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The propagation, in semiconductors, of a sound wave that quantizes the electron motion in 
semiconductors and semimetals is investigated. The case of tight binding is considered, when all the 
electrons are trapped in potential wells produced by the sound, and tunneling can be neglected. The 
nonequilibrium distribution of the electrons can be described in order of magnitude, by an effective 
temperature that exceeds noticeably the lattice temperature. This excess is particularly large when the 
electron scattering by the impurities exceeds the scattering by phonons. Quantization of the  electron 
motion causes the sound absorption coefficient to become an oscillating function of the intensity. The 
acoustoelectric effect and the influence of the electric field on the sound absorption are investigated. 

PACS numbers: 71.38. + i, 72.50. + b 

1. INTRODUCTION 

The availability of high-intensity sound beams in ex- 
periments (dozens of watts and hundreds of watts per 
square cm for volume and surface sound, respectively) 
ra ises  the question of quantization of electronic states 
by sound in conductors. We consider here the possible 
observable effects that can result from such a quantiza- 
tion. 

Keldysh was the first  to point out that the periodic 
field of a sound wave should lead to the appearance of 
forbidden bands in the spectrum of f ree  electrons.' For 
this effect to occur i t  is necessary that the width &, of 
the forbidden bands be large compared with the electron 
energy uncertainty: 

(here T is the electron relaxation time). 

In our preceding paper2 we considered the influence 
of acoustic quantization of the spectrum on the sound 
absorption coefficient and on the acoustoelectric current 
in the case of weak coupling, when the band gap is much 
less  than the width of the allowed band. In the present 
paper we consider the opposite limiting case. 

Small enough band gaps denote localization of the elec- 
trons in the potential wells produced by the sound wave. 
It is then sufficient to consider a system of levels in a 
single well rather than a system of bands. We call this 
the tight-binding case. In the next section we analyze 
the conditions under which tight binding is realized. 
In Secs. 3 and 4 we solve the kinetic equation for elec- 
trons that a r e  scattered by phonons and impurities. It 
turns out that when the electrons move together with the 
sound wave they become heated; i t  is convenient to des- 
cribe this heating by introducing an effective tempera- 
ture T,.  If the scattering is by phonons, the heating is 
small  and T ,  exceeds the lattice temperature T by not 
more than two times. If scattering by impurities pre- 
dominates, then the heating turns out to be quite ap- 
preciable, T, - TT~,/T,>> T ,  where rPh and T ,  a r e  the 
times of electron relaxation on the phonons and on the 

impurities. The reason for this heating is that the elec- 
trons that move together with the sound a r e  scattered by 
the impurities inelastically, and this scattering increas- 
e s  the number of high-energy electrons. The heating 
is stabilized only by phonon emission. 

In Sec. 5 we derive a general formula for the sound 
absorption coefficient, and in Secs. 6 and 7 this formula 
is analyzed for the quantum and quasiclassical cases. 
It turns out that the absorption coefficient oscillates 
a s  a function of the sound intensity. These oscillations 
a r e  due to  quantization of the electron motion and a r e  
reminiscent of Shubnikob-de Haas oscillations, except 
that they a r e  not washed out when T ,  exceeds the dis- 
tance c, between the levels. The amplitude and the per- 
iod of the oscillations decrease with increasing number 
of levels in the sound well that is occupied by electrons. 

Section 8 is devoted to a study of the effect exerted on 
the sound absorption coefficient by a longitudinal elec- 
t r ic  field and to the form of the current-voltage char- 
acteristics. At fixed values of the electric field the 
current-voltage characteristic can exhibit peaks of the 
same origin a s  in immobile super lattice^.^ 

The last  section contains estimates of the parameters 
a t  which the effects in question can be observed. 

