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The absorption coefficient of longitudinal sound ys calculated in the linear approximation has a 
discontinuity at o = 2A(T). If allowance is made for the finite intensity of the acoustic wave, the 
coefficient f becomes a continuous function of A but there is a jump in the temperature dependence of A. 
This again gives rise to a discontinuity of the absorption coefficient. The position of the discontinuity on 
the temperature scale shifts by an amount proportional to the intensity of sound and may exhibit 
hysteresis. 

PACS numbers: 74.30. - e 

1. INTRODUCTION 

It is well known1 that the absorption coefficient of 
longitudinal sound in superconductors exhibits a dis- 
continuity 

at the acoustic frequency w =2i\(T). The abrupt in- 
crease in the absorption coefficient y S  at the threshold 
frequency is due to the appearance of a new absorption 
mechanism, which is the direct creation of a pair of 
excitations by a phonon. The classical result (1) is 
obtained in the linear approximation in respect of the 
acoustic field and is valid at low sound intensities. 
Recent experiments (see, for example, Ref. 2) a re  
evidence of increasing interest in the nonlinear effects 
in the threshold absorption, i.e ., in the influence of 
the sound intensity on the absorption singularities near 
w =2A(l'). In view of this it would be desirable to con- 
sider the problem theoretically. 

We shall show that if allowance is made for the finite 
intensity of the acoustic wave, the absorption coeffic- 
ient y S  becomes a continuous function of the order para- 
meter a and a jump changes to a narrow transition 
region of width proportional to the square of the inten- 
sity. However, although the discontinuity disappears 
in yS considered a s  a function of A ,  it is still present 
in the temperature dependence of the order parameter 
at some fixed frequency (or  in the dependence of A on 
w at a fixed temperature). The jump A(T) occurs in 
the region of A(T) - w/2 and it is proportional to the 
intensity of sound. It is associated with the strong 
dependence of the distribution function of excitations 
on the sound intensity near the absorption threshold 
where phonons of energy 2A create excitations. 

The jump A(T) is superimposed on the dependence 
y S  and it again gives rise to a discontinuity of yS(T) 
considered as a function of temperature. In the first  
approximation, the magnitude of this jump is given 
by Eq. (1) and its position on the temperature axis 
shifts relative to To [A(T~)  = w/2 in the absence of 
sound] by an amount proportional to the sound intensity 
and it may exhibit hysteresis. 

ductor s o  that TA >> 1, where T is  the electron transit 
time between collisions with impurities. This re- 
striction is not important because the real parameter 
of the expansion is not (TA)-' but (rvFk)-l, where 
k = w / s  is  the wave vector of sound. For w - A ,  this 
parameter is of the order of (ATv,/s)-', which is 
much less than unity right up to very long transit 
times. 

2. ABSORPTION COEFFICIENT NEAR THE 
THRESHOLD 

The absorption of sound is governed by the imaginary 
part of the self-energy of phonons which results from 
the interaction with electrons. In the case of longitud- 
inal sound, this interaction is described by a correc- 
tion x to the energy (chemical potential) of electrons, 
which is related to the change in the charge density in 
the lattice. The Hamiltonian of the interaction is 

where $ and cp are  the electron and phonon field oper- 
ators. We can go over to the phonon field in Eq. (2) 
employing the relationship 

-'/,u,p, div u+x-0 

(where u denotes the displacements of ions), which 
follows from the electrical neutrality condition in the 
principal approximation in respect of s/vF. 

We can show that the self-energy of phonons is given 
by (the upper index R represents the retarded function) 

(3) 
A 

Here, 5: i s  the correction to the total electron Green 
function 

which is due to the interaction of x with phonons. In 
the approximation which is linear in respect of this 
interaction, Eq. (3) represents the usual loop of the 
polarization ope rator. 

