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The friction force acting on a moving electron-hole drop is considered. It is shown that at low 
temperatures the friction due to incoherent emission and absorption of acoustic phonons increases as the 
speed of the drop approaches that of sound. At supersonic speeds an additional much stronger friction is 
produced by the Cerenkov emission of sound by the drop as a whole. The coherent interaction of the 
electrons and holes of the drop with the lattice-deformation field leads also to the appearance of an 
additional "defonnation" mass of the electron-hole drop. 

PACS numbers: 7 1.35. + z 

1. INTRODUCTION mentum of the emitted phonons increases, and a t  v 3 s 
this momentum turns out to be of the order of the Fermi 

The motion of electron-hole drops in a semiconductor momentum, s o  that the friction should increase strong- 
under the influence of external forces was investigated ly. 
in a number of  paper^.''^ The drop velocity i s  deter- This statement can be explained in the following man- 
mined by the viscous-friction force applied to the drop ner: the energy conservation law for phonon emission 
by the crystal lattice. The friction force due to emis- by an electron can be written in the form 
sion and absorption of acoustic phonons by the electrons 
and holes of the drop was calculated by Keldyshs fo r  E (p+m.v) -E  (p+m,v-q) =sq, 
velocities v << s, where s i s  the sound velocity. Since where p i s  the electron momentum in a reference frame 
the experimentally observed drop velocities reach val- co-moving with the drop at velocity v, and m, is the 
ues (Refs' 3'4'6) it is Of interest to examine the electron effective mass. The energy lost by the electron 
friction force and i ts  velocity dependence near the speed 

in the moving coordinate frame i s  
of sound. The deceleration mechanism proposed by 
Keldyshs was investigated at high velocities by Manoliu e (P) -6 (P-9) =SQ-(I\'. - - 

and Kittel,7 who calculated numerically the friction At subsonic velocities this i s  a postive quantity and, a s  
force for germanium at drop velocities (0.5 - 2.5) x lo5 a result of degeneracy, should be of the order of kT. 
cm/sec falling short of the sound velocity. According The absolute value of the momentum of a phonon emit- 
to them, the viscous-friction coefficient changes insig- 

ted in the direction of the motion (it i s  these phonons 
nificantly in this interval. 

which make the largest contribution to the deceleration 
It is shown in the present paper that the friction force force) i s  of the order of kT/(s -v) and increases with 

increases when the drop approaches the speed of sound. increasing velocity. 
This increase i s  due to the fact that at v 3 s the moving At v s phonon emission becomes possible even a t  
drop, as  a macroscopic body, can emit cere*ov radia- T =  0. The internal energy of the drop then increases, 
tion, i.e., the entire aggregate of electrons and holes of in contrast to the case v < s ,  and the restriction on the 
the drop can radiate coherently. The wavelength of the phonon momentum i s  lifted. This should lead to an in- 
radiated sound i s  in this case of the order of the drop crease  of the friction force. 
dimension. 

Second, incoherent emission of phonons by individual 
electrons and holes is possible; this phenomenon was 
considered in a number of ~ t u d i e s . " ~  At low tempera- 
tures the intensity of the incoherent emission (which 
determines the friction force a t  v <  S) should increase 
strongly a s  v - s. In fact, in  the presence of degeneracy 
and at v << s, the energy sq lost by an individual particle 
a s  i t  emits a phonon of momentumq should be of the or- 
de r  of kT. At low temperatures kT<<tik+ (Ak, is the 
Fermi momentum) the momenta of the emitted phonons 

The increased role of the phonon emission by a mov- 
ing drop a t  low temperatures leads at subsonic veloci- 
ties to the drop cooling considered by us earlier.' 

