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A new solution is proposed for the problem of narrowing of the many-pulse NMR spectra in solids. The 
dynamics of the spin system is investigated when the sample is acted upon by the pulse sequence 
90", - T - ((P, - 27 - )N when the field goes off resonance by an amount A (cp, denotes a pulse that rotates 
the spin through an angle cp around the x axis; 27 is the distance between pulses). It is shown that when 
the system is acted upon by pulses and by detuning in a time t > > T, the spins precess around an effective 
field ad, whose magnitude and direction are determined by the parameters cp and AT. In addition, the 
spins absorb the quanta of the dipole-dipole interaction modulated by the RF field and by the detuning; 
the magnitudes of these quanta depend only on the pulse repetition frequency. Within short times -T2 
(T2-11&"dl(-1-oloe) the system reaches a quasiequilibrium state w. Goldman, Spin Temperature and 
Nuclear Magnetic Resonance in Solids, Oxford U. Press, 1970, Chap. 61 corresponding to thermal 
mixing of the Zeeman and dipoledipole interaction reservoirs. The type of the quasiequilibrium depends 
on the ratio of om to the local field y,. The quantum absorption process takes place in times t > > T2 and 
at a,> >q, it is connected with transfer of part of the energy into the dipoldpole reservoir. This 
energy transfer does not take place under resonance conditions, i.e., when noeff.  = m r / r  (n and m are 
integers). The resonance conditions correspond to the experimentally observed [L. N. Erofeev et al., Sov. 
Phys. JETP 48, 925, (197811 minima in the magnetization-damping times when cp and AT are varied. The 
variations of the magnetization damping times are calculated for different types of resonances (for different 
n and m). The kinetics of the damping of the magnetization near the resonances is investigated. The 
results differ substantially from those obtained by the average-Hamiltonian method (U. Haeberlen and J. 
S. Waugh, Phys. Rev. 175, 453, 1968), and explain a number of experiments w.-K. Rhirn et al., Phys. 
Rev. Lett. 37, 1764 (1976)k L. N. Erofeev and B. A. Shumm, JETP Lett. 27, 149 (1978); L. N. 
Erofcev et al., Sov. Phys. JETP 48, 925 (1978)l that contradict this theory. 

PACS numbers: 76.60. - k, 

1. INTRODUCTION 

A number of experimental methods have been recently 
developed by which to improve considerably the resolu- 
tion of the lines in nulcear magnetic resonance (NMR) 
spectra of solids.'-' Methods most widely used a re  
many-pulse  method^^-^ of line narrowing, which make 
i t  possible in practice to narrow down the NMR spectral 
lines of solids from several kilohertz to several dozen 
hertz.' In view of the great increase of the resolution 
of the many-pulse method, i t  becomes important to 
develop a theory of line narrowing. The hitherto known 
theory of many-pulse experiments s tar ts  from the 
premise that the pulse sequence causes the dipole-di- 
pole interaction or  part  of i t  to become dependent on the 
time and average out over the cycle time 7,. In addition 
to the time T,, which characterizes the motion of the 
nuclear spins under the influence of the pulses, the 
many-pulse problem involves one other time T,, which 
characterizes the motion of the spins in the local field. 
If the dipole-dipole interaction is averaged over the 
time of the cycle, the influence of the local fields on the 
motion of the spins is neglected. This, of course, is 

fully justified in the case of one o r  several  cycles a t  
7,<< T,. However, the damping of the magnetization in 
many-pulse experiments takes place over time t>> T,, 
i.e., over hundreds o r  thousands of pulse cycles. There- 
fore the influence of the local fields on the spin dy- 
namics becomes substantial and the abbreviated des- 
cription of the system is permissible only in the case of 
averaging over a time interval T, >> 7,. 

