
InSb and Te (it is convenient to measure the energy in 
degrees in these estimates). 

The amplitude of the potential is U, =2  K. (W/W,)'~~ 
in Ge, and Uo = 5 K(20 K) - V , W ' ~ ~ / V W ~ ~ ~  in InSb and Te, 
respectively; here W is the intensity and the frequency 
of the sound wave, Wo = 1 W/cmZ, and v, = 5 - log Hz. 
Thus, Eq. (77) is satisfied a t  a sound intensity on the 
order of 1 W/cmZ in Ge and on the order of several 
dozen watts per square centimenter in InSb and Te. At 
these intensities, the condition (Y Sl is satisfied at a 
sound frequency not exceeding 10'' Hz. 

In addition, we have stipulated that al l  the electrons 
be under tight-binding conditions ( 9 ) ,  i.e., 

T., e,<Uo. (78) - 
Finally, the condition (10) meant that the screening 

of the soundwave field by the conduction electrons must 
not violate the tight-binding condition. At an electron 
concentration N - 10lZ cm-3 and a sound frequency v - 5 .lo0 
Hz the quantity eZA'/x~', which should be less  than U,, 
is of the order of 1 K. At these sound intensities the 
condition (10) should be satisfied in Ge a t  N- 1012 and in 
InSb and Te at N- lo1=. At such concentrations we have 
c p  - 0.01 K in Ge and -1 K in InSb and Te, i.e., Eq. (78) 
se t s  the temperature limit. 

In conclusion, we thank Yu. M. Gal'perin, V. L. 
Gurevich, and V. D. Kagan for important remarks. 

'fit is seen from (8) that a t  n > Z5/0  the width A,, of the allowed 
band begins to  decrease. But expression (8) is likewise no 
longer valid at  these values. 
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A theoretical analysis is made of the interaction between a two-dimensional electron plasma and shear 
surface piezoacoustic waves. The cases of a plasma layer on the surface of a piezoelectric crystal in 
vacuum and of an inversion channel in a metal-insulator-semiconductor structure are considered. 
Renormalization of the velocity of sound and damping of acoustic waves due to their interaction with a 
plasma are found. A specific damping mechanism of two-dimensional plasmons associated with the 
emission of acoustic waves is investigated. In all cases considered the characteristic parameters of the 
wave processes depend strongly on the surface charge density, which should make it possible to control 
them in experimental studies. 

PACS numbers: 52.40.Hf, 77.60. + v, 68.25. + j 

INTRODUCTION a1 means for  varying the characteristic parameters in 
a wide range so  that the main parameter, which is the 

Electron processes in quasi-two-dimensional systems 
surface charge density, can be varied over four orders  

a re  attracting considerable attention. Two types of sys- 
of magnitude. 

tem a re  being investigated more than others: electrons 
above the surface of liquid helium (or helium film) and Recent experiments on inversion layers in 
ca r r i e r s  in inversion channels in metal-insulator-semi- have revealed the presence of two-dimensional plas- 
conductor (MIS) structures. These two types of system mons. This i s  a very important result because the in- 
are  being investigated because they provide experiment- teraction of two-dimensional plasmons with other oscil- 
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lations in crystals opens up new and sometimes unique 
possibilities for controlling wave processes in solids. 

We shall consider the interaction of a two-dimensional 
electron plasma with shear surface piezoacoustic waves 
of the Bluestein-Gulyaev We shall consider two 
situations in which this interaction takes place: a two- 
dimensional plasma on the surface of a piezoelectric in 
vacuum1' and an inversion channel (layer) in an MIS 
structure with a piezoelectric semiconductor (in the 
latter case one has to allow for the elastic waves in the 
insulator). 

In the case of a collisionless plasma (WT >> 1, where w 
i s  the frequency and T is the electron relaxation time) 
there a re  two branches of weakly damped oscillations. 
Acoustic oscillations are  damped out a s  a result of 
their interaction with the plasma-layer electrons in 
accordance with a mechanism analogous to the Landau 
damping. Long-wavelength plasma oscillations experi- 
ence additional damping due to the emission of acoustic 
waves. This mechanism i s  activated when the plasmon 
group velocity exceeds the bulk sound velocity. 