In Sec. 2 of this paper we calculate the friction force 
due to incoherent emission and absorption of phonons by 
electrons and holes of the drop, as a function of the 
drop velocity and of the lattice temperature. The 
growth, discussed above, of the friction force a t  sub- 
sonic velocities turns out to be large only at very low 
temperatures T <<To, where To = 2AkFs. 

are therefore q < < A k ~ ,  so that the particle loses In Set. 3 is calculated the friction force that appears 
a small fraction of i t s  momentum. For  this reason, a t  a t  supersonic velocities a s  a result of Cerenkov emis- 
low temperatures and a t  v << s, the friction force con- sion of sound by the drop a s  a whole. The value of this 
tains the small factor (kT/f k,s)' (see Ref. 5). force at the Cerenkov-radiation threshold exceeds sub- 

With increasing drop velocity the characteristic mo- stantially the low-temperature friction force at v<s.  
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It appears that the Cerenkov friction force makes i t  im- 
possible to attain in experiment velocities higher than 
that of sound. 

Coherent interaction of the entire aggregate of the 
electrons and holes of the drop with the lattice-deforma- 
tion field produces, besides the Cerenkov friction force, 
an additional "deformation" mass  of the electron-hole 
drop. This deformation mass and i ts  dependence on the 
drop velocity a re  obtained in Sec. 4. 

2. FRICTION FORCE DUE TO INCOHERENT 
INTERACTION WITH PHONONS 

We obtain in this section the friction force due to inco- 
herent emission and absorption of acoustic phonons by 
electrons and holes of a drop moving with velocity v <s .  
The expression for the friction force F, (per electron- 
hole pair) is of the 

Here p is the crystal density, no i s  the density of the 
electron-hole pairs in the drop, D, and Dh are the de- 
formation potentials of the electrons and holes, N, i s  
the equilibrium distribution function of the phonons for 
the lattice temperature T, f,, and fh, a re  the Fermi  dis- 
tribution functions of the electrons and holes at the drop 
temperature T,, which can differ from the lattice tem- 
perature. 

The stationary temperature T, of the moving drop 
must be determined from the condition dE/dt = 0, where 
E is the internal energy of the drop. An explicit expres- 
sion for dE/dt i s  obtained by replacing the factor q 
under the integral sign in (1) by sq - q ' v (Ref. 5). The 
dependence of the drop temperature Td on the drop ve- 
locity and on the lattice temperature was investigated 
by us earlier.' It was shown that at subsonic velocities 
the drop becomes heated a t  high lattice temperatures 
and is cooled at low ones (T << To). This dependence of 
T, on the velocity must be taken into account in the cal- 
culation of the friction force (1). 

It is easy to verify that when account i s  taken of the 
condition dE/dt = 0 the expression for the absolute value 
of the friction force i s  given by the integral of (I) ,  in 
which the factor q must be replaced by Iqls/v. At c, 
>> kT and c, >> msZ (c, is the Fermi energy) this expres- 
sion can be reduced to'' 

where m, and mn are  the masses of the electron and 
hole, kp i s  the wave vector corresponding to the Fermi 
momentum, P=  v/s, and 

here 5 = T,/T and x = T/T,. 

We replace t in the first  term of (3) by a new integra- 
tion variable y =zxt and integrate by parts. We then ob- 

tain 

I ( $ )  =(3p2Eid*)-'[Q (Ed;i+$), E)-Q (Ed(l-$), 5)  I ,  (4) 

where 

The drop temperature T, is determined by i ts  velocity 
and by the lattice temperature, so that the parameter 
5, in (4) i s  a function of @ and 5. 

We now investigate a few limiting cases. At low ve- 
locities (P << 1) we expand the function @ in powers of P 
up to terms of order p3. We must take into account here 
the quadratic dependence of the parameter 5, on /3 (Ref. 
8). We then get for I(@) 

Expression (2) for the friction 'force then coincides with 
Keldysh's result.' 

In the case of high temperatures (5 << 1) we have8 

At low values of y and 5 the expansion Ny, [ ) =  37/4 
- 3y2/85 i s  valid. We thus obtain in this case the ex- 
pression 

which i s  valid at arbitrary velocity and at 5 >> 1. In fact, 
a s  shown by numerical calculation, formula (7) is valid, 
accurate to lo%, up to 5 = 1. 