2. THE TIGHT-BINDING APPROXIMATION 

The stationary wave function of an electron in  the 
field of a periodic sound wave propagating along the x 
axis is of the form 

@(r) =Pa" exp ( i k r , ) ~ , ( f ) ,  f =z-wt. (2) 

Here r, i s  the radius vector in a plane perpendicular to 
the x axis; k is the corresponding two-dimensional wave 
vector; S is the area  of the intersection of the crystal 
and a plane perpendicular to the x axis; w is the speed 
of sound; (p,([) is the wave function describing the lon- 
gitudinal motion of the electron. In a periodic field i t  
is characterized, generally speaking, by the number n 
of the band and by the longitudinal wave vector. 
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We consider tightly bound electrons, i.e., we assume 
that the characteristic width A of the allowed band is 
much less than the characteristic width &, of the for- 
bidden band: 

Moreover, we assume that A is much less than the elec- 
tron energy uncertainty ti/? connected with the scatter- 
ing : 

The last inequality means that before the electron man- 
ages to tunnel from one well of the periodic potential 
into another it will experience a scattering event. It is 
therefore convenient to choose a s  the initial states (p,([) 

of the electrons not i t s  states in a periodic field, but i ts  
states in an individual well of a periodic potential. In 
this case n is the number of the level in the well. 

The quantity A in inequalities (3) and (4) is determined 
by the overlap of the wave functions in the neighboring 
wells; i t  is easy to calculate A for the lowest bands of a 
sinusoidal potential energy 

U-Uo sin Qg.  

The lower part of each potential well can in this case 
be regarded as parabolic. In the f i rs t  order in the 
parameter (3) the functions (pn([) are  then oscillatory. 
The oscillation levels a r e  equidistant, s o  that the 
allowed bands formed by the overlap of the functions 
(p,([) are  also equidistant. Thus, all the lower forbidden 
bands have the same width, equal to the distance be- 
tween the oscillator levels: 

Here 

where m i s  the effective mass. The width of the nth 
allowed band (n =0,1,2 ,  . . . ), calculated by the tight- 
binding method, is equal to 

We note that expression (8) contains a numerical param- 
e ter ,  by virtue of which the satisfaction of the condition 
a<< 1 is not obligatory for the calculation of (3), a s  
might be expected. In fact, a t  a = 1 we find from (8) 
that ~ , / c , n 2 ~ l ( r  3. 

It is seen from (8) that a t  low values of n the value 
of A, increases with increasing n. Obviously, the quali- 
tative deduction that the width of the allowed band in- 
creases with increasing number (and perhaps not mono- 
tonically at not very large n), and that the width of the 
forbidden band is bounded, is by itself independent of the 
actual form of the potential." In fact, for energies much 
higher than the amplitude of the potential energy U,, 
electrons of almost any energy behave like f ree  ones, 
A, increases like n2, and the width of the forbidden 
bands does not exceed LTo in order of magnitude. For 
this reason, the criterion (3) no longer holds for suf- 
ficiently high band. This criterion is satisfied, i.e., 
the electrons that make a substantial contribution to the 

kinetics a re  strongly coupled by the sound, if the char- 
acteristic energy is much less  than the amplitude of the 
potential energy U,. For Fermi  statistics this condition 
takes the form 

where N is the electron concentration. 

It is important to bear in mind that the potential pro- 
duced by the sound wave is screened by the electrons. 
In the case of weak coupling the screening leads only to 
renormalization of the amplitudes of the potential ener- 
g ~ . ~  In the tight-binding case the primarily screened 
section of the potential well is the region where the elec- 
trons a r e  localized. The result  is a distortion of the 
shape of the bottom of the well, and the wave functions 
and the level positions can differ substantially from the 
oscillator quantities. At high electron concentration the 
screening t a n  turn out to be s o  strong that the depth of 
the potential well is greatly decreased and the tight- 
binding condition (3) is violated. The potential produced 
by the electrons contained in a layer having a thickness 
of the order of 1/Q is ~ N / x Q ~ ,  where x is the permittiv- 
ity. Thus, screening does not violate the tight-binding 
conditions if 

We shall not need the actual form of the wave func- 
tions (p,([), and i t  does not matter therefore whether 
they a r e  oscillatory or  a r e  distorted by the screening. 
However, the very existence of single-particle wave 
functions presupposes smallness of the Coulomb energy 
of the electron interaction compared with their kinetic 
energy. Under the condition (1), the electrons in each 
potential well execute two-dimensional motion. The 
average distance between them is (Q/N)'''. Therefore 
the condition for the applicability of the single-particle 
approximation in the case of Fermi statistics can be 
written in the form 