If the electron scattering is sufficiently strong, so  
that w? << 1 in the frequency range under discussion, 
there i s  no plasma branch but the interaction with the 
plasma affects the dispersion law and the damping of 
surface acoustic waves. Under certain conditions a sur- 
face wave with a linear dispersion law at low frequen- 
cies can exist only because of the presence of a plasma 
We shall develop a quantitative theory of these effects. 

1. SURFACE PIEZOACOUSTIC SHEAR WAVE 

We shall begin with the simplest model: we shall as- 
sume that a piezoelectric crystal of symmetry class C,, 
occupies the half-space y >0; the c, axis coincides with 
the z axis of the selected coordinate system and lies in 
the plane of the y = 0 boundary; a layer of electrons of 
surface density N, i s  also located in the y = 0 plane. A 
wave travels along the x axis and i s  polarized parallel 
to the c, axis. Lattice displacements U and an electric 
potential p are  proportional to exp[i(kx - wt) - xy], 
where k is the wave number and x > O  is the spatial 
damping decrement. The potential (p should also de- 
crease exponentially in the vacuum half-space (y - - m). 

The equations of motion for a piezoelectric crystal of 
this symmetry are5 

where p, c, A, and p are, respectively, the density, 
permittivity, shear modulus, and piezoelectric modulus 
of this crystal; A%,, = B2/ax2 + aZ/By2. We can easily see 
that in the selected geometry of the problem, the sys- 
tem (1) contains only one component of the tensors E,,, 
A ,,,, and p,,,. We shall omit the index z of U,. We 
find from the system (1) that 

where c, is the volume velocity of a shear wave of the 
same polarization and travelling in the same direction: 

c:=A/p+ 4rp2/&p. We shall assume that 4 n @ Z / ~ p c ~ r  y. 
The general solution of the'system (1) i s  

Here, A, B, and C are  arbitrary constants; the factor 
exp(ikx - iwt) is omitted. The boundary conditions lead 
to three equations for these constants: 

aulay-pacp/a~ I-+~=O, cp (+o) =cp(-o), 

eacplay+4nSaUlay I ,-lo-d~ldy I ,,-o=-4ne.V., 1 (4) 

where Zs i s  the nonequilibrium correction to the sur- 
face charge density N,. 

The system (4) can be closed by determining fi, from 
the transport equation. We shall assume that there i s  
only one relaxation time T and that the collision term 
describes the relaxation of the electron distribution in 
a local coordinate system linked to the lattice. The 
nonequilibrium correction to the electron distribution 
function f, can be found by analogy to Ref. 6: 

Here, e, m, E,  and v a re  the charge, effective mass, 
energy, and velocity of electrons; is the chemical 
potential; f, i s  the equilibrium distribution function. 
The value of &, i s  given by 

Bearing in mind that only the x component of the vec- 
tor  k differs from zero and that u contains only the z 
component, we find that 

Substituting Eq. (3) into Eq. (4) and using Eq. (6), we 
obtain the dispersion equation of coupled surf ace waves: 

The required roots of Eq. (7) denoted by o(k) should 
have a negative imaginary part and a positive real part 
x, [see Eq. (2)] because we are  dealing with a surface 
wave. 

la. We shall first consider the limiting case of strong 
scattering: WT << 1 and kl<< 1, where 1 i s  the mean free 
path of electrons. In this case the surface conductivity 
0, is 

for the Fermi  and Boltzmann statistics, respectively 
(p ,  i s  the Fermi energy and T i s  the absolute tempera- 
ture in energy units). In this limiting case, we obtain 
the following expression for R: 
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Here, r, is the screening radius of the Coulomb inter- 
action in a two-dimensional system. The spatial damp- 
ing decrement is obtained from Eq. (7): 

where 5 = (& + l)w/4rak. If kr, >> &, then-irrespective 
of the value of [-the depth of penetration and the phase 
velocity s a re  given by 

which corresponds to a surface wave on a f ree  bound- 
ary. In the kr,<< 1 case, we shall seek a solution in the 
form w = s k  and use Eqs. (10) and (2) to ensure that s is 
independent of k. The equation for s i s  very cumber- 
some but we can easily see that s <c, and that s - c, in 
the limit y - 0, whereas s - 0 in the limit y - 1 (by defi- 
nition, the condition 0 < y < 1 i s  always satisfied). Since 
y i s  usually much less  than unity, then for an arbitrary 
value of cJo the order of magnitude s i s  the same a s  
that of c,. In the c, >> a case we again obtain s = s,. It 
should be noted that in spite of the high density in a 
surface plasma (kr, << 1) the low conductivity makes the 
result the same a s  f o r  a free boundary. If c, << o, then 
s = S, = ~"(1- yZ)1'2 (surf ace wave on a grounded bound- 
ary). 