We turn now to the most interesting case of low tem- 
peratures: T << To. We obtain the friction force at v =s. 
In this case I@) = @(25,, 5)/355. Using the asymptotic 
value "0) = 1.6 and the expression8 5, = 0.26t5I3, 
which is valid at 5 >> 1 and P = 1, we get 

I ( 1 )  =8t-"/'. (8) 

Numerical calculation shows that this formula is accu- 
rate enough at 5 2 10. We note that cooling the drop 
(5,> 5) decreases the friction force (without allowance 
for  the cooling we would have I(1) = 0.55/tZ at 5 >> 1). 

It follows from Ref. 8 that at T << To the temperature 
of the drop i s  given in the entire velocity interval v<s ,  
with the exception of a small region near the speed of 
sound, by the expression 

Td-(1+$2/3)'~5(l-$2)vsT, i-$>E-"s. (9) 

Using (9) we can abtain the following expression for I(@), 
valid at 5 >> 1, 1 -/3 >> 5'513: 

It should be noted that formulas (9) and (19) a re  accu- 
rate enough in the region 1 - @ << 1 only if 5 2 20, owing 
to the slow approach of the integrals in (5) to their 
asymptotic values. 

Formula (10) describes the growth of the friction force 
when the drop velocity approaches that of sound. With- 
out allowance for  the drop cooling, this growth would be 
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FIG. 1. Results of numerical calculation of the function I@) 
(formula (4) ) for different values of the parameter [ = To/T .  
1) =3, 2) 6, 3) 10, 4) 30. The values of I @ )  on the initial 
sections of curves 1-4 are magnified 3, 5, 10, and lo3 times, 
respectively. 

much faster [I@)- (1 - By3]. 
Finally, at velocities somewhat higher than that of 

sound we have' 5, = 2.4(@ - 1)-' and then we get from (4) 
and (51, using the condition 5 >> 1, 

The friction force i s  independent of the lattice temper- 
ature in this case. 

Figure 1 shows the results of a numerical calculation 
of the function I@) at different values of the parameter 
5 = To/T. The plots of the kinematic friction coefficient 
Y@) =F,(m,+ m,)-'v" (referred to the y(0) against the 
drop velocity for  various temperatures a re  shown in 
Fig. 2. Up to values 81 0.5 the friction coefficient 
grows slowly. At low temperatures and close to the 
speed of sound, the friction coefficient grows rapidly. 
At 5 >> 1 we have in accord with (10) 

FIG. 2. The kinematic friction coefficient y@) referred to the 
value y(0) vs. the drop velocity at various temperatures. Val- 
ues of the parameter [ = To/T:  1) ( = 3, 2) 6, 3) 10, 4) 30. 

Curve 4 of Fig. 2 a t  5 = 30 fi ts  this formula almost ex- 
actly up to 8=  0.97. At not too low temperatures, how- 
ever, the growth of the friction coefficient y(j3) from the 
value p = 0 to the value j3 = 1 i s  small. Thus, a t  5 = 6 
(Fig. 2, curve 2), which corresponds to T = 2 K for 
germanium, we have y (l)/y(O) = 2. 

We now estimate the absolute value of the friction 
force F, in germanium at v = w. The force Fl i s  calcu- 
lated in this section for the simplest model of a single- 
valley semiconductor with nondegenerate bands. It ap- 
pears that the results obtained above do not make i t  
possible to determine with sufficient accuracy the fric- 
tion force in real  semiconductors, but give a qualita- 
tively correct  dependence of this force on the drop ve- 
locity and on the lattice temperature. We shall there- 
fore use the experimental data for  the estimate of the 
absolute magnitude of the force. In germanium at v << s 
and T = 2 K the experimental value of the kinematic co- 
efficient was found by Aleksseev et al." to be y s 1.6 ' 10' 
sec", in agreement with the results  of the detailed cal- 
culation.' Therefore at m,+ m, 10.5 ' g and s = 5 
x lo5 cm/sec, using the results  of the numerical calcu- 
lation (Fig. 1, curve 2) we get at v = s the values Fls 2.5 
and ~ 0 . 7  meV/mm for T = 2 K and 1 K, respectively. 

We note that the region of supersonic velocities is a p  
parently not attainable in experiment, in view of the 
strong dragging produced in this region by the coherent 
Cerenkov radiation of sound. 