It must also be noted that in the average-Hamiltonian 
theory one does not follow the evolution of the density 
matrix in time. To the contrary, i t  is customary to  
make with respect to the density matrix an additional 
assumptione which in many cases is not justified.l0-* 

On the other hand, there is deep analogy between the 
behavior of a spin system in fields produced by pulse 
sequences, on the one hand, and in continuous external 
RF fields, on the other. This can be particularly clearly 
traced using a s  an example the pulse sequence 90°, - 7 

-(p, - 27 -)N as (D - 0 and 7 - O.1° This circumstance 
makes i t  possible to construct for many-pulse line 
narrowing a theory that is similar to a considerable 
degree to the theory of continuous "locking" of the spin 
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magnetization (spin locking).13 In a continuous field, 
over times -T,, a quasiequilibrium state is established 
in the system and corresponds to thermal mixing of the 
Zeeman and nonsecular parts of the dipole-dipole rese r -  
vior of the interactionsL4; a t  t>> T, the system reaches 
a state with one temperature.14 The experimentally ob- 
servedL0*" decrease of the observed magnetization in 
many-pulse experiments offers evidence that in the case 
of a pulse field, over times -T,, a quasiequilibrium is 
likewise established in the system and is determined by 
the redistribution of the energy between the Zeeman and 
dipole-dipole reservoirs of the interactions. The char - 
acter of the quasiequilibrium in many-pulse experiments 
differs a t  the same time substantially from the case of 
a continuous field in the presence of dipole echo,lO." this 
being a reflection of the external pulse actions. 

Over times t>> T,, the behavior of the spin system in 
many-pulse experiments is determined both by the 
quasiequilibrium that is formed over times -T,, and by 
the absorption of quanta of external fields. The nature 
of the physical processes that lead to damping of the 
magnetization cannot be understood without a correct 
description of the quasiequilibrium in the system. This 
description is closely connected with the choice of the 
averaging-time scale. The arguments presented above 
show that this time scale in the many-pulse problem is T,. 

The problem of line narrowing in the case of exact 
equality of the frequency of the R F  field to the Larmor 
frequency of the spins was recently considered, and a 
new approach to the theory of narrowing of many-pulse 
NMR spectra was p r o p ~ s e d , ~  based on the description 
of the quasiequilibrium in the system and of the multi- 
spin processes of absorption of quanta by the nuclear 
spins. The present paper is devoted to an exposition of 
a new theory of many-pulse narrowing of NMR spectra 
in solids, using a s  an example the pulse sequence 
90°, - 7 - ((P, - 27 - )N (Ref. 10) with the field off-reso- 
nance by an amount A (in frequency units). The des- 
cribed approach can be used also for other pulse se- 
quences used to narrow down NMR lines in solids. 

2. QUASIEQUILIBRIUM OF SPIN SYSTEMS. THE 
EFFECTIVE FIELD 

We consider a spin system acted upon by a pulse se- 
quence 90°, - 7 - ((P, - 27 - )N, where (P, denotes the 
pulse that rotates the spins through an angle (P about the 
x axis; 27 is the distance between the pulses (Fig. 1). 
It is assumed that the constant field directed in the lab- 
oratory frame along the z axis is detuned from the 
resonance value (wo is the Larmor-precession fre- 
quency of the nuclear spins and y is the gyromagnetic 
ratio) by an amount A (in frequency units). In a coordin- 
ate system that rotates with Larmor frequency around 
the z axis, the equation for the spin-system density ma- 
t r ix  p(t) takes the form @ = 1) 

i* - [ - f  ( t )  s.+~s.+%dl, p( t )  I ,  
dt 

where fit) is a pulse function defined by the formula 

f ( t )  - cP 8 (r+2kz- t ) ,  
k-0 

and2*' is the secular (with respect to the z axis) part 
of the dipole-dipole interaction. We proceed to the in- 
teraction representation in the pulses and in the detun- 
ing, i.e., we make the substitution 

P ( t )  =L ( t ) ~  ( t )  w t ) ,  (3 
where 

and T stands for a product ordered in time. We intro- 
duce now the effective pulse 

exp ( - 2 i t o . , , ~ )  =exp(- iArd,)P- ,  exp(iAr8,) ,  (5) 

which characterizes the external action on the system 
over the interval 27. It follows from (5) that weff is de- 
fined by 

cos(2a,tlr) =cos cp cosyAr)  -sin2(Ar), (6) 
and i ts  direction is obtained from the formulas 

sin cp cos (AT)  
n. = n,=O, n, = 

sin (2A.c) cos2 ((p/2) 
s in (h . , , r )  ' sin(2o.ttr) ' (7) 

(It turned out in a preliminary discussion that an arialog- 
ous value of werf was obtained independently15 on the 
basis of an analysis of the experimental data.) We in- 
troduce a pulse function g(t) analogous to (2) 

s o  that 

where 0 =2weff7 is the angle of rotation of the effective 
pulse about the axes n(n,, n,, n,), and the number of fac- 
tors in the right-hand side of (9) is determined by the 
instant of time t. We can then rewrite (1) in the form 