We shall now calculate the surface wave damping. 
We shall use the fact that in all the limiting cases  con- 
sidered here the value of wl'= Im w i s  much smaller 
than wl= Re w. In the first  stage we can assume that w 
is real and solve the dispersion equation by successive 
approximations. Then, assuming that x, = x l +  in:', we 
obtain 

We shall now give the results in various limiting cases 

It i s  clear from Eq. (12) that in the high-conductivity 
case the maximum of the electron absorption of sound 
corresponds to kro- 1, whereas in the case of low con- 
ductivities i t  shifts toward kr,-c,/o>> 1. 

lb. Since the characteristic electron velocity i s  usu- 
ally much higher than the velocity of sound, i t  i s  desir- 
able to consider the intermediate case when the spatial 
dispersion i s  important, i.e., k l =  k v ~  2 1, whereas the 
temporal dispersion can still be  ignored (wr << 1). Then, 
instead of Eq. ( lo),  we obtain the following expressions 
in the Fermi case: 

The appearance of a new parameter kv,? increases con- 
siderably the number of possible limiting cases. We 
shall consider two of them which a re  most interesting 
and at the same time most realistic. We shall f i rs t  
assume that the plasma is degenerate. We shall adopt 
the following values of the characteristic parameters: 
N, - 10'' cm", r - sec, c,- 3 x lo5 cm/sec, m-10-28 
g, and E - 10. We then find v,- 2 X lo7 cm/sec, r,- 
cm, and a- 2 X lo9 cm/sec. We shall assume that kv,? 
>> 1, kr, << 1. We then have Q = ( k v , ~ ) ~ / 2  and there a re  
two possibilities: 

It follows from the system (14) that as a result of the 
spatial dispersion we find that there is an absorption 
maximum in the kr, << 1 case and i t  occurs a t  a f requen- 
cy w,, a ( u ~ ~ ) ~ ~ ~ / v ~ ~  ( 4 / 7 ) l f  '. Comparing Eqs. (12a) 
and (14a), we can see that a t  frequencies w < w,, the 
damping r i ses  f i rs t  linearly with w and then a s  u3. 
Another result of the spatial dispersion i s  that in the 
range o >> c,, kr, << 1 the phase velocity of the waves i s  
equal to the velocity in the presence of a f ree  boundary 
[compare with Eq. (12a)]. When the above parameters 
a re  used, Eqs. (14a) and (14b) a re  valid in the range 
10" set"<< w<< 10" sec" and an absorption maximum 
appears a t  w,-10" sec". 

A characteristic frequency dependence of the damping 
appears in the case of a nondegenerate plasma if the 
conditions r, >> 1, a>> c, a r e  satisfied, which i s  equiva- 
lent to the requirement &vT/4n >> a>> c,, where v, i s  the 
average thermal velocity of an electron. We shall now 
assume that N, - 10'' cm", (7) - lW13 sec,  and T - 10' "K, 
and that all the other parameters have the same values 
a s  before; then, 0-2 x lo6 cm/sec, ro- l W 5  cm, 1- loe6 
cm, and v,- 2 x lo7 cm/sec. The frequency dependence 
of the damping then has two maxima: the f i rs t  one i s  
described by Eqs. (12a) and (12b) and i t  appears at 
w-c,/r,; the second is due to the spatial dispersion and 
is located at w- (uc,)lf '/1. To the left of this maximum 
in the (k1)2c,/o<< 1 case the damping r i ses  linearly with 
w, whereas-for (kl)2c,/u>> 1 it  decreases a s  w-' 

l c .  We shall now consider the case of strong spatial 
and temporal dispersion: w? >> 1, kl>> 1. We shall use 
the collisionless approximation in which the Landau 
damping of two-dimensional plasmons i s  the only mech- 
anism. The nonequilibrium correction to the surface 
charge density 4 can be expressed in t e rms  of the 
quantum-mechanical response function Rs = -e(on(w, k), 
where ll i s  the familiar polarization operator7: 

1 
lT(o,k)=-j fo(~+k)  - f o ( ~ )  dp,  a+M.  

