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The structure factor of a one-dimensional charge-density wave in a random potential is calculated in the 
Gaussian limit. The method of reduction to N = 0 fields and subsequent reduction to the Schriidinger 
equation is used. 

PACS numbers: 03.65.Ge 

In a one-dimensional conducting system the electron- 1. REDUCTION OF THE PROBLEM TO THE 
phonon interaction leads to a structural instability.' SCHRODINGER EQUATION 
In the self-consistent field approximation a charge- 
density wave (CDW) with period 1/2pF, where p ,  i s  We shall consider a one-dimensional electron-phonon 

the Fermi momentum, appears at a certain tempera- system. In the self-consistent field approximation, at 

ture T,,. This wave i s  optically active and can carry  sufficiently low temperatures a CDW i s  formed, with 

current. Thermal and quantum fluctuations destroy amplitude A determined by the equation1 

the long-range order, but the contribution of the CDW 
g' e l  to the conductivity remains large.' 1 = In-, 

nvro2(Zpr) A (1) 

A much stronger influence on the CDW is exerted by 
impurities. If the interaction between the conducting 
filaments i s  sufficiently strong, a three-dimensional 
CDW is formed. The effect of impurities in this 
case was studied in Ref. 3. It was shown that impuri- 
ties destroy the long-range order and evidently lead 
to a finite dielectric permittivity. At sufficiently high 
temperatures or sufficiently large impurity concentra- 
tions the correlation between the CDWS of different 
filaments breaks down and we can consider each fila- 
ment independently. In the one-dimensional case the 
result depends not only on the effective mean free 
path but also on the average distance between impuri- 
t ies in relation to the scattering amplitude a t  an in- 
dividual impurity center. The contribution of the CDW 
to the conductivity in the limit of infrequent impurities 
was studied in Refs. 4 and 5. The limiting case of 
frequent impurities can be described by the model of 
a random potential with Gaussian distribution. Quali- 
tative estimates for the dielectric permittivity at zero 
temperature in such a model have been given in 
Ref. 5. 

where g is the electron-phonon interaction constant, 
v,, p, and FF a r e  the Fermi  velocity, momentum, and 
energy, and w(2p,J i s  the phonon energy at momentum 
2p, The formula (1) holds if the temperature is  suf- 
ficiently low (T << A) and the mean f ree  path 1 deter- 
mined by the impurities i s  sufficiently large ( I  >> vdA). 
These criteria will be assumed to be fulfilled below. 

Of fundamental interest is  the study of the slow phase 
fluctuations caused by the impurities. Fluctuatiws of 
the amplitude of the CDW will not be taken into account 
below. Then, following the results of Refs. 2 and 6, 
we can write the average (M(cp)) of any physical quan- 
tity over the states of the electron-phonon Harniltonian 
by means of a continuous integral: 

The functional F[cp] has the following form: 

Below we shall study the CDW in a random potential + f (I) sin (~P&~QJ (x, r) ) ] d r  d r .  
with a Gaussian distribution. The fundamental quantity 

(3) 

to be determined is the structure factor. The structure 
factor i s  calculated in the limits of low and high temp- 

In this formula, 

eratures (relative to the linkage energy). At high tempera- 
tures the correlationlength is determined principally by 

A=Ai0m'l(2pF)', C=v,/Zn, m.=m( l+nu,Az/2g'), (4 

the temperature, and the interaction with the impurities 
leads only to small corrections. The effect of impuri- where N o  i s  the electron density and m the electron 

t ies i s  much stronger a t  low temperatures. Even mass. The quantity f (x )  describing the interaction with 

arbitrarily weak impurities destroy not only the long- 
the impurities is equal to 

range order but also the short-range order. The cal- 
culations a re  performed by reducing the problem to 
the solution of the Schriidinger equation. 
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where U(2pA i s  the scattering amplitude at momentum 
2p, for scattering by an impurity, and x, a r e  the 
coordinates of the impurity atoms. 

