from a band of the odd nucleus; the open 
circles are for 1-4  even and the black circles for I - 4  odd. 

quasiparticle excitations in the subshell i13/, for nuclei 
of the rare earth elements are  compared in Figs. 3 and 
4. The parameters used in the calculation are  given in 
Table I, in which we also give the quantum numbers of 
the base level of the rotational band used to define the 
quasiparticle energies. The letter S stands for the 
superband in an even-even nucleus, and there then 
follow the spin, parity, and energy of the first  known 
level in this band. 

The intersection of bands in the nuclei Dy15' and 331-l~~ 
has been studied in the greatest detail.7 Three super- 
bands have been found in the second of these nuclei. In 
determining the quasiparticle energies from the data of 
Ref. 7, a correction for the interaction of the bands 
was introduced, so  that the experimental points in Fig. 
3 correspond to noninteracting bands. 

Let us consider the energies of the single-quasiparti- 
cle excitations a s  a function of the position of the Fermi 
surface. With increasing C, (which corresponds to de- 
creasing <)the splitting of the lowest quasiparticle 
levels of opposite parity must decrease, and the rota- 
tional frequency corresponding to vanishing of the ener- 
gy of the first level is shifted to the right. Qualitative- 
ly, this picture is reproduced for the isotopes E r  and 
Yb. In the Dy isotopes, the agreement i s  less good be- 
cause of the admixture of states from the N=4  shell." 
These states have smaller j, and therefore their admix- 
ture must decrease the slope of the curve El,,(Q). In 
the Ybl'O nucleus, a deviation of theory from experiment 
in the opposite direction is observed. It can be ex- 
plained by the influence of hexadecapole deformation, 
which increases the part played by states with small K. 

TABLE I. 

(Ref. 19) 

0.3" I 
€ 1  Band 

*Found from population of single-particle levels. 

In DylS6, a band with negative parity was investigated. 
The experimental dependence of the excitation energy 
in this band on Q i s  shown in Fig. 3. If this excitation 
is described by two quasiparticles in the subshells i,,,, 
and ho12 (El,/, ,, + Eo12 ,,, since the spins I are  odd), the 
theoretical points lie appreciably higher than the exper- 
imental ones, particularly a t  small S?,. This i s  evident- 
ly an octupole band, which must intersect the two-quasi- 
particle band at large angular momenta.22 

"Numerical calculations show that the extent of nonuniformity 
of the pairing in the ground state of deformed nuclei does 
not exceed 5-736. 

2"I'he remaining self-consistency conditions are not con- 
sidered, since at frequencies 0 s; &,/A the change in the 
Fermi energy and the deformation p with the rotation can 
be ignored. 

3 ) ~ h e  vanishing of Ebe does not lead to any physical conse- 
quences because the parity of the number of particles is 
conserved. '6 

4)~uch an attempt was undertaken by Bengtsson and 
Frauendorf. l7 However, this attempt is of a model nature, 
since theoretical values of the moment of inertia were 
used in the determinati~n~of the quasipartjcle energies. 

5 ' ~ h e  author i s  grateful to E. E. Sapershtein, who kindly 
provided the numerical data needed for this calculation. 

IS. T. Belyaev. K. Dan. Vidensk. Selsk. Mat. -ws. Medd. 
31, 11 0959); A. B. Migdal, Zh. Eksp. Teor. Fiz. 37, 
249 (1959) [Sw. Phys. JETP 10, 176 (1960)l. 

2 ~ ~ .  T. Grin' and I. P. Pavlichenkov, Zh. Eksp. Teor. Fiz. 
43, 465 (1962) [Sov. Phys. JETP 16, 333 (196311; E. R. 
Marshalek, Phys. Rev. 158, 993 (1967). 

3. M. Pavlichenkov, Nucl. Phys. 55, 225 0964). 
4 ~ .  R. Mottelson and J. G. Valatin, Phys. Rev. Lett. 5, 511 
(1 960). 

v. G. NOSOV and A. M. Kamchatnov, Zh. Eksp. Teor. Fiz. 
73, 785 (1977) [Sov. Phys. JETP 46, 411 0977)l. 

6 ~ .  S. Stephens and R. S. Simon, Nucl. Phys. A183, 257 
(1972). 

'T. L. Khoo, F. M. Bernthal, J. S. Boyno, and R. A. 
Warner, Phys. Rev. Lett. 31, 1146 0973); F. W. N. 
De Boer, P. Koldewijn, R. Beetz et al., Nucl. Phys. 
A290, 173 0977); N. R. Johnson, D. Cline, S. W. Yaks 
et al., Phys. Rev. Lett. 40, 151 0978). 

'A. Goswami, L. Lin, and G. L. Struble, Phys. Lett. 25B, 
451 6967); Yu. T. Grin', Phys. Lett. 52B, 135 0974). 

%. Hamamoto. Nucl. Phys. A 2 n ,  15 0976); R. Bengtsson, 
I. Hamamoto, andB. Mottelson, Phys. Lett. 73B, 259 
(1978). 

'$. M. Pavlichenkov, Phys. Lett. 533, 35 0974). 
"s. T. Belyaev, Struktura yadra. Lektsii. Mezhdunarodnaya 

shkola po strukture yadra, Alushta 1972 (Nuclear Structure. 
Lectures, International School on Nuclear Structure, 

1001 Sov. Phys. JETP 48(6), Dec. 1978 I. M. Pavlichenkov 1001 



Alushta, 19721, published by JINR, Dubna, p. 491. 
1 2 ~ .  A. Abrikosovt L. P. Gor'kov, and I. E. ~yzyaloshinsldi, 

Metody kvantovoi teorii polya v statisticheskoi fizike. 
Fizmatgiz (19621, p. 395; English translation: methods of 
Quantum Field Theory in Statistical Physics, Englewood 
Cliffs (1963)l. 