It is convenient to expand the operator &dC a s  follows 

where &=' is the secular part and &' and* the non- 
secular parts of the dipole-dipole interaction relative to 
the n axis and a re  defined by 

The coefficients &, A+,, and A,, in (11) can be easily 
determined by changing over to a coordinate system in 
which the x axis coincides with the n direction, with 

AO=(3n,'-1)/2, A,=nl(l-n,Z)'he-i*, A-,=A,'=n,(l-n,')*ei*, 
A,=(l-n,') e-"" AA-2=A,'-(1-n,2) eZi*, 

cos rp=n,n,/((l-n,') ( i+n,)) .  
(13) 
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It is seen from (5) and (9) that the spins rotate in the 
average field o,, . To take this rotation into account, i t  
is convenient to change to a coordinate system that ro- 
tates at a frequency w , ~  : 

The density matrix satisfies then the equation 

+ ~,~( t )%:+~- ,~*( t )%~-~ ,  P-I, 

where 

a r e  periodic functions with a pulse repetition period 27. 
It is seen from (15) that the fields acting on the spins 
can be divided into constant fields wen and A$+@' and the 
fields -O(t) and ~ ( t )  that which fluctuate rapidly in time. 
The greatest influence on the motion of the nuclear 
spins is exerted by the field weif and by the constant lo- 
cal field, while the contribution of the rapidly oscillating 
fields can be accounted for by perturbation theory. To 
take into account the fluctuating fields, we expand @(t) 
and ~ ( t )  in Fourier series:  

(- 1)  " sin oeltr (-1) " sin 2o.ttr 
c. = , b, = 

nn+o.tts nx+2oet1r ' 

and express (15) in the form 

where 

- sin o , t t ~  A 

%a=-orriJn+AaXd" + ----(rl126'dl+.4-I%d-') ~ , , , t  

and the prime on the summation sign will denote here- 
after that the zeroth harmonic is left out of the summa- 
tion. 

It is known14 that certain terms of the Hamiltonian can 
be accounted for by perturbation theory only i f  they a r e  
much sma1le.r than each of the operators contained in the 
principal Hamiltonian &. During the same time, the 
time-dependent part of the Hamiltonian in (18) is com- 
parable in order of ~ a g n i t u d e  with the dipole-dipole 
terms contained in go. We therefore carry  out f i rs t  a 
number of canonical transformations aimed a t  lowering 
the order of the time-dependent terms of the Hamiltonian 
in (18). l2 

The remainder of the analysis is substantially differ- 
ent in the cases when w,,, = [ s ~ ( & ) ~ / s ~ ( ~ , ) ~ ] " ~  -we,, and 
when wIuC << weft. Let f i rs t  we, - w,, . For each non- 
zero harmonic of @(t)  we carry  out the following canon- 
ical transformations of Eq. (18): 

mnt 
I(')= exp ( - i p s . )  exp(iAm1)exp 

where 

It is easy to show that 

Therefore, a s  a result of the performance of the can- 
onical transformatjons (201, the terms ~ , c , e "  ," "'&' 
and A-,c,*ef "' 'Ir x-' will drop out of (18). Next, for 
each nonzero harmonic of ~ ( t )  we carry  out similarly the 
transformations 

mnt 
pr(t) = e x p  ( -i - 2r s.) e x p  (ill.') e x p  

where 

Following the canonical transformations (20) and (23), 
we can rewrite (18) in the form 

dp' A - 
i-=[iW,+V(t),p11. dt (2 5) 

Here 

sin 0.t15 2 t2&,, 
C(t) - -tqoc - - , 

51 

since wen - w ,,, and w,,, T < 1. Thus, the canonical 
transformations (20) and (23) decrease the time depen- 
dent part  of the Hamiltonian by a factor & = ( ~ w , , ) ~ / n ,  
and this part  can now be treated by perturbation theory. 