The conditions (9)-(11) impose limitations on the elec- 
tron concentration. To estimate the concentration, i t  is 
convenient to  rewrite the conditions in the form 

3. SCATTERING OF ELECTRONS BY PHONONS 

In the case of strong coupling and when the conditions 
(4) a r e  satisfied, equilibrium is independently estab- 
lished in the electron gas in each potential well. We 
note that equilibrium can be established when the sound- 
damping length exceeds the electron energy-relaxation 
length in the well. This condition is usually satisfied. 
In addition, the damping length can be increased by 
turning on a longitudinal electric field (see Sec. 8). The 
electron gas can be described by a distribution function 
f,(k) that depends on the number of the level and on the 
transverse wave vector k. In scattering by acoustic 
phonons, the kinetic equation for f,(k) is of the form 
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-N&(k) (1-f, .(k+q,) ) 116 (e . (k)  -en* (k+q,) +fm,-hq,w) 
+[N,f.,(k-q,) ( l - fm(k) ) - (N,+ l ) fn(k)  ( l - fn , (k -q , ) )  I 

x 6 (en ( k )  -ens ( k - a )  -Ro,+Aq,w) ; (13) 
here 

c, is the energy of the nth level of the one-dimensional 
sound well, q, is the component of the phonon wave vec- 
tor q perpendicular to the x axis, N, = [ehfT - I]-', w, 
is the phonon frequency, T is the lattice temperature, 

for the deformation interaction (A is the constant of the 
deformation potential and p is the crystal density) and 

for the piezoelectric interaction (j3 is the piezoelectric 
modulus). To simplify the notation, we disregard the 
crystal anisotropy, we assume, for example, that w, 
depends only on the modulus of q ,  and replace the ten- 
s o r s  A' and @ by their values averaged over the direc- 
tions. 

We point out that the 6 functions that express the 
energy conservation law contain the terms E q p .  They 
stem from the fact that the scattered electrons a r e  not 
in immobile but in moving potential wells produced by 
the sound. Such a term can be interpreted, for example, 
a s  a Doppler shift of the phonon frequency in a reference 
frame connected with the sound. There is no momentum 
conservation law along the x axis, and the characteris- 
tic values of q, a re  determined by the behavior of the 
matrix elements (14), i.e., by the localization length 
(p,([) .  For the lower oscillator level we have q, - Qa"I2. 

We obtain the solution of the kinetic equation in a 
quasielastic approximation, i.e., in the case when the 
change of the electron energy hwq in the collision is 
much less  than the characteristic energy interval T, 
over which the distribution function changes. The char- 
acteristic values a r e  q - max(k,, Qo "I2), s o  that the 
quasi-elasticity conditions can be written in the form 

We note that a t  E, 2 c,, i.e., when more than one level 
is filled, we have k, 2Qa"I2, SO that the f i rs t  of the 
conditions is the more stringent. 

In the elastic approximation, f,(k) is an arbitrary 
function of c,(k). To find the form of this function i t  is 
necessary to write down Eq. (13) in the first  nonvanish- 
ing approximation in the quasi-elasticity. Multiplying 
(13) by 6(c - &,(k))/4P, summing over n, and integrating 
with respect to k, we obtain after expanding in powers 
of Ew, and Ezq, (in analogy with Ref. 5) 

Here 

9(x)=1 a t  x>O and 9(x)=0 a t  x<O. 

For deformation interaction with phonons we have 

and for piezoelectric interaction 

M, (2) =4n~zezmz/pxzha,  
4nBze'm' 

(2la) 

M ~ Z =  ( z  e - e ) z + ( e - e - e ) ~ + ~ ] - b ,  (21b) 

In (20b) and (21b) we distinguish between the sound vel- 
ocity w and the phonon velocity w,,, averaged over all the 
directions. Putting w =0, we obtain an equation valid 
for a superlattice a t  rest .  Its solution is obviously the 
Fermi  function. 