2n" ( p )  -E (p+k) +o+i8 
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Substituting the value of fl, found in this way in the sys- 
tem (4), we obtain the dispersion equation 

We shall consider the range of frequencies correspond- 
ing to a surface acoustic wave. In the most realistic 
situation we may assume that the conditions k <<p,, 
w << kv, a re  satisfied, where p, and v, a re  the charac- 
teristic electron momentum and velocity. We then find 
that if II(w, k), then 

Ignoring the imaginary part of ~ ( w ,  k), we obtain the 
following expressions for  x, and w(k): 

e+kro+l 
xam'tk o ( k )  -=c.(k2-x?)'". 

( e + l )  (kro+l)  ' 

The velocity s of short-wavelength surface waves char- 
acterized by kr,>> & i s  s, (surface wave on a free bound- 
ary), whereas in the case of long wavelengths corre- 
sponding to kr,<< 1, it  is equal to s, (surface wave on a 
grounded boundary). However, in general, the presence 
of a plasma gives rise to dispersion of a surface wave 
because w is related to k by the nonlinear equation (18). 

We can now find the surface wave damping by substi- 
tuting w(k) in the imaginary part of II(w, k)  and solving 
Eq. (16) by the iteration method: 

om,- kz (kP-oZ/c:) %era 
o ( e t l )  (kro+l) 

cp ( k ) ,  

Elementary transformations give the damping in various 
asymptotic cases. We shallgive only the dependences of 
w" on k, N,, and T. In the Fermi  statistics case, we 
have 

in the Boltzmann statistics case, we find that 

It is interesting to note that in the short-wavelength 
limit the damping i s  independent of the wave number. 

2. EMISSION OF ACOUSTIC WAVES BY TWO- 
DIMENSIONAL PLASMONS 

In addition to the solution of Eq. (16), investigated in 
Sec. lc,  there is one other branch of surface oscilla- 
tions. In fact, substitution of y = 0 in Eq. (16) gives the 
dispersion law of free two-dimensional plasmons (i.e., 
plasmons not coupled to sound). The following expres- 
sion in Ref. 8 i s  obtained in the Fermi case2': 

where a, is the effective Bohr radius: a,= (&+ 1)/2me2. 
There i s  no damping because the condition wp>kvo i s  
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satisfied. The Landau damping applies to free plasmons 
in the Boltzmann statistics and w,(k) is then given by 

The damping is weak only if  kr, << 1, w >> kv ,. It is then 
found that 

In the Fermi  and Boltzmann cases  the group velocity i s  
easily shown to be much l ess  than the velocity of sound 
for  reasonably realistic values of N, and T. Conse- 
quently, the coupling of phonons to elastic waves via the 
piezoelectric effect gives r ise  to an additional damping 
of two-dimensional plasma waves. This damping can be 
found from Eq. (16) by solving this equation in the range 
w >> c, k. We can then ignore yk compared with x2- w/c, 
because y < 1. Next, we have to assume that x, = (k2 
- w2/c~)'l2 = -i 1 x2 I ,  so  that exp (-%a),  i.e., plasmons 
emit acoustic waves which travel into the bulk of the 
crystal  y >0. 

The results now a re  

k'v2 * eyk 
(1 -7 2c.(e+1) 

for  a degenerate gas and 

for  a Boltzmann gas; w~,=4ne2N,k/m(&+ 1)  i s  the plasma 
frequency in the long-wavelength limit. The two terms 
in Eq. (25) correspond to the above two damping mecha- 
nisms. The damping of two-dimensional plasmons is . 
relatively weak in both cases described by Eqs. (24) and 
(25): 