Since the order of magnitude of the perturbation p(t) 
is now much smaller thanlthe order of magnitude of the 
interactions that enter in go, we can assume14 that at 
we, T, -1 the density matrix of the system assumes after 
a time -T2, accurate to small  off-diagonal terms,  the 
form 

p,;=i-a,,&o, Sp pSt1-=i. (26) 

Over times -T, we can also neglect the energy absorbed 
by the system from the external R F  fields, and use the 
energy conservation law (which is accurate here up to 
terms - r4wic  ): 

Sp p1(0)aia0=~p pli;&o, (27) 

where p'(0) is the density matrix pl(t) a t  the instant t =O. 
In a coordinate system that rotates with Larmor fre- 
quency around the z axis, the density matrix p(t) at the 
instant of time t = 0 is given by 

(p, is the initial temperature of the Zeeman reservoir). 
Taking (3) and (14) into account, we find that 

where the coefficients y, and y, can be easily determined 
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by resolving the operator g, along the axes of a coordin- 
ate system in which the z axis is directed along the ef- 
fective field; their values, however, a r e  not used in the 
subsequent calculations. We now obtain for the density 
matrix pl(0) 

I - - -  m--=a 

We see therefore that the density matrix pl(0) differs 
from p*(O) only by the terms -wiOcr2 that a re  respon- 
sible for the dipole echo. Accurate to these terms we 
obtain, using (19) and (29), 

S P ( P ' ( O ) ~ O )  =aoooo.t,n. sp  (8 .) '. (3 1) 

In the derivation of (31) we took into account the follow- 
ing easily verified relations: 

s~(s ,&~o)  =s~{s,+.%;-~) =sp ( d m - R 1 )  =o. (32) 

In Appendix A i t  is shown[formulas (A.2) and (~.4)]that 

where 

From (27), taking relations (29)-(34) into account, we 
obtain 

We can now easily find that 

Here Ma is the stationary value of the magnetization 
along the direction of the effective field, and M, is the 
magnetization a t  t = 0. In experiment, however, one 
measures the ratio M, '/M,," where MI is the projec- 
tion of M!, on the x axis of the coordinate system that 
rotates with Larmor frequency w, around the z axis. 
The canonical transformations (3) and (14) show that a t  
the instants of time t, = ~ N T  we have p*(t ,) =p(t,). 
Therefore, accurate to small corrections connected with 
the transformations (20) and (23), the following relation 
holds true a t  these instants of time: M,'=Mdnn,. At an 
arbitrary instant of time t = ~ N T  +t,(-TQ t, S T )  the canon- 
ical transformations (3) and (14) lead to an additional 
rotation of the magnetization through an angle At, about 
the z axis of the coordinate frame that rotates with Lar- 
mor frequency. The final expression for the ratio M ,  / 
M, is therefore 

M , ; / M , = o ~ , ~ ~ ~  cos At ,  
sinz(e/2) 3 s i 3  0 -I 

A ~ + ~ A , A - . ~ + ~ A A - z ~ ]  o:,} . (37) 

Formula (37) shows that when a quasiequilibrium state 
is established in the system the stationary magnetiza- 
tion decreases for two reasons. First ,  within a time 
-T2 the magnetization initially parallel to the observa- 
tion axis becomes parallel to the direction of the effec- 

Ar, rad 

FIG. 2. Plot of M:, /Mo against the parameter At for a 
CaFz crystal whose [I 11 1 axis Is oriented along Ho (HI,= 0.86 Oe) : 
Curve 1-for cp=22.5", 2-for p ;36", 8-for cp= 60'. 4-for p 
= 90". Experimentalpoints: 0-cp = 22.5"; X-rp = 36'; A-cp = 600, 
e-rp=9O0. 

tive field; the magnetization component perpendicular to 
the effective field vanishes during that time." For this 
reason, the observed magnetization decreases after a 
time -T2 by a factor n:. Second, over times -T, energy 
exchange takes place between the Zeeman and the dipole- 
dipole interaction reservoirs.'* This exchange is not 
connected with the change of the orientation of the mag- 
netization and leads likewise to a decrease of the ob- 
served signal. Figure 2 shows plots of M, '/M, against 
the parameter AT for different angles cp, a s  calculated 
from formula (37) with t, =O. A comparison of (37) 
with the experimental data of Fig. 2 shows, in the main, 
agreement between theory and experiment.15 The devia- 
tion of the experimental data from the theoretical curves 
a re  due to e r r o r s  in the orientation of the crystal.15 

It was shown p r e v i ~ u s l y ' ~  for the on-resonance prob- 
lem that the magnetization M, is a periodic function with 
a pulse repetition period 27, and the waveform of the 
signal between the pulses was calculated. In our case 
the magnetization is also quasiperiodic with period 27, 
but i t s  variation in the intervals between the pulses is 
determined not only by the dipole-dipole interactions, 
but  above all  by the'action of the detuning (M, 
- C O S A ( ~  - 2 ~ ) ,  T Q t 637). 