For simplicity, we shall consider a pure supercon- The Green function G can be found from the kliash- 
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berg system of equations3 for the functions integrated 
with respect to [,=p2/2m-E,: 

The matrix form of these equations is 

where 7, is the Pauli matrix; &,= &i w1/2; I::; is the 
integral representing collisions with impurities and 
I:,,- is the integral representing collisions with pho- 
nons, where 

I:,",,.- = & ĝ-$"+i?-̂ &) ,.,t.. (5) 

Here, the matrix 5 is the electron self-energy part; 
the braces {:. .}wt, k' denote contraction over w and k. 
The matrix h is given by 

(the order parameter is  assumed to be real). 

The function g,+,,-, which should satisfy the normal- 
ization condition of Larkin and O v c h i n n i k ~ v ~ ~  can be 
represented in the form 

We must bear in mind that the order parameter A 
should be found self-consi.tently using the equation 

A,.(k') -= 
de dov  

Ih! 
v (0) Txf.+ ,'- ( P ,  k% 

Equations (3) and (6)-(10) allow us to consider the 
nonlinear effects of interest to us  near the threshold. 
The transport equations (4) and (9) have been used 
earlier5 to study the nonlinear absorption of sound in 
superconductors without allowance for  the threshold 
effects. 

We shall discuss a spatially homogeneous supercon- 
ductor. Moreoever, for simplicity, we shall assume 
that vFk = vF2A/s >> T, i.e ., we shall ignore a very 
narrow range of temperatures near Z', where (1 - T/T,) 
s 10". 

The frequency corrections (wr #O) to the order para- 
meter in Eq. (10) a re  small and, therefore, we can 
then assume in Eqs. (7) and (8) that h ,  =xu.  Taking the 
imaginary part of CiPh)R(k), we find that the absorption 
coefficient is given by 

^ R " A  - ( a )  

~.+..-=g.+..-f.--f.+gz+.-fg.+..-7 (6) Here, &, = & * w/2 and Ez ( A  ) are  the values of the func- 

where fc is related to the excitation distribution func- tion (c2 - A')" ', whichis analytic in the plane of the 

tion. In equilibrium, we have f, = 1 - 2n,, , where n, complex variable E with cuts from -40 -A and from 

is the Fermi function. The Green functions gc+w~2,c~, 1, 
A to -; these functions a re  taken along the upper 

a re  governed by the elements of Eq. (4) which a re  (lower) edge of the cut where the condition &>+A leads 

nondiagonal in respect of the energy (o r  =w). Since to the value [:(A) = i (c2 - A2)l l2 + i6 of this function. 

vFk = YFY/s >> where is the phonon relaxa- Equation (11) is a generalization of the familiar ex- 

time, we can find g 2: ,/,. ,- ,/, ignoring the phonon re- pression lor the case- 
laxation. The e ~ ~ r e s s i o n ' f o r  this function is obtained 
from Eq. (4) or, from4 

- (a) db, - .  k - t!.+.lz,.-.lz(~, k) = - I  - G.+.12 ( P  + i) hm(k)  
III 

In the expression (7) the functions GKtA ) are  taken in 
the zeroth order in X .  This is done because the diff- 
erence between G"(A ) and the unperturbed functions is 
governed by the ratio X / E  (where &-A), whereas the 
nonlinear effects of interest to us are  associated with 
the departure of the "distribution function" f, from 
equilibrium, which occurs much earlier and which is 
due to the slowness of the electron-phonon relaxation. 
For the same reason, in the case of the regular func- 
tions ĝj:_'in Eq. (6) we need to consider only the 
principal approximation in x : 
-I((*) ^ R ( A )  d f  - k' k' 
ge+ ,z- =g,  .2n6(o1)  - j 4~::' ( p  + -) iur (k1)z ; : )  ( p  - T ) .  

nt 2  

(8) 
The formulas (7) and (8) are deduced directly from the 
Feynman graphs. 