The solution of (18) is 

where 

The constant p is determined by the normalization con- 
dition - 

2nah' 
de f ( e )  x t ( e - e n )  = - N; 

mO 

here c, is the energy of the lower level. 

It is seen from (22) that f(c) is reminiscent of the 
Fermi  function and p plays the same role a s  the chemi- 
cal potential in the equilibrium function. The interval' 
over which it changes is T, - g(&), where c is the char- 
acteristic energy. In the case p >> T, -g(p), just a s  the 
equilibrium function, Ac) takes the form of a step, with 
p - c,, and the disequilibrium manifests itself only in 
the structure of the step in the region c - p- T,. 

Because A, 2-4 > 0, the energy T, ra ises  the lattice 
temperature by not more than a factor of two, i.e., the 
heating is relatively small. In the next section we shall 
see  that in the case of scattering by impurities P, may 
turn out to be much larger than T. 

4. SCATTERING OF ELECTRONS BY IMPURITIES 

The operator of electron-impurity collisions can be 
expressed in the form 

r,{j)= ~ & z M , ( ~ ) I ~ ~ ~ + I = ) I ~  .' 
x [f., (k-q,) - f ,  ( k )  I6 (en ( k )  -en* (k-q,) +Aq=w), (2 5) 

where 

M i  ( q )  =2n2AsN,o,lmZ (26) 

for short-range impurities (N, is the impurity concen- 
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tration and o, is the scattering cross  section), and 

M, (g)  =32x3N,Z2e'lhq'xz (27) 

for ionized impurities (Ze is the impurity charge). 

We call attention to the fact that the scattering by the 
impurities is inelastic. This inelasticity, just a s  in the 
case of scattering by phonons, s tems from the fact that 
the electrons a r e  not in immobile but in moving potential 
wells produced by the sound wave. Because of this in- 
elasticity, the integral of the collisions with the impur- 
ities does not vanish when an arbitrary function of ener- 
gy is substituted, a s  is the case for free electrons in a 
crystal lattice. It vanishes only when f =const is sub- 
stituted. This means that the impurities tend to distrib- 
ute the electrons uniformly over all  the energies. 

In fact, let u s  examine the total change of the elec- 
tron-gas energy under the influence of collisions with 
impurities. With the aid of (25) i t  is easy to obtain the 
relation 

If f,(k) = f (E, (k)) is a decreasing function of the energy, 
then the integral in the right-hand side is positive, i.e., 
the total energy of the electron gas increases. In a rea l  
crystal this heated can be limited only by the emission 
of phonons by the electrons. Thus, even if the colli- 
sions of the electrons with the impurities in the absence 
of sound a re  more frequent than with the phonons, a 
stationary solution of the kinetic equation for electrons 
that a r e  strongly coupled by the sound wave can be ob- 
tained only by taking simultaneously account the colli- 
sions with the impurities and with the phonons. 

The scattering by impurities will also be considered 
here in the quasi-elastic approximation. In this case 

and in the case of short-range impurities 

'For ionized impurities, the contribution made to A,(&) 
by transitions with conservation of the level number di- 
verges logarithmically a t  small  g,. This divergence is 
due to the long-range character of the Coulomb potential 
and, consequently, to the large contribution of the long- 
wave components to its Fourier expansion. In the case 
of free electrons, this divergence, a s  is well known, is 
cut off at the Debye screening radius r,. In this case 
the situation is more complicated. First ,  different r e -  
lations between r ,  and the wavelength of the sound a re  
possible. If r ,  exceeds the wavelength, then it can be 
shown that the screening takes place a t  distances of the 
order of r,. In the opposite case the screening is a t  the 
wavelength of the sound. Second, in the reference frame 
concentrated with the sound, the impurities move and 
the electrons coupled by the sound wave screen the non- 

stationary potential. The screening can remain static, 
for example, if WT ,/r,<< 1 (7, is the Maxwellian relaxa- 
tion time), but generally speaking it proceeds dynamic- 
ally. 