In the case wlOC -aeff considered, the absorption of 
quanta from the external fields n/r >> w ,, and n/r 2%. w,, 
is accompanied by a change in the orientation of a large 
number of spins, and is primarily connected with a 
change of the energy of the dipole-dipole interactions. 
At weff >> w , ~ ,  the absorption of the quanta is determined 
by transitions of the system to different energy levels 
of the Zeeman reservoir; only a small fraction of the 
absorbed energy enters the dipole-dipole reservoir. 
The canonical transformations (20) and (23) of Eq. (18) 
should be s~pplernented'~ a t  we, >> w ,,, by canonical 
transformations for the zeroth harmonics of b(t) and ~(t), 
whose amplitudes a re  n /wlo ,~  times larger than of the 
remaining harmonics, and which were previously taken 
into account accurately. Accordingly, we obtain in 
place of the density matrix pl(t) (25) 

where ?,(t) - TW:~, and can also be regarded a s  a small 
perturbation. The spin system is now characterized by 
two integrals of motion, and in times -T2 its  density 
matrix takes the form 
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The condition for the conservation of over times 
-T, leads to B, =O. The decrease of the stationary mag- 
netization from i ts  initial value Mo is determined almost 
completely by the fact that the magnetization assumes in 
the time -T, the direction of the effective field: 

M , ~ / M , = ~ '  cos At,. (40) 

3. RESONANCE EFFECTS 

We consider now the behavior of the spin at t imes t >> T,. 
In addition to the effective field, the time-dependent 
terms of the perturbation ?,(t) in (38) begin to influence 
strongly the dynamics of the system. Each of the terms 
contained in ?,(t) is a certain part  of the dipole-dipole 
interaction modulated by the pulses and by :he detuning. 
The nonsecular terms of the perturbation Vl(t) a r e  
sources of quanta absorbed by the nuclear spins that 
interact via&. As already noted, at we,, - w,, the 
bulk of the absorbed energy goes to the Zeeman reser-  
voir, and only a small  fraction of the energy is absorbed 
by the dipole-dipole reservoir. It is therefore clear 
that the most effective action on the system should be 
exerted by terms f,(t) that ensure absorption of the 
energy exclusively by the Zeeman reservoir and exclude 
fully any transfer of energy to the dipole-dipole reser-  
voir. Such an absorption process is possible a t  

where n is the number of absorbing spins and m is the 
number of quanta absorbed by them. Relation (41) indi- 
cates the conditio_ns that must be satisfied by the per- 
turbation terms Vl(t) that lead to absorption of energy 
from the external fields only by the Zeeman part of the 
interaction reservoir. First ,  these terms must serve 
as a source of m quanta; second, they must change the 
spin projection on the weff axis by n units; in  the case 
of S = 9 this is equivalent to spin operators that change 
the orientation of n spins (m and n a re  i?tegers). The 
corresponding term of the perturbation Vl(t) will be 
called the n-spin resonance term that causes absorp- 
tion of m quanta. Formula (41) shows also that the 
resonant term defined in this manner leads to an effec- 
tive resonant absorption only a t  certain values of the 
pulse rotation angles cp and of the parameter AT,  name- 
ly, when weft satisfies (41) for the given n and m. The 
corresponding value of the effective field will be called 
resonant. The values of effective fields for certain 
resonant processes a re  listed in the table. When wew 
deviates from the resonant values, a fraction of the 
energy of the quanta of the external fields should be 
transferred to the dipole-dipole reservoir  and this leads 
(since w,,, << wen) to an increase of the damping time of 
the magnetization." Thus, if the parameters AT and cp 
have values such that wem =mn/nr, i.e., a s  follows from 
formula (6), i f  

cos cp cos%r-sin2 Ar=cos (2nm/n) (42) 

minima (relative to cp and AT) should be observed in the 
magnetization damping times. 