The function f, is governed by the terms in Eq. (4) 
which are  diagonal in respect of energy (and k), i.e., 
by the terms with u t=2 '=0 .  After averaging over the 
directions of the vector v,, we find from Eq. (5) that3 

The distribution function obtained from Eq. (9) is 
(compare with Refs. 3 and 5) 

Here, the "intensity" of sound is 

In the above expression, No is the electron number 
density; Z and M, are  the atomic valence and mass; 
w = p 1 wu l 2  is the acoustic energy density in a sample. 
According to Eliashberg? the collision integral is 

We a re  interested in the absorption coefficient of 
sound in the direct vicinity of the threshold, i.e., in 
the case when 

where cu << 1. The intensity of sound will be assumed to 
be sm all: &,T,,Z A/T << 1. We shall show later that the 
near-threshold nonlinear effects a re  governed by the 
parameter p a & , T ~ C Y - ' / ~ ,  which can be greater or  
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smaller than unity. We shall consider only tempera- 
tures close to the critical value. For this reason we 
can reduce the collision integral to the r approxima- 
tions: 

where A is the nonequilibrium correction to the dis- 
tribution function: 

f.-f."'+f,, f . '"=th(e /2~) .  

Equation (13) is valid for &-A << T. It should be noted 
that the nonequilibrium correction f ,  is not necessarily 
small compared with f,cO) if E - A. For example, in 
the threshold region, where the zero values of the 
radicands in the denominators of the left-hand sides of 
Eq. (12) approach one another, the correction 7, can be 
of the same order of magnitude as  the equilibrium 
function tanh(c/2T) in the & - A  case. This circum- 
stance results in strong nonlinearities near the thres- 
hold. 

The frequency integral in Eq. (11) can be split into 
three ranges: -*<E <- (h+w/2) ,  A + w / ~ < c < ~ ,  and 
- (w/2 - A) < E < w/2 - A )  . The last range exists only 
for w/2 >A (i.e., for a >0) and is responsible for the 
jump in y S  considered in the linear approximation. The 
contribution of the first  two integration ranges at zero 
intensity is a continuous function of 4, and when the 
nonlinearity is allowed for, a correction of the order 
of &,,r,,<< 1 has to be added. If Eqs. (12) and (13) are 
used to find the correction to the equilibrium distrib- 
ution function, the following expression is obtained for 
the subthreshold range w = 2A - 0 (i.e., for  a - - 0): 

where C=1.67. 

We shall now consider the integration range - (w/ 
2 - A) <& < w/2 - A ,  where the nonlinear effects a re  
particularly strong. By analogy with the linear case, 
we shall denote the contribution of this range by bys. 
Using Eqs. (12) and (13), we find that when 
- A a < c < A a ,  a=(w/2-A)/A>O, then 

After substitution in Eq. ( l l ) ,  we find that the absorp- 
tion jump is 

where p = &,~, , (2/f f )~ '~ .  In the immediate vicinity of 
the threshold, where a - 0 and p >> 1, we find that 

i.e., by' vanishes at  a =O. An increase in a at a given 
intensity reduces the parameter p and for p << 1 we have 

FIG. 1. 

c~ (p) = 1-2'"pn-~ In p-I, (17) 

where b y S  is given by Eq. (1) in the zeroth approxim- 
ation with respect to the intensity. The dependence of 
+ ( p )  on A is shown schematically in Fig. 1. We can 
see that if allowance is made for the nonlinearity, the 
absorption coefficient becomes a continuous function of 
A and the jump is smeared out into a transition region 
of width 6 A -A(E,T,,)~. 

We have considered the behavior of the absorption 
coefficient as  a function of the order parameter. How- 
ever,  in a real situation the order parameter at a gi- 
ven intensity is a function of temperature and should 
be found from Eq. (lo), which we shall do in the next 
section. 