The integration over x in formula (3) i s  performed 
over the length of the sample, T i s  the "imaginary 
time," and T is the temperature. It i s  assumed that 
the phase cp satisfies the following boundary conditions: 

I F  1/T 

-r I j dr dr' z c o s  T ~ C  (cp..ef"'-cpd-e'"' 

where 

To obtain physical quantities such a s  the structure 
factor o r  dielectric permittivity it is  necessary to 
carry  out averaging over the random potential f(x). 
Averaging Eq. (2), we obtain 

The calculation of the continuous integral of the form 
( l l ) ,  (12) can be found in the book by Feynman and 
~ i b b s . ~  The time has played the role of the coordinate 
x .  Using the results expounded in Ref. 7, we reduce 
the calculation of the integral in (11) to the calculation 
of the following expression: 

The angular brackets with the subscript f in formula 
(7) denote averaging over the random potential f. For  
the subsequent calculations it is convenient to trans- 
form Eq. (7) to the following form: 

The function G(cp,,. . . cp,) in this formula i s  the 
Green function of the Schra inger  equation: 

x {(j exP ( - p ~ ~ c p = l ) f i D T ~ ) ] - ' ] ~  =-I 
. 

Ll-1 
-0 

It is  necessary to calculate the right-hand side of this 
equation for arbitrary N, and then put N = 0. ' In this 
case, the right-hand sides of (8) and (7) coincide. 

rlr ilr 
-7 j j dr d ~ '  Z cos T" (q..ei"-cp,..ei"')G 

0 0 a,.' 

We note that for N = 0 the denominator in the right- 
hand side of formula (8) i s  equal to unity: 

taken a t  xo -x i=  L and qua=  cp;,. 

Thus, the problem of the calculation of the contin- 
uous integral (21, (3) and the subsequent averaging over 
the impurities has been reduced to the determination 
of the Green function of the Schrs inger  equation (15) 
and to the calculation of certain integrals (14). The 
calculation of continuous integrals in another one- 
dimensional problem by the Feynman method was first  
carried out in Ref. 8. 

a-l  Dl- 1 

In formula (8) it i s  convenient to average over the 
random potential f first ,  and only after this integrate 
over cp,. We shall confine ourselves to the case of 
frequent but weak impurities. Then the averaging over 
the impurities i s  equivalent to averaging in a random 
Gaussian potentiaL In the notation of the present 
paper, this case obtains if the following inequality i s  
f ~ l f i l l e d ~ * ~ :  2. THE STRUCTURE FACTOR 

Using the method developed above, we can find the 
principal physical quantities. We shall consider the 
correlator II(x): where no i s  the impurity concentration. 

Performing the averaging over the impurities in the 
Gaussian limit in the expression (8) and considering 
only slow variations of cp,, we obtain 

n ( 2 )  -A' exp ( 2 i p f i )  Uexp (icp(x)-icp(O))),. (16) 

The Fourier component II(q) of the correlator deter- 
mines the scattering of neutrons and x-rays. The 
phases cp in (16) a r e  taken a t  coincident times. The 
subsequent calculations will be performed with the 
assumption that the adiabaticity condition m* >>rn is 
fulfilled, where m* i s  defined by formula (4). In this 
case we can neglect quantum fluctuation2 and retain 
only the zeroth harmonics cp,, of the phases in (14) 
and (15). Using the expansion of the Green function 

- - - 
I -  -I 

X fi { ~ e x p ( -  F [ ~ I ~ .  . - ~ N - I )  ~ V a - 1  ] - 
I - 0  

(11) 
a-l =-I 

In this formula, 
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in the eigenfunctions of the equation, we obtain a more 
convenient representation for the correlator II(x): 

lowing formula: 

The potential energy in (18) does not depend on r:, 
and therefore the variable r; can be eliminated from 
the expressions (17) and (18). As a result, we obtain 

In this formula, $,,,(r) and E, a r e  the wavefunction and 
tnergy of the m-th state of the Schrtidinger equation 
H$= Eq, where 

II(z)=A2exp(2ipfl) 1 J ~(r')e~p{ir'n(T(N-I))'~/N}$~(r')dr' 1- 
X { J I ( ~ ( ~ ' )  12dr' 1 ~ ( ~ ( r ' )  lzdr' ] - 1 e x p { - ( ~ , , , r - ~ / ) x - ~ z / 2 ~ ~ } .  