We now determine the order of magnitude of certain 
resonant terms. The term - r w b ,  can be only a three- 
spin resonant term. We confine ourselves hereafter to 
the resonant terms responsible for absorption of not 

TABLE I. 

Number o Number od Number of Number o 
abnbingl /  abwIbdl -err 1 Cw&'.tt" bbarbing / absorbed1 *if I c08(2weitT) 

spins quanta spins quanta 

3 2 

4 -0.809 

more than two quanta. Processes  with absorption of 
many quanta have a negligibly small  probability and a r e  
not observed in experiment.15 The three-spin resonant 
term that causes absorption of one quantum takes the 
following form: 

The only resonant term - ? w ~ ~ ,  is the three-spin resonant 
term 

B,(t)  =t?~,e""'[&2, [a:, 221 I ,  K,=comt. (44) 

It is interesting to note that formula (42) means (at 
n = 4 and m = 1) that in  the considered cycle without de- 
tuning, in the case of 90" pulses, the main contribution 
to the damping is made by the four-spin resonant pro- 
cess. This is in full agreement with the conservation 
of the dipole energy in  the investigated cycle without 
detuning for 90" pulses. It can be shown directly from 
(1) that a t  =n/2 and at A = O  the energy of the dipole 
reservoir  is in fact conserved (this circumstance was 
pointed out to the authors by V. E. Zobov). Finally, 
we indicate that the resonant term -r3w&, is a five-spin 
resonant term. The resonant terms of higher order of 
smallness lead to processes that have not been observed 
in  experiment. 

If we confine ourselves to not more than two-quantum 
resonant processes produced by resonant terms with 
order of magnitude not lower than T~W;,, and if we also 
recognize that the four-spin resonant process with ab- 
sorption of two quanta is realized only at AT = n/2, then 
we can see  from the table that there should be four 
resonance curves in the ( (p ,h~ )  plane. Figure 3 shows 

dr, rad 

FIG. 3. Resonance curves for single-quantum five-, four-, 
and three-spin resonances (curves 1-3, respectively) and 
two-quantum five-spin resonance (curve 4). The experimental 
points correspond to: A-single-quantum five-spin resonances, 
x-single-quantum four-spin resonance, 0-single-quantum 
three-spin resonance, @--two-quantum five-spin resonance. 
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these curves, a s  well a s  the experimental points15 a t  
which minima were actually observed in the damping 
times of the magnetization. The agreement with the 

"experimental data15 is good. 

4. KINETICS OF RESONANT PROCESSES 

The kinetics of the damping of magnetization a t  t>> T, 
will be considered using a s  an example a three-spin 
resonant single-quantum process. The equation for the 
density matrix takes in this case the form 

where 

It is shown in Appendix B that ~ ( n / 3 )  = 3-lf2. In (45), 
doeff i s  the deviation from the three-spin resonant field 
we,, =n/37. It is assumed that Awe,, is small enough to 
be able to neglect the influence of other resonant pro- 
cesses a t  momentum rotation angles cp and a t  detunings 
A connected by relations (42) (at m = 1 and n = 3). The 
problem under consideration i s  quite analogous to the 
problem solved in saturation theory.'' The main results 
of this theory also remain valid. In particular, the 
spin system absorbs the quanta of the dipole-dipole in- 
teraction modulated by the pulses and by the detuning 
prior to equalization of the temperatures of the Zeeman 
and dipole -dipole reservoirs. The residual magnetiza- 
tion M&, is then connected with the quasistationary mag- 
netization M: by the formula 

We see therefore that only at exact resonance (aweff =0, 
we, = n/37) does the magnetization attenuate to zero. 
This conclusion agrees well with the experimental data. l5 

In practice a deviation from the resonant field value can 
be obtained either by changing the pulse rotation angle cp 
or  by changing the parameter AT. Figure 4a shows 
plots of Mies / M ,  at cp = 72" against the parameter AT, 
while Fig. 4b shows the analogous dependence of M:,, / 
M S t x  on the angle cp a t  the value of AT corresponding to 
the investigated resonant process a t  rp =72". The ex- 
perimental data shown in Fig. 4 (Ref. 15) agrees satis- 
factorily with the theory. Some discrepancy between 
theory and experiment can apparently be attributed to 
the influence of other resonant processes, also to the 
fact that the pulses a re  not ideal. 