When the surface charge density i s  very low and the 
temperature is sufficiently low, we may find that the 
conditions c, >v, and C, >v, are  satisfied. Irrespective 
of whether the Wigner crystallization occurs at such 
low values of N,, the longitudinal branch of plasma os- 
cillations of the w = wpo(k) type always existsg and may 
intersect an acoustic branch. Then, there is no Landau 
damping in the Fermi  case and emission into the bulk of 
a crystal is possible only if the group velocity of the 
surface wave exceeds the velocity of bulk sound c,. 
Therefore, in the situation under discussion there are  
two branches of undamped surface oscillations described 
by the dispersion equation 

( I - o P o z / o ~  ((yk-xz) - - eyk / (e+ l ) .  (2 6) 

Equation (26) can be obtained f rom Eq. (16) if we use the 
condition w >> kv,. An analysis of Eq. (26) leads to the 
following conclusions. In the range of very low values 
of k ( C J Z  JZ<< wpo) there is only one solution wl(k) which has 
a real and positive value of x,. Consequently, there is 
only one surface wave with the dispersion law wl(k) 
=s,k (the same a s  for a grounded surface). When k is 
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increased, the value of w,, becomes less  than c, k and 
the branch in question transforms into a two-dimension- 
al plasma wave (subject to a slight renormalization): 

As soon a s  k exceeds a critical value k,= 4ne2N,/mc2, at 
which the vanishing of n, satisfies Eq. (26), another 
branch w,(k) appears. In a narrow region near k, we 
have w, = c, k and in the limit k -a, we have H, =yk/(c + I), 
w2=slk, i.e., w,(k) transforms into a surface wave on a 
free boundary. The w,(k) and w,(k) curves a re  shown 
qualitatively in Fig. 1. In the range k <k, the second 
branch is damped out in accordance with the mechanism 
described above since at k =k, the group velocity Bw,/Bk 
becomes comparable with c,, so that the criterion of 
Cherenkov emission into the bulk of a crystal is satis- 
fied. The penetration depth n',' tends to infinity in the 
limit k -k,, i.e., the wave w,(k) i s  no longer of the sur- 
face type. The group velocity of the f i rs t  branch w,(k)  
remains less  than c, for any value of k and the depth of 
penetration xi1 i s  always finite. 

3. COUPLED WAVES IN MIS STRUCTURES 

We shall now consider a system comprising a piezo- 
electric crystal of the C,, symmetry (O<y < a ) ,  an insu- 
lator layer of thickness A, permittivity cf, and velocity 
of sound c, (-hey <0),  and a metal plate (field elec- 
trode) in the y = -A plane (Fig. 2). We shall assume that 
the insulator layer is isotropic so  there i s  no piezoelec- 
tr ic effect in this layer. The boundary conditions on the 
metal are  c p = O  and T,,n,=O a ty=-A,  where T, i s  the 
s t ress  tensor and n is the normal to the surface. We 
shall ignore the thickness and weight of the metal plate. 
As before, an inversion layer plasma is located at y = 0. 
The following conditions a re  satisfied on this boundary: 

Piezoelectric 
crystal 

FIG. 2. 

where Af is the shear modulus of the insulator layer. 
These conditions should be supplemented by one de- 
scribing a discontinuity of the normal component of the 
electric induction vector, similar to that used above. 

The dispersion equation is [compare with Eq. (711 

The above analysis corresponds to the limiting case 
kA -a, A, -0, cf = 1. If we assume that y -0, the sec- 
ond expression in parentheses of the f i rs t  equation in 
Eq. (28) gives the well-known dispersion law of an 
acoustic waveguide: S n f  tanufA = Xu,. This type of 
wave exists only in the cv>cf case. 

3a. We shall now consider the strong scattering case 
corresponding to w7 << 1, kl<< 1. We shall bear in mind 
that electrons on the surface containing the c, axis have 
two components of the effective mass m, and m,. For  
the quantities a and R defined in Sec. la ,  we now obtain 

(29) 
where T i s  defined by Eq. (8). 

In view of the cumbersome nature of the general solu- 
tion of Eq. (28), we shall confine our attention to the 
limit kA<< 1. Substituting Eq. (29) into Eq. (28), we find 
that the spatial damping decrement is described by 

In real cases we can always assume that a-S A. It is 
clear from Eqs. (30) and (11) that the surface wave 
velocity in the a>>c, and u<<c, cases i s  equal to s, 
(grounded surface). We shall consider the frequency 
dependence of the damping in the most realistic case of 
a>> c,. A characteristic value of k separating the two 
damping asymptotes i s  k-cJoA. It follows from Eqs. 
(30) and (11) that 

It is clear from Eqs. (31a) and (31b) that the damping 
has no maximum within the range defined by kl<< 1, 
kA << 1. Clearly, the decrease in the damping on in- 
crease of the frequency occurs in the kA >> 1 case, 
which follows from the results in Sec. la. 