(25) 
The wavefunctions and energies in (25) a r e  determined 
from the equation 

r=(rl, r2 . . . rs), el= ( L O . .  . 0 ) ,  e2= (0, I . . . O), . . . ,ex- (0 ,O.  . . I ) ,  

We shall consider the high-temperature case. In 
this limit the second term in the Hamiltonian (18) can 
be taken into account a s  a perturbation. In the zeroth 
approximation the ground-state eigenfunction is equal 
to unity and the ground-state energy i s  zero: $$" 
= l , ~ t ) = O .  The correction to the energy for N =  0 i s  
equal to zero. The wavefunctions of the excited states 
a r e  plane waves: 

N 
Y - - cos (Tthrr (ea-em,) ) } $-E$, 

2Tz 
0.a'-2 

where 

The matrix element in (17) i s  nonzero for  p,= T'" 
( - 1,. . . , 0). States with momentum are  degenerate 
with respect to the direction of the momentum. In the 
zeroth approximation the energy of the state with 
momentum p, i s  equal to 

Representing rD in the form 

where the vector r, lies in the hyperplane perpend- 
icular to n, we rewrite the Eamiltonian fi (26) a s  fol- 
lows: 

To determine the correction it i s  necessary to solve 
the secular equation, which, in the case under consid- 
eration, has the form 

Calculating the determinant in (21), we obtain In the new notation, the exponent in the matrix element 
in (25) is equal to i r , , ( ~ ( N - l ) / ~ ) " ~ .  At low tempera- 
tures the not very high-lying states can be found by 
expanding the cosines in the Hamiltonian to the second- 
order  terms. In this approximation the Hamiltonian 
(28) takes the form Substituting the expressions (19), (20), and (22) for 

the eigenfunctions and energy into (17) and putting N = 0, 
we find II(x): 

II(x)=A2esp (2ip,x) exp I ( - T / ~ C - ~ / ~ T ~ ) Z ] .  (23) 
H, contains only fi and P,. In deriving (29) we used 
the equality Considering the perturbation-theory terms of higher 

order,  we can convince ourselves that the formula (23) 
i s  applicable for T >> (yc) ' I3.  The expression (23) 
shows that at high temperatures the correlation length 
in the exponential-decay law for II(x) i s  determined 
principally by thermal fluctuations. The impurities 
only slightly decrease the distance over which short- 
range order exists. 

This equality i s  understandable from symmetry consid- 
erations. 

I 
Solving the SchrCidinger equation with the Hamiltonian 

(29), substituting the wavefunctions and energies found 
into (25), and calculating the sum over states in (25), 

The analysis a t  low temperatures i s  more compli- 
cated. We shall transform the coordinates by the fol- 
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we obtain 

xT N-I I-expi-(yNl2TC) "x) 
II (z) =A' exp (2ips) exp - - + - [ 2NC 2N (INC/~T')" 

(30) 
For  N =  0 the expression (30) vanishes for a l l  x .  For  
N = 0, taking into account the possibility of tunneling 
from one minimum of the cosine to another does not 
change the result. Expanding the Hamiltonian (28) to 
terms of higher order cannot change the result either, 
if the condition T << ( y ~ ) " 3  i s  fulfilled. 

However, the contribution of states with energies of 
the order of y /TZ  has not yet been taken into account. 
It remains unclear whether taking these states into 
account will lead to the appearance of a finite correla- 
tion length at T # 0 o r  not. In any case, a t  T = 0 this 
length should vanish. 

The results obtained above show that, in the Gaussian 
limit at low temperatures, impurities destroy not 
only the long-range order but also the short-range 
order. Evidently, this strong violation of the order i s  
a specific property of the Gaussian limit, when the 
average distance between impurities tends to zero. 

Above, we did not take into account the long-range 
part of the Coulomb interaction, which was extremely 
important in the presence of transverse gradients in 
the free energy.' However, if these gradients a r e  
absent, the Coulomb long-range interaction leads . 

only to a renormalization of the interaction constant. 

The model considered above can be applied to de- 
scribe the behavior of the KCP salts 

(K,[P~(cN),]B~,,.~H,O) a t  temperatures in the range 
100 K< T < 500 K. In this range there i s  no correlation 
between the CDWs of different chains and, therefore, 
we can consider each chain independently. The Br  
atoms a re  randomly located, but they a r e  strongly 
screened by the water  molecule^.^ For  this reason, 
the scattering amplitude a t  an individual Br atom is 
small. This makes it highly probable that the Gaussian 
situation i s  realized. 

In conclusion the author thanks A. I. Larkin for 
numerous discussions on this work. 
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