It is easy to write out for our problem the saturation 
equations1' and find that equalization of the tempera- 
tures of the Zeeman and dipole-dipole reservoirs pro- 
ceeds exponentially, and the rate of this process is 
given by 

The operators $zbUeff a re  defined here by the relation 

FIG. 4. Dependence of MI,,/M*, in three-spin resonance for 
single-crystal CaFz (H,, =0.86 Oe): a) on At at rp= 7Z0, b) on 
the angle rp at At = O .  905; a-experimental points. 

where 

6' ( t )  - [exp ( i ~ & d ' t ) f  d' exp ( - i d o f  d o t ) ,  
eatp (i-4Ad0t)&.,' exp ( - i ~ & d ' t )  1, (50) 

6-" ( t )  = (G3 ( t )  } +. 
The plus sign denotes a transition to the complex-con- 
jugate operator. The main conclusion of (48) is that the 
magnetization damping time in three-spin resonance is 
-T-'. In perfect analogy, we can find also: 

a )  that the magnetization damping time in four-spin 
resonance is - T - ~ ;  

b) that the magnetization damping time in five-spin 
resonance is -7-'. 

The experimental dataL5 obtained for cases a) and b) 
a re  close to the theoretical results. The magnetization 
damping time in three-spin resonance, according to the 
data of Ref. 15, is -T-"~. The difference between 
theory and experiment is due here apparently to the in- 
fluence of other resonant processes and to inhomogen- 
eity of the field H,. From formula (48) we can also de- 
termine the dependence of the magnetization damping 
time in the three-spin resonant process on the pulse 
rotation angle cp: 

T, ,,-sin-' 'lacp (4 COS' '/acp- I ) - ' .  (5 1) 

Formula (51) agrees with the experimental data." A 
corresponding comparison of theory with experiment 
is shown in Fig. 5. 

We note that at cp = n/2 and AT = n/4 we have A,, = 0 
[see formula (7) and (13)I. Under these conditions the 
quasiequilibrium (39) can therefore not be established 
because there is no mixing interaction*, and the fore- 
going treatment of three-spin resonance at this point of 
the (cp, At) plane is no longer correct. 

At arbitrary values of cp and AT, the damping time of 
the observed signal is influenced simultaneously by 
several resonant processes. We account for their in- 
fluence on the damping of the magnetization using a s  an 
example the joint action of three- and four-spin reso- 
nances. The equation for the density matrix in this case 
can be written in the form 
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FIG. 5. Dependence of the magnetization damping time in 
three-spin resonance on the angle (p. The theoretical curve 
corresponds to expression (51) referred to the point marked 
by the arrow; x-experimental points. 

where k3(t) and k,(t) a re  defined by (43) and (44), while 
d-,(t) and 2-,(t) are the corresponding complex-conju- 
gate operators. The saturation equations16 are obtained 
here in standard fashion1' and take the form 

and the operators d::,,,,-3wen) a r e  specified by formulas 
(49) and (50). To obtain F, we must use the same formu- 
las, with the index 3 replaced by the index 4 and with 
$(t)  defined as 

hd2(t)  =exp (iA&%d0t)%2 exp (-iA&d@t). 

An investigation of Eqs. (53) shows that when two reso- 
nant processes are taken into account the magnetization 
attentuates in accordance with a double exponential law. 
The indicated resonance processes always lead to a 
complete vanishing of the magnetization. We can treat 
simultaneously the simultaneous action of any number of 
resonant processes. 

In conclusion, ,the authors thank G. B. Manelis for 
constant attention to the work and L. N. Erofeev and 
B. A. Shumm for useful discussions. 

APPENDIX A 

To calculate expressions (33) and (34) we use formu- 
las (12). Let ob, =S~(&')~/S~($,)~. Standard calcula- 
tions' then lead to the formulas 

and 

We use next relations verified by direct calculation: 

&d*=-a/&~+&d+&d-t. (A.3) 

Scoring (A.3) and recognizing that ~ ~ & 3 ~  =SP@)~, we 

get 

APPENDIX B 
We calculate the sum ~(7r/3) [Eq. (46)]: 

We use next the known formula1' 

Differentiating (B.2) with respect t o  z we get 

Substituting z =-n/3 in (B.3) we obtain 

Using (B.l) and (B.4) we establish finally that 

Q(n/3) =3-%. (B.5) 
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