In view of the l a rge  variety of situation and since the 
logarithm is only a numerical factor in the function A,(&), 
we shall denote it by L and will not write out explicitly 
the parameters under the logarithm sign. We note only 
that the main contribution to A,(&) is made by transitions 
with conservation of the level number, since they a r e  
the only ones containing a large logarithm. As a result  

The solution of the kinetic equation 

which takes into account scattering by both phonons and 
impurities, takes the form (22), where 

We note that in the case of scattering by a deformation 
potential of acoustic phonons and short-range impurities 

where T,,' and 7,' a r e  the relaxation t imes of the f ree  
electrons by the deformation potential of the acoustic 
phonons and the short-range impurities. 

If scattering by impurities is more effective than by 
phonons, then a t  c <  &, we have g(&) = T, and a t  & > &, we 
have 

In this case A,(&) remains in the distribution function, 
meaning that the phonon emission processes must be 
taken into account. The heating is then much more ap- 
preciable than in the case of scattering by phonons only: 

5. ABSORPTION OF SOUND 

The energy lost by the sound is transferred to the 
phonon system, and i t  is convenient to express i t  in 
terms of the phonon-electron collision integral. The 
change of the density of the sound-energy flux W per 
unit length is equal to the energy acquired by the pho- 
nons per unit time: 

The phonon-electron collision integral is given by 

Putting f,(k) =f(&,(k)) we obtain in first-order approxima 
tion in the quasielasticity 
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This expression can be simplified by using the electron 
kinetic equation (32): 

If the electrons a r e  heated by the impurity scattering s o  
strongly that expression (35) can be used for g(&) and 
Boltzmann statistics a r e  valid, the expression for the 
absorbed energy becomes even simpler: 

---- dW I d e  j ( e )  A1 ( e ) .  d x  
L 

The sound absorption coefficient r is obtained from the 
relation 

1 d W  r----. 
w d x  

6. ULTRAQUANTUM LIMIT 

We define as  the ultraquantum limit a situation where- 
in the electrons fill only one lower level. For these 
electrons the potential produced by the sound wave can 
be regarded as  parabolic, U - -Uo(l - ~ ~ 5 2 / 2 ) .  The 
screening can then be neglected. In fact, the electron 
concentration is limited, when only the lower level is 
filled, by the condition ~ s & , r n Q / t i ~ .  Their wave func- 
tions a r e  localized on the interval c r ' ' Z ~ - ' ,  therefore the 
ratio of the screening potential to the potential produced 
by the sound is 

owing to the gas condition (11) and the tight-binding con- 
dition. The wave functions of the electrons for this 
case a re  well known, and exact analytic expressions 
can be obtained for the coefficients A,(&) and A,(&). But 
since the number of cominations of various scattering 
mechanisms is quite large, we shall not present al l  the 
results, and consider only the case which we regard a s  
most likely for piezoelectrics a t  low temperatures. The 
principal scattering mechanism is here the scattering 
by ionized impurities, and the important role in the 
energy relaxation is played by the piezoelectric inter- 
action with the acoustic phonons. We have 

The constant p is determined from the equation 

The sound absorption coefficient is given by 

for Fermi statistics and 

for Boltzmann statistics. Thus, r- W-' ,  i.e., the ab- 
sorbed energy does not depend on the sound intensity 
(cf. Ref. 6). We note that for other mechanisms the de- 
pendence of r on W is generally speaking different. We 
can write an order-of-magnitude estimate for r, appli- 
cable to all mechanism, under the condition T, S p - E,: 

where TO(&) is the relaxation time of the f ree  electrons. 

We now turn our attention to the following important 
fact. The normalization condition (24) in the case of 
strong degeneracy, when T e e  c,, can be written in the 
form 

( p - e o )  6 ( p - e n )  -2x'liZN/mQ. (50) 

With decreasing amplitude of the sound wave, the posi- 
tion of the levels E, changes [(see (611, and a s  seen from 
(50), ap/auO, has discontinuities when Uo is varied. 
The position of the f i rs t  jump is determined by the con- 
dition p - co = E~ o r  

The next jump occurs when Uo decreases by an amount 
on the order of (51). 