3b. We shall now consider the collisionless case 
(7 = a)  and, moreover, we shall again assume that 
k <<p,, w << kv,. Then, using the method in Sec. lc ,  we 
find that in the case corresponding to ufA<< 1, kA<< 1 
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Eq. (18) becomes 

The most important effect of the finite thickness of the 
insulator layer is a weakening of the coupling between 
plasma and acoustic waves in the range kA << 1 [see the 
right-hand side of Eq. (28)]. 

The plasmon dispersion in our system has been ob- 
tained earl ier  in the long-wavelength limitg: ij;, 
= 4ne2N,k/m,(c + cf cothkA). The plasmon damping due 
to the emission of sound is described by [compare with 
Eq. (24)]: 

where pf is the density of the insulator layer. Since ijw 

is proportional to k for  kA<< 1, the case (33b) gives 
r ise  to damping independent of the plasmon wave num- 
ber. 

If the surface charge density N, is sufficiently low, a 
branch of free plasma oscillations of frequency h,(k) 
may intersect an acoustic branch. Then, strongly 
coupled plasma-acoustic waves appear in the system 
and the dispersion equation of these waves i s  obtained 
from Eq. (28) by assuming that kv, << w, 7 = -: 

Let us assume that kA << 1; then, Eq. (34) transforms to 

where o! = c/e,, q =  4nN,e2A/m,cfc~. In the derivation of 
Eq. (35) we have assumed that w2 = c;(k2 - xi). The 
greatest interest l ies in the case when the plasmon and 
sound velocities a r e  close so  that q > 1 and q - 1 << 1. 
An analysis of Eq. (35) can be divided into two cases: 
c,>cf, when a waveguide solution does exist, and c, 
<cf. In both cases there is an oscillation branch w 
= w,(k), which begins from zero with the slope s, (wave 
velocity on a grounded surface) and transforms into a 
plasma branch on increase in k. 

In the waveguide case the solutions of Eq. (35) a re  in 
many ways analogous to those of Eq. (26). The second 
oscillation branch w2(k) begins from 

and transforms into an acoustic branch w"s,k. 

If cv<cf, then for  any k we have no more than one 
solution of Eq. (35) giving r ise  to a surface wave. This 
is due to the fact that in the absence of plasma a surface 
wave can now exist only in the range 0 < k < y/ I b I A. 
Therefore, when the condition 

(q-l)/uq>4y/ I b I (3 7) 

i s  satisfied, we have an interval k,< k <  k,, in which 
there a re  no surface waves. Here, 

Thus, if c,< cf, the only branch of surf ace oscillations 
begins from w =s,k, i t  may have a discontinuity if the 
condition (37) is satisfied, and i t  then transforms into 
a plasma branch. At the limits of the interval [k,, k,] 
the depth of penetration becomes infinite (u2 = 0) and the 
group velocity becomes c,, i.e., the wave becomes de- 
tached from the surface. We can see from Eqs. (36)- 
(38) that the range of existence of surface waves and the 
depth of penetration can be varied by altering N, because 
vaN,. 

4. SURFACE WAVES IN A CUBIC CRYSTAL 

We shall now consider the (100) face of a cubic piezo- 
electric crystal. In the absence of a plasma layer when 
the wave vector is oriented along [010] o r  [OOl], there 
a r e  no pure shear surface waves of the Bluestein- 
Gulyaev type. However, we may assume that a surface 
plasma-acoustic wave with a linear dispersion law at 
low values of k can appear under certain conditions. As 
in the cases discussed above, this wave is characterized 
by transverse displacements of the lattice of the piezo- 
electric crystal and by a longitudinal electric field. All 
the calculations a r e  fully analogous to those given in 
Secs. 1 and 2 but the formulas for  a cubic crystal a re  
much more cumbersome. Therefore, we shall give only 
the final results  and these can be understood solely in 
the qualitative sense. 