13c. P. Bouer, E. G. Kalnis, and W. J. Miller, J. Mac .  
Phys. 16, 512 (1975); I. M. Pavlichenkov, Preprint IAE- 
2769, Moscow (1977). 

1 4 ~ .  D. Landau and E . M. Lifshitz , Kvantovaya mekhanika, 
Gostekhizdat 6948); (Ehglish translation: Quantum Mechan- 
ics, Pergamon Press ,  W o r d  (1965)). 

15yu. T. Grin', Zh. Eksp. Teor. Fiz. 41, 445 (1961) [Sov. 
Phys. JETP 14, 320 (196211. 

1 6 ~ .  J. Mang, Phys. Rep. Phys. Lett. 18C, No. 6 (1975). 

"B. Bengtason and S. Frauendorf, Contribution 819 to the 
Intern. Conf. on Nuclear Structure, Tokyo (1977); 

18yu. T. Grin', S. I. Drozdov, and D. F. Zaretskii, Zh. 
Eksp. Teor. Fiz. 38, 222 (1960) kov. Phys. JETP 11, 162 
(1960)l. 

"P. H. Stelson and L. Grodzins, Nucl. Data lA, 1 (1965). 
2 0 ~ .  Bochev, S. Iliev, R. Kalpakchieva, S. A. Karamian, 

T. Kutsarova, E. Nadjakov, and Ts. Venkova, Nucl. Phys. 
A282, 159 (1977). 

2 1 ~ .  I. Baznat, N. I. Pyatov, and M. I. ~herney ,  Fiz. Elem. 
Chastits At. Yadra 4, 941 (1973) [Sov. J. Part. Nucl. 4, 
384 (1974)l. 

2 2 ~ .  Vogel, Phys. Lett. 60B, 431 (1976). 

Translated by Julian B . Barbour 

Relaxation of p+-meson spin in the crystal lattice of 
copper, vanadium, or niobium in weak magnetic fields 

V. G. Grebinnik, I. I. Gurevich, V. A. Zhukov, I. G. Ivanter, A. I. Klimov, V. N. Maiorov, 
A. P. Manych, B. A. Nikol'ski, A. V. Pirogov, A. N. Ponomarev, V. I. Selivanov, and 
V. A. Suetin 

I. K Kurchatov Institute of Atomic Energy 
(Submitted 26 June 1978) 
Zh. Eksp. Teor. Fiz. 75, 1980-1998 (December 1978) 

We compare the experimental and calculated values of the relaxation rates A of the spin of a non- 
diffusing p+ meson in copper, vanadium, and niobium in the absence of an external magnetic field. The 
enlargement of the interstitial pores of the crystal lattices of these metals by the localization of the p+ 
meson in the pores is estimated. The A(B) dependence is investigated for weak transverse magnetic fields 
B. 

PACS numbers: 76.90. + d 

1. INTRODUCTION 

The spin of a y' meson in a crystal lattice relaxes 
because of the magnetic dipole interactions with the 
magnetic moments of the surrounding nuclei.' Mea- 
surement of the relaxation rate A of the spin of the p' 
meson makes it possible to determine the type of the in- 
terstitial pore in which the @+ meson is localized, and 
also find the deformation of this pore. The determina- 
tion type of the pore and the degree of its deformation 
are determined by comparing the experimental and cal- 
culated values of A. This method is quite sensitive, 
since h - riS, where Y, is the distance between the p' 
meson and the nuclei of the neighboring atoms of the 
metal. This comparison is possible only in the limiting 
cases of strong and weak (zero) external magnetic 
fields B, since the calculation of the values of A for an 
arbitrary field B entails very great difficulties. 

weak transverse magnetic fields B and at B= 0. The 
measurement of the relaxation rate A at B = 0 is in cer - 
tain respects more convenient than at B -- ~ 1 ,  inasmuch 
a s  to obtain inpractice the asymptotic values of A(B- ~ 1 )  

in these metals it i s  necessary to produce very strong 
magnetic fields. The magnetic fields B needed to mea- 
sure the values of A(B - ~ 1 )  must lead to a practically 
complete suppression of the influence of the electric 
quadrupole interactions of the y' meson with the neigh- 
boring metal-atom nuclei. Camani et a1.' have shown 
experimentally that in copper this requires a field B - 10 kOe. Allowance for the quadrupole interactions at 
B= 0, in the case of sufficiently large quadrupole mo- 
ments Q of the nuclei, reduces to simple corrections to 
the calculated values of A(B = O), and when these are 
calculated one can assume the limiting value Q- ~ 1 .  

2. THEORY 

The values of A should be measured at sufficiently low The calculated value A,,,, of the relaxation rate of the 
temperature, when the y* meson hardly diffuses in the spin of a y+ meson in a m&l is determined from the 
crystal. The diffusion of the y' meson causes the local dependence of the polarization P@) of the y* meson on 
dipole magnetic field at the meson to become alternating the time. In the calculation of the P(t) we represent 
intime, a s  a result of which the relaxation rate A de- this function as  a series in even powers of t: 
creases. In the present study we have measured the P ( t )  = I-'/xtzM2+'/'t'M~-. . . 
relaxation rate of the spin of a non-diffusing y' meson - .  - 

(1 ) 

in a crystal lattice of copper, vanadium, o r  niobium in There are no odd powers of t in the expression (I), in- 
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