Jumps take place not only in ap/au0, but also in the 
functions A,(&), A,(&), and AS(&). Jumps of this kind 
leads to oscillations of r(U7). The amplitudes of the 
f i rs t  oscillations that occur when Uo is decreased a r e  
of the order of r ( W )  itself. These oscillations stem 
from a mechanism similar to those of the de Haas- 
van Alphen o r  the Shubnikov-de Haas oscillations. The 
r(U7) oscillations, however, have an important dis- 
tinguishing feature. Since one of the causes of the os- 
cillations is the oscillatory dependence of the nonequil- 
ibrium distribution function f(c) on p ,  the amplitude of 
the r(W) oscillations does not decrease with rising tem- 
perature. We shall prove this statement for the oppo- 
si te quasiclassical case,  when the electrons fill many 
levels in the well and the structure of the results de- 
pends to a somewhat lower degree on the scattering 
mechanism. 

7. QUASICLASSICAL CASE 

If the electrons fill many levels in the sound well, 
i.e., max(p , T,) >> E ~ ,  the principal role is played by 
levels with large numbers, whose wave functions can be 
regarded a s  quasiclassical: 

Expanding the cosine in q,(&) in a sum of exponentials, 
we obtain for qo,,,(q) a sum of integrals, each of which 
is calculated by the saddle-point method. The saddle 
points 5, a r e  defined by a relation that takes the form of 
the momentum-conservation law: 

(here s, and s, take on values i l ) .  As a result, 
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It is convenient for the subsequent calculations to repre- 
sent this expression in the form 

I de, de.. 
IT",,. (q )  I' = --- 

2nh dn dn' j d t   PI dpZ6 (pl+p2+hq) 

To verify the validity of (55) i t  suffices to carry out the 
integration with respect to p, and p2, and then with re- 
spect to [, after which the expression (54) is obtained. 
For the normalization constant we have used the rela- 
t ion 

2m de. l e , l 2 - - 7  
nh dn ' 

which is obtained by comparing the standard expression 
for this constant7 with the quasiclassical derivative of 
the quantization condition. 

In the calculation of the functions A,(&) we have used 
the Poisson summation formula - - - - 

~ ( n + ' / , ) = j  F ( n ) d n + 2 C  ( - 1 ) ' j  F(n)cos 2nsn dn. (57) 

The first  term in this formula leads to a purely classi- 
cal result in the form 

where for deformation interaction with phonons A = 2, 

for piezoelectric interaction with phonons A = 1, 

and for ionized impurities X = 0, 

For scattering by phonons, we have a Fermi  distribu- 
tion function with a temperature 

The sound absorption coefficient depends, generally 
speaking, on the form of the potential U(5). In the case 
of scattering by phonons in the case of Boltzmann sta- 
tistics, however, the integral that contains U([) is eli- 
minated with the aid of the normalization condition (24), 
and 

For the deformation. integral, this formula differs by a 
numerical factor from the corresponding result obtained 
by Kagan.' The reason for the difference is that Kagan 
did not take into account the difference between T, and 
T. 

To take into account the quantum corrections, we 
turn to calculation of A,(&) and take into account the 
sums over s in (19) and (31) when using formula (57). 
The sums over s, however, a r e  small compared with 
the classical parts of A,(&) in proportion to some power 

of the number of the significant levels, inasmuch a s  in 
each term of the sum over s the integration with r e -  
spect to  n is carried out with the oscillating function 
cos2nsn, and the results  does not accumulate with in- 
creasing number of significant levels. All the double 
sums over s can therefore be discarded. It is conven- 
ient to change from integration with respect t o n  to inte- 
gration with respect to E ,  after which i t  remains to cal- 
culate the integrals over the momenta and the coordin- 
ate, which occur when (55) is substituted in (19) and 
which contain cos[2nsn(p2/2m +u)], where 

In the integration with the coordinate, in view of the 
large values of n(p2/2m +U), the cosines oscillate rapid- 
ly and the corresponding integrals can be calculated by 
the saddle-point method. The remaining integrals with 
respect to the momenta can be calculated with the aid of 
the asymptotic formula 

(62) 

where &, =d&/dn. The final expressions a r e  of the form 

At (e l  =A:' ( e )  +Aor al(e, s)s in[%nsn(e)  +ln/4], 
L 
.-I 

(63) 

where we have for deformation interaction with phonons 

for piezoelectric interaction with the phonons 

and for ionized impurities 

Here U:= u"([) with 5 corresponding to the minimum of 
u(5). 