3. FRICTION FORCE DUE TO CERENKOV RADIATION 
OF SOUND FROM A MOVING DROP 

Motion of a drop faster than sound i s  accompanied by 
Cerenkov radiation of phonons having a wavelength of the 
order of the drop radius, and this leads, in particular, 
to an additional friction force. This radiation i s  due to 
coherent interaction of the entire aggregate of electrons 
and holes of the drop with the deformation field. The 
effects connected with this interaction can be treated 
classically on the basis of the macroscopic equations of 
motion of the drop in an elastic medium. These equa- 
tions can be  obtained from the Lagrange function (we 
regard here the crystal as an isotropic elastic medium 
and disregard by the same token, just a s  in Sec. 2, the 
interaction with the transverse oscillations) 

Here M i s  the mass  of the drop, R i s  the radius vector 
of the center of mass  of the drop, p is the density of the 
crystal, u(r) i s  the lattice displacement vector, u,, is 
the strain tensor, X and 1~ are  the ~ a m 6  coefficients, 
D =  D,+D, is the total deformation potential of the elec- 
trons and holes, and n(r )  is the density of the electron- 
hole liquid (n = no inside the drop and n = 0 outside). 

The equations of motion a re  
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The right-hand side of (13) i s  the force exerted on the 
drop by the lattice. This force can contain a term con- 
nected with the external action on the lattice (in which 
case 8uj/8xj in (13) i s  determined by solving Eq. (14) 
without the right-hand side, with suitable boundary con- 
ditions). We consider the force F* due to the deforma- 
tion of the lattice by-the drop itself. 

It i s  convenient to express the force F* in t e rms  of 
the Fourier components of the displacement vector u(k): 

dk 
F-D j-$(ku(k))  'n ( k )  e-'kRfll, 

( 2 ~ )  

where n(k) i s  the Fourier component of the density n(r). 
We obtain u(k, t )  from (14) and substitute i t  in (15). Then 

where s = ( ( A +  2p)/p)112 i s  the longitudinal soundvelocity. 

The force F produced by the action of the drop in it- 
self via the deformation field has a complicated depen- 
dence on the character of the drop motion (of the func- 
tion R( t ) ) .  In uniform subsonic motion we have F = 0 .  
If the drop acceleration i s  small  enough, the force F 
can be expanded in a ser ies  of components proportional .. ... 
to R, R ,  etc. The term proportional R i s  then the in- 
crement to the inertia force, i.e., i t  determines the 
change of the mass  of the drop (see Sec. 4). The term 
containing 'R yields the radiation-friction force. 

At supersonic speed the force F differs from zero 
even if the drop motion is uniform. This is caused by 
the Cerenkov radiation of the sound. It i s  obvious that 

' the force F i s  directed in this case opposite to the ve- 
locity v =  R, and constitutes the friction force. Putting 
R = vt in (16), we get 

It is seen that F = 0 at v <s. At v >s we calculate the 
integral (17) under the assumption that the drop i s  a 
sphere of radius yo with constant density no. Dividing 
the result by the number of electron-hole pairs in the 
drop N = 4nGnO/3, we obtain the friction force F ,  per 
pair2': 

Thus, when the speed of sound i s  reached, a Cerenkov 
friction force F2 is produced jumpwise, and subse- 
quently decreases like -l/v2. The fact that the force 
F2 has a finite value a t  the threshold of the Cerenkov 
radiation i s  peculiar to interactions with longitudinal 
waves. 

We note that in virtue of the macroscopic nature of the 
Cerenkov friction force F,, i t s  value i s  insensitive, un- 
like the force F, ,  to the details of the band structure of 
the semiconductor. An estimate of the absolute value of 
the force F2 for germanium (D, + D, = 5 eV, no 2 X 1017 
~ m ' ~ ,  p = 5.3 g/cm3, yo = cm, v = s = 5 x lo5 cm/sec) 
yields F, = 47 meV/mm. This is much higher than the 

low-temperature values of the force F, at v = s. In ex- 
periments on the motion of electron-hole drops, the 
external forces per pair usually do not exceed several 
meV/mm. It appears that the Cerenkov force makes 
the sound barr ier  unsurmountable. 