In the collisionless approximation and for sufficiently 
high values of N, (a criterion is given below) there i s  a 
plasma branch whose damping i s  due to the two mecha- 
nisms described in Sec. 2. Clearly, for k 2N:I2 there 
cannot be any plasma waves. Therefore, the interaction 
of a plasma branch with an acoustic one is most effec: 
tive in the case when the intersection condition w, = c$ 
is satisfied in the range k < ~ : / ~ .  This i s  possible i f  
N, < ( ~ m c E / 4 n e ~ ) ~ .  The order of magnitude of k at the 
point of intersection is k,, given in Sec. 2. A quantita- 
tive analysis of the problem shows that the electric po- 
tential and displacement in the wave have two terms 
which decrease exponentially with depth in a crystal at 
ra tes  characterized by the decrements u, and u,. 

For  k << k,, we have 

On increase of k this branch behaves analogously to 
w,(k) (see Fig. 1) and in the range k >> k, i t  becomes 
close to a plasma branch, and we have u?,,"k2[1+ y 
k [(I  + y)2 - 1I1l2. F o r  all values of k the group velocity 
of the waves of this branch is les s  than c,, but there i s  
no damping because of the emission of bulk sound by 
plasmons. It should be noted that for  k << k, a wave of 
this kind i s  characterized by an anomalously large depth 
of penetration u, - k2/ko, whereas in the case of a crys- 
tal with the C,, symmetry we may expect u,-k. The 
linear part  of the dependence w(k) i s  due to the presence 
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of a plasma layer whose range of existence k  << k ,  col- branch is entirely due to the presence of a plasma In 
lapses to zero in the limit N, - 0 because k , a N , .  all cases the frequency dependences of the damping and 

depth of penetration a re  specific to a given problem (for 
example, linear and then cubic dependences of the 

CONCLUSIONS damping on w at low frequencies defined by WT << 1, k r ,  

We shall now consider the effectiveness of the damp- 
ing mechanisms under discussion. In the absence of a 
plasma layer the surface waves in a piezoelectric insu- 
lator a re  damped out mainly by the lattice and disloca- 
tion absorption mechanisms. At frequencies of the or- 
der  of lo9 Hz at room temperature this damping may 
amount to a few decibels per centimeter. In the case of 
a piezoelectric semiconductor the electron damping is 
the principal process. The case of an MIS structure 
discussed here i s  characterized by spatial separation of 
the majority and minority carriers. Clearly, if the 
depth of penetration of a surface wave i s  less  than the 
depletion layer thickness, the bulk electron absorption 
becomes unimportant and the damping considered above 
is the principal process. In the most likely experiment- 
al situation [ ~ q .  (12a)l the damping is 30y dB/cm for  
w - 3 x lo9 sec", N ,  - 10" ~ m - ~ ,  T - lo-'' sec, and m - g, i.e., in a typical piezoelectric crystal this 
damping may compete with other mechanisms. 

We have thus considered the interaction of two-dimen- 
sional plasma waves with surface transverse acoustic 
waves in piezoelectric crystals. When the characteris- 
tic frequencies of these two types of oscillations a re  
very different, their interaction results in an additional 
(to the Landau and collisional damping) plasmon damp- 
ing because of the emission of piezoacoustic waves. A 
surface acoustic wave i s  damped out because of the 
electron mechanism and because of the renormalization 
of the velocity and depth of penetration, which are  func- 
tions of the plasma properties. If the frequencies are  
similar (case of intersection of plasma and acoustic 
branches) there i s  a strong mixing of surface oscilla- 
tions and a branch with the acoustic dependence w ( k )  
appears in a cubic crystal a t  low values of k and this 

<< 1 or  saturation of the damping in the k r ,  >> 1, kl>> 1 
case). The most important feature from the point of 
view of applications i s  the considerable dependence of 
all the characteristic parameters of the investigated 
waves on the surface charge density, which should make 
i t  possible to control these parameters under experi- 
mental conditions. 

" For example, conduction electrons in a thin semimetal film 
evaporated on a piezoelectric substrate or electrons deposited 
on a helium film located on a piezoelectric crystal. 

"1n this section we shall use the collisionless approximation. 
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