The calculation of the absorption coefficient entails 
considerable difficulties connected with the calculation 
of integrals of functions whose form depends on the form 
of U([). We shall therefore consider hereafter only the 
limiting case of sufficiently strong degeneracy, when 

and the results  can be obtained in closed form. Then, 
substituting (63) in (40), assuming & = p in all  the smooth 
functions with the exception of the argument of the co- 
sine, where n(&) is expanded in powers of E -  p accurate 
to terms of f i rs t  order, we get 

In the calculation of the sum, which is the quantum 
correction, we have neglected the quantum corrections 
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to g(&) in the distribution function. However, gcl = T 
+ (TA,C'+A,~')/A,C' is a smooth function of c, and we can 
therefore put gd(c) =gel (p) -= T,. 

We use now the normalization condition (24) to deter- 
mine p. We put 

The sum in (24) is calculated with the aid of the Poisson 
formula. The integral with respect to c is calculated in 
the manner customarily used in the case of a strongly 
degenerate Fermi gas, using the same procedures a s  in 
the derivation of (67). As a result  we get 

The sums over s in the left-hand side of (70) a re  small  
compared with the principal term, and this equation can 
be solved by iteration: 

P = v o f A ~ ,  (71) 

a p  is an oscillating function of U,. When substituting 
p in (66), a p  need be taken into account only in the f i rs t  
term. The general formula for r is too complicated to 
write out here; we note only two important circum- 
stances. 

First ,  as is obvious from (2), 

where the f o r m  of the smooth function ~ ( z )  depends on 
the form of U(x). As seen from (66), the function (W) 
executes a single oscillation when p, changes by &,, i.e., 
when U, changes by an amount on the order of &,lJo/po. 

Second, the amplitudes of the oscillations do not de- 
crease  with increasing T,. At c,<< TT, we have 

A},= -*% n (Po) e g 2  5 cos (2nsn(p0) +,/4). 
4nshz (73) 

.-I 

The sound absorption coefficient is in this case 

The amplitude of the oscillations is small compared with 
the smooth part of r in a ratio ~ / n ( ~ , ) .  

8. INFLUENCE OF ELECTRIC FIELD. CURRENT- 
VOLTAGE CHARACTERISTIC 

We shall consider only not too strong a longitudinal 
electric field E, which, while distorting the form of the 

potential wells, does not violate the strong-coupling con- 
ditions. This is the case,  a t  any rate, provided only 
the upper bound states remain f ree  under the influence 
of the field, i.e., 

Under this condition the results  of the preceding sec- 
tions a r e  modified only to the extent that they depend on 
the shape of the potential well. The only exception is the 
change of the sound absorption coefficient, due to the 
work performed by the electric field on the electrons 
that move together with the sound wave. The absorption 
coefficient requires an  increment 

This increment does not depend on the states of the elec- 
trons in the well o r  on their statistics. It is the same in 
the quantum a s  in the classical case and was first  ob- 
tained in Ref. 8. 

Under the condition (75), the electric field is the total 
dragged current j =eNw and does not depend on the elec- 
t r ic  field. At certain values of the electric field, how- 
ever,  peaks a r e  imposed on the total dragged current, 
from the following sources. The field-induced incre- 
ments to the electron energy differ in neighboring wells 
by an amount ~E,/Q. When this difference coincides 
with E,, the positions of the levels in the neighboring 
wells coincides, and this facilitates the tunneling be- 
tween them and increases the current by an amount on 
the order of ~NA/KQ. The width of this peak, in terms 
of the field, is of the order of K Q / ~ T .  Such oscillations 
in superlattices were predicted by Kazarinov and Suris.' 
It must be noted, however, that a distinct picture of 
peaks can be observed only if max(p , T,)sc,. If this 
condition does not hold, then transitions can occur be- 
tween different pairs of levels in neighboring wells and 
the peak patterns become superimposed. 