3. THRESHOLD EFFECTS AND ORDER 
PARAMETER 

The nonequilibrium nature of the excitations created 
by an acoustic wave alters the order parameter. This 
effect, known as  superconductivity stimulation, has 
been investigated earlier6-8 without allowance for the 
threshold phenomena. Near the threshold the devia- 
tions of the distribution function f, from equilibrium 
are  large even at low intensities, and, therefore, we 
can expect the occurrence of singularities of the order 
parameter. The steady-state part of the order para- ' 
meter is f o y d  from Eq. (6), in which the anomalous 
function is gca)=O at w'=O,  and separating the equili- 
brium part in f,, we obtain 

The nonequilibrium function jc differs from zero, 
when one of the functions O[(E + w)' - h2] O r  O[E - w)' 
- A2] differs from zero. Therefore, the process of 
integration in Eq. (18) can be divided to two ranges: 
4 +2Aa < E<+- a ~ d  A <&<A +2Aa. The contribution 
of the first  range is a smooth function of A and we 
can calculate the integral assuming that a =O. With 
the aid of Eq. (12), we find that the contribution of 
this range to Eq. (18) is 

where 

Integration over the range 4 <& <A + 2Aa gives rise to 
a singularity in Eq. (18). Consequently, we find that 
7, is described by 
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FIG. 3. 

FIG. 2. 

is the volume of the superconductor. 

The difference f,- f,-, can be found from Eq. (15) by a 
suitable frequency shift. Integration yields the follow- 
ing contribution to Eq. (18): 

v ( 0 )  nA2T-'e,rpho ( p )  0 (a). 

The function 9(p  ) is defined above. 

The final equation for A becomes 

Figure 2 shows schematically the temperature depen- 
dence of A .  It has a beak-shaped singularity at A(T) 
= w/2 and the width of this singularity along the tem- 
perature* axis is of the order of The temper- 
ature T at which A(T*) = w / 2  i s  

where T, is found from the condition A(%) = w/2 when 
the intensity is zero. Differentiating Eq. (19) with re- 
spect to A ,  we find that T corresponds to 

For these values of p we have 9 ( p  ) = 1 and 

T'.=To+l/ra (a-n)eotph. 
* * * 

In the interval between T and T we can have gen- 
erally three different values of A at any given temper- 
ature. Only the following regions of A(T) are stable 
and at any given temperature one falling region corres- 
ponds to a stable state and the other to a metastable 
state. The limit of metastability can be found by the 
Langevin method of random forces (see, for example, 
Refs. 9 and 10). Therefore, the right-hand side of Eq. 
(10) should be supplemented by the random force 
f(r,t) ,  about which we shall assume that 

(f ( I ,  t )  f (r', t') ) =A6(r-I') 8 (t-t') , 

where the averaging is carried out over the random 
distribution. The correlation function A is selected so 
that in the absence of the acoustic wave the probability 
of this state is equal to exp (-vF~,/T), where Sr,, is 
the density of the free Ginzburg-Landau energy and V 

Applying the standard procedure (see, for example, 
Ref. l l ) ,  we shall now go over from Eq. (10) to a 
random force in the Fokker-Planck equation for the 
probability of a given state W(A , t ) .  The stationary 
solution of this equation is 

where F(A) denotes the lefthand side of Eq. (19). In the 
absence of the acoustic wave the integral of F(A) re- 
duces togo, and we return to the usual expression for 
W(A). The temperature T,, which sets the limit of 
metastability of the upper and lower branches A,(T) and 
A2(T) (see Fig. 2) is  found from the condition 

Az(Twl 

j F(A)dA=O.  
A,(T") 

The application of Eq. (19) gives 

We can thus see that the dependence A(T) has a sin- 
gularity near A(T) = w/2 where, at a certain tempera- 
ture, there is an abrupt change from the upper branch 
in Fig. 2 to the lower one. This transition should rise 
to hysteresis. The jump is not very large, of the order 
of T,E~T~,,  but the absorption coefficient changes dis- 
continuously by a finite amount because p << 1 every- 
where on the lower branch. The discontinuity of y = is 
given by Eq. (16) where the function @(p) should be 
taken from Eq. (17) for the parameter p in the range 
p << 1, corresponding to A on the lower branch of Fig. 
2 at a given temperature. Thus, if an abrupt transit- 
ion occurs at T,,, then 

Figure 3 shows schematically the dependence y *(T) at 
a fixed acoustic frequency w . 