4. DEFORMATION MASS OF ELECTRON-HOLE DROP 

The motion of an electron hole drop in a crystal is 
accompanied by a displacement of the deformation field 
produced by the drop. Therefore acceleration of the 
drop creates a lattice reaction force proportional to the 
acceleration; this is equivalent to the appearance of a 
certain additional mass  due to the interaction of the 
drop with the lattice. It i s  natural to call this additional 
mass  the deformation mass. The increased mass  of the 
drop is a classical analog of the polaron effect. It can 
be described by using the macroscopic approach devel- 
oped in the preceding section. 

Let us calculate the force F exerted on the drop by the 
lattice at subsonic velocities with small accelerations. 
To this end, we expand the difference R(t )  - R(t - 7 )  in 
(16) in powers of up to terms of second order inclusive: 

The f i rs t  term of the expansion of the force F in the 
small acceleration $ is 

dk 9 
P= D ' ~ ~ k k ( k v )  l n(k) 19 r2dr sin ksr cos kvr.  

2ps (2n)  
(I 

This expansion i s  valid if 

Formula (19) can be represented in the form 

The quantity 8 i / a v  i s  the additional drop momentum due 
to the field of the deformation that a c c o m p ~ i e s  the 
drop. It i s  easy to verify that the function L(v)  i s  the 
integral term of the Lagrange function (12), calculated 
by substituting in i t  the solution of Eq. (14) for the case 
of uniform motion of the drop with velocity v. 

Direct calculation of the function yields 

DZno 1 i + p  
C=IV-- ln-, 

4ps2 j3 f-fi 

where N is the number of electron-hole pairs in the 
drop. 

With the aid of (21) and (23) we can express the force 
F in the form 

Here m,(P) is the velocity-dependent deformation mass 
per electron-hole pair: 

983 Sov. Phys. JETP 48(5), Nov. 1978 M. I .  D'yakonov and A. V. Subashiev 983 



The quantity ma(0) i s  the deformation rest mass. F o r  
germanium, ma(0) = 1.3 ' g, s o  that at low velocities 
the drop mass  increases  only by 3%. In crystals ,  where 
the density of the electron-hole liquid in the drop i s  
much higher, the deformation mass  of the drop can be 
comparable with its ordinary mass. 

The increase of the drop mass  considered here  i s  
connected with coherent interaction of all the particles 
of the drop with the lattice. Consequently ma greatly 
exceeds (by a factor  ( A k = / m ~ ) ~ )  the additional m a s s  
acquired by an individual pair as a result  of the ordi- 
nary polaron effect. 

According to (25), the deformation m a s s  increases  
with increasing velocity, and becomes formally infinite 
at /3= 1. It must  be  borne in mind, however, that the 
m a s s  ma can come into play only at sufficiently large 
drop accelerations, when the inert ia  force i s  compar- 
able with the friction force, i.e., I i 1 2 yv (y i s  the 
kinematic friction coefficient). On the other hand, in- 
troduction of the deformation m a s s  i s  possible only at 
sufficiently small  accelerations that satisfy the inequal- 
ity (29). Therefore formula (25) i s  meaningful for  ve- 
locities such that (1 - /3)2 >> /3yro/s. 

l b i r ec t  calculation of the friction force by formula (1) (with- 

out explicit allowance for the condition dE/dt = 0) leads to a 
factor (l - t )  under the integral sign in formula (3). If we put 
x = l ,  then formulas (2) and (3) coincide in fact with the cor- 
responding formulas of Manoliu and ~ i t t e l , ~  who disregarded 
thechange of the drop temperature in the course of its mo- 
tion. 

 or a drop with sharp boundaries, the integral (17) diverges 
at  large k. Actually the density n(r)  drops off to zero at  the 
drop surface in a layer with a thickness of the order of l/kp. 
The limit integration with respect to k should therefore be 
kp, and it i s  this which leads to the logarithmic factor in (18). 
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Formula (3.7) has  the wrong sign and should be corrected t o  

Real ,  =. . . =-ZF(B) .  

Thus, R e o ,  2 0. 
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