9. POSSlBl LlTlES OF EXPERIMENTAL OBSERVATION 

Most cri teria cited in this paper indicate that the am- 
plitude of the periodic potential U, produced by the sound 
wave should be high enough. Without account of the 
screening, the amplitude U, is  connected with the am- 
plitude of the elastic displacement in the sound wave u, 
by the relation U, =A@, for the deformation interaction 
o r  U, = 4npeu,/x f o r  the piezoelectric interaction. 

The most important conditions a re  the condition (I), 
to satisfy which it is necessary that the depth of the 
potential wells exceed the electron energy uncertainty 

and strong coupling condition (Y 5 1. 

We present numerical estimates for three materials: 
the piezoelectric semiconductor Te, which has one of 
the largest  coupling constants, the piezoelectric semi- 
conductor InSb traditionally used in experiments with 
sound, and the semiconductor Ge with deformation 
coupling, in which T a t  low temperatures can be large 
enough. At a lattice temperature equal to several de- 
grees  Kelvin, we have l i / ~  -0.1 K for Ge and -10 K for 
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InSb and Te (it is convenient to measure the energy in 
degrees in these estimates). 

The amplitude of the potential is U, =2  K. (W/W,)'~~ 
in Ge, and Uo = 5 K(20 K) - V , W ' ~ ~ / V W ~ ~ ~  in InSb and Te, 
respectively; here W is the intensity and the frequency 
of the sound wave, Wo = 1 W/cmZ, and v, = 5 - log Hz. 
Thus, Eq. (77) is satisfied a t  a sound intensity on the 
order of 1 W/cmZ in Ge and on the order of several 
dozen watts per square centimenter in InSb and Te. At 
these intensities, the condition (Y Sl is satisfied at a 
sound frequency not exceeding 10'' Hz. 

In addition, we have stipulated that al l  the electrons 
be under tight-binding conditions ( 9 ) ,  i.e., 

T., e,<Uo. (78) - 
Finally, the condition (10) meant that the screening 

of the soundwave field by the conduction electrons must 
not violate the tight-binding condition. At an electron 
concentration N - 10lZ cm-3 and a sound frequency v - 5 .lo0 
Hz the quantity eZA'/x~', which should be less  than U,, 
is of the order of 1 K. At these sound intensities the 
condition (10) should be satisfied in Ge a t  N- 1012 and in 
InSb and Te at N- lo1=. At such concentrations we have 
c p  - 0.01 K in Ge and -1 K in InSb and Te, i.e., Eq. (78) 
se t s  the temperature limit. 

In conclusion, we thank Yu. M. Gal'perin, V. L. 
Gurevich, and V. D. Kagan for important remarks. 

'fit is seen from (8) that a t  n > Z5/0  the width A,, of the allowed 
band begins to  decrease. But expression (8) is likewise no 
longer valid at  these values. 
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A theoretical analysis is made of the interaction between a two-dimensional electron plasma and shear 
surface piezoacoustic waves. The cases of a plasma layer on the surface of a piezoelectric crystal in 
vacuum and of an inversion channel in a metal-insulator-semiconductor structure are considered. 
Renormalization of the velocity of sound and damping of acoustic waves due to their interaction with a 
plasma are found. A specific damping mechanism of two-dimensional plasmons associated with the 
emission of acoustic waves is investigated. In all cases considered the characteristic parameters of the 
wave processes depend strongly on the surface charge density, which should make it possible to control 
them in experimental studies. 

PACS numbers: 52.40.Hf, 77.60. + v, 68.25. + j 

INTRODUCTION a1 means for  varying the characteristic parameters in 
a wide range so  that the main parameter, which is the 

Electron processes in quasi-two-dimensional systems 
surface charge density, can be varied over four orders  

a re  attracting considerable attention. Two types of sys- 
of magnitude. 

tem a re  being investigated more than others: electrons 
above the surface of liquid helium (or helium film) and Recent experiments on inversion layers in 
ca r r i e r s  in inversion channels in metal-insulator-semi- have revealed the presence of two-dimensional plas- 
conductor (MIS) structures. These two types of system mons. This i s  a very important result because the in- 
are  being investigated because they provide experiment- teraction of two-dimensional plasmons with other oscil- 
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