The results obtained are valid if << 1. At higher 
intensities corresponding to &,,7,,, - 1, the nonlinear 
contribution to the subthreshold absorption coefficient 
[Eq. (14)] and to the equation for A [Eq. (19)] can be 
found by solving the infinite system of algebraic equa- 
tions (12), which is  generally difficult. However, it i s  
qualitatively clear that at high intensities the abrupt 
transition in Fig. 2 takes place from a state A, to a 
state A, corresponding to the parameter p 2 1. The 
absorption coefficient is reduced as a result of this 
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transition. 

We shall conclude by estimating the intensity of sound 
at which these phenomena can be expected. If o= 101° 
sec" and rpR = sec,  we find that 

Here, A is the atomic weight. The appearance of the 
Planck constant in the above expressions is due to the 
selection of the units employed in the present paper. 
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An investigation was made of the behavior of nuclear magnetization subjected to a pulse sequence 
9O0,,-7-((p, - 2 ~ ) ~  under off-resonance conditions. Establishment of quasiequilibrium regimes in the 
spin system was investigated. The effects of many-spin resonance absorption of the energy of an external 
agency were detected. The concept of an effective field a,, of magnitude and direction governed by the 
parameters of the exciting pulses and detuning A, was introduced. The measured resonance values of (p, 

and AT were in good agreement with those calculated in the effective field framework. The experimental 
results were compared with the conclusions of a thermodynamic theory of narrowing of NMR lines of a 
solid, given in the following paper in the present issue. 

PACS numbers: 76.60.E~ 

Investigations of NMR in a rotating coordinate system 
in the presence of a continuously acting pulsed hf mag- 
netic field a re  used widely to study solids. Experiments 
of this kind have frequently improved the sensitivity of 
the NMR method1 and have given information on rela- 
tively slow molecular motion in matter,' a s  well a s  
NMR spectra of solids with much enhanced resolution.3e4 

A pulse variant of such experiments, called the spin- 
locking method, has been proposed r e ~ e n t l y . ~  This 
method i s  of great practical importance because i t  can 
be used to measure the spin-lattice relaxation time TI, 
in a rotating coordinate system much faster and more 
conveniently than by the traditional method with a con- 
tinuously acting hf field.216 Moreover, pulse spin lock- 
ing is the simplest many-pulse experiment which can be 
used a s  a satisfactory model in theoretical analyses of 
the behavior of nuclear magnetization under the action of 
pulse sequences. It is pointed out in Refs. 7 and 8 that 
some of the phenomena observed under pulse spin-lock- 
ing conditions cannot be explained by the theory of the 

average Hamiltoniang usually employed in dealing with 
such experiments. A different approach has been devel- 
oped8 for  the spin dynamics of many-pulse NMR experi- 
ments: i t  is based on the determination of quasiequilib- 
rium states of the spin system and allowance for many- 
spin processes of the absorption of energy of an extern- 
al agency. This approach gives a satisfactory agree- 
ment with the results of experimental inve~t iga t ions~~ '  
employing pulse spin locking in the specific case when 
the exact resonance conditions a re  satisfied. In the 
present paper, which is a continuation of Ref. 7, we 
shall consider the processes of establishing quasiequi- 
librium states and relaxation of a spin system with the 
dipole coupling in the case of pulse spin locking in the 
more general off-resonance case. 

1. EXPERIMENTAL METHOD 

Our measurements were carried out using a many- 
pulse NMR spectrometer10 tuned to the resonance